uboot/u-boot-stm32mp-2020.01/board/synopsys/iot_devkit/README

146 lines
6.4 KiB
Plaintext
Raw Permalink Normal View History

2024-01-10 06:52:34 +00:00
================================================================================
Useful notes on bulding and using of U-Boot on
ARC IoT Development Kit (AKA IoTDK)
================================================================================
BOARD OVERVIEW
The DesignWare ARC IoT Development Kit is a versatile platform that includes
the necessary hardware and software to accelerate software development and
debugging of sensor fusion, voice recognition and face detection designs.
The ARC IoT Development Kit includes a silicon implementation of the
ARC Data Fusion IP Subsystem running at 144 MHz on SMIC's
55-nm ultra-low power process, and a rich set of peripherals commonly used
in IoT designs such as USB, UART, SPI, I2C, PWM, SDIO and ADCs.
The board is shipped with pre-installed U-Boot in non-volatile memory
(eFlash) so on power-on user sees U-Boot start header and command line
prompt which might be used for U-Boot environment fine-tuning, manual
loading and execution of user application binaries etc.
The board has the following features useful for U-Boot:
* On-board 2-channel FTDI TTL-to-USB converter
- The first channel is used for serial debug port (which makes it possible
to use a serial connection on pretty much any host machine be it
Windows, Linux or Mac).
On Linux machine typucally FTDI serial port would be /dev/ttyUSB0.
There's no HW flow-control and baud-rate is 115200.
- The second channel is used for built-in Digilent USB JTAG probe.
That means no extra hardware is required to access ARC core from a
debugger on development host. Both proprietary MetaWare debugger and
open source OpenOCD + GDB client are supported.
- Also with help of this FTDI chip it is possible to reset entire
board with help of a special `rff-ftdi-reset` utility, see:
https://github.com/foss-for-synopsys-dwc-arc-processors/rff-ftdi-reset
* Micro SD-card slot
- U-Boot expects to see the very first partition on the card formatted as
FAT file-system and uses it for keeping its environment in `uboot.env`
file. Note uboot.env is not just a text file but it is auto-generated
file created by U-Boot on invocation of `saveenv` command.
It contains a checksum which makes this saved environment invalid in
case of maual modification.
- There might be more useful files on that first FAT partition like
user applications, data files etc.
* USB OTG connector
- U-Boot may access USB mass-storage devices attached to this connector.
Note only FAT file-system is supported. It might be used for storing
user application binaries as well as micro SD-card mentioned above.
* The following memories are avaialble on the board:
- eFlash: 256 KiB @ 0x0000_0000
A non-volatile memory from which ARC core may execute code directly.
Still is is not direcly writable, thus this is not an ordinary RAM.
- ICCM: 256 KiB @ 0x2000_0000
Instruction Closely Coupled Memory - fast on-chip memory primary used
for code being executed, still data could be placed in this memory too.
In that sense it's just a general purpose RAM.
- SRAM: 128 KiB @ 0x3000_0000
On-chip SRAM. From user perspective is the same as ICCM above.
- DCCM: 128 KiB @ 0x8000_0000
Data Closely Coupled Memory is similar to ICCM with a major difference -
ARC core cannot execute code from DCCM. So this is very special RAM
only suitable for data.
BUILDING U-BOOT
1. Configure U-Boot:
------------------------->8----------------------
make iot_devkit_defconfig
------------------------->8----------------------
2. To build Elf file (for example to be used with host debugger via JTAG
connection to the target board):
------------------------->8----------------------
make mdbtrick
------------------------->8----------------------
This will produce `u-boot` Elf file.
3. To build binary image to be put in "ROM":
------------------------->8----------------------
make u-boot.bin
------------------------->8----------------------
EXECUTING U-BOOT
1. The IoTDK board is supposed to auto-start U-Boot image stored in eFlash on
power-on. Note it's possible to update that image - follow instructions in
user's manual.
2. Though it is possible to load and start U-Boot as a simple Elf file
via JTAG right in ICCM. For that it's required to re-configure U-Boot
so it gets linked to ICCM address 0x2000_0000 (remember eFlash is not
direcly writable).
Run U-Boot's configuration utility with "make menuconfig", go to
"Boot images" and change "Text Base" from default 0x00000000 to
0x20000000. Exit & save new configuration. Now run "make mdbtrick" to
build new Elf.
2.1. In case of proprietary MetaWare debugger run:
------------------------->8----------------------
mdb -digilent u-boot
------------------------->8----------------------
USING U-BOOT
Note due to limited memory size it's supposed that user will run binary
images of their applications instead of loading Elf files.
1. To load and start application binary from micro SD-card execute
the following commands in U-Boot's shell:
------------------------->8----------------------
fatload mmc 0 0x20000000 yourapp.bin
go 0x20000000
------------------------->8----------------------
2. To load and start application binary from USB mass-storage device execute
the following commands in U-Boot's shell:
------------------------->8----------------------
usb start
fatload usb 0x20000000 yourapp.bin
go 0x20000000
------------------------->8----------------------
3. To have a sequence of commands executed on U-Boot start put those
commands in "bootcmd" with semicolon between them.
For example to get (1) done automatically:
------------------------->8----------------------
setenv bootcmd fatload mmc 0 0x20000000 yourapp.bin\; go 0x20000000
saveenv
------------------------->8----------------------
4. To reboot the board just run:
------------------------->8----------------------
reset
------------------------->8----------------------