220 lines
6.8 KiB
C
220 lines
6.8 KiB
C
/* SparseSet implementation.
|
|
Copyright (C) 2007-2019 Free Software Foundation, Inc.
|
|
Contributed by Peter Bergner <bergner@vnet.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GCC_SPARSESET_H
|
|
#define GCC_SPARSESET_H
|
|
|
|
/* Implementation of the Briggs and Torczon sparse set representation.
|
|
The sparse set representation was first published in:
|
|
|
|
"An Efficient Representation for Sparse Sets",
|
|
ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.
|
|
|
|
The sparse set representation is suitable for integer sets with a
|
|
fixed-size universe. Two vectors are used to store the members of
|
|
the set. If an element I is in the set, then sparse[I] is the
|
|
index of I in the dense vector, and dense[sparse[I]] == I. The dense
|
|
vector works like a stack. The size of the stack is the cardinality
|
|
of the set.
|
|
|
|
The following operations can be performed in O(1) time:
|
|
|
|
* clear : sparseset_clear
|
|
* cardinality : sparseset_cardinality
|
|
* set_size : sparseset_size
|
|
* member_p : sparseset_bit_p
|
|
* add_member : sparseset_set_bit
|
|
* remove_member : sparseset_clear_bit
|
|
* choose_one : sparseset_pop
|
|
|
|
Additionally, the sparse set representation supports enumeration of
|
|
the members in O(N) time, where n is the number of members in the set.
|
|
The members of the set are stored cache-friendly in the dense vector.
|
|
This makes it a competitive choice for iterating over relatively sparse
|
|
sets requiring operations:
|
|
|
|
* forall : EXECUTE_IF_SET_IN_SPARSESET
|
|
* set_copy : sparseset_copy
|
|
* set_intersection : sparseset_and
|
|
* set_union : sparseset_ior
|
|
* set_difference : sparseset_and_compl
|
|
* set_disjuction : (not implemented)
|
|
* set_compare : sparseset_equal_p
|
|
|
|
NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET.
|
|
The iterator is updated for it.
|
|
|
|
Based on the efficiency of these operations, this representation of
|
|
sparse sets will often be superior to alternatives such as simple
|
|
bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees,
|
|
hash tables, linked lists, etc., if the set is sufficiently sparse.
|
|
In the LOPLAS paper the cut-off point where sparse sets became faster
|
|
than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the
|
|
size of the universe of the set).
|
|
|
|
Because the set universe is fixed, the set cannot be resized. For
|
|
sparse sets with initially unknown size, linked-list bitmaps are a
|
|
better choice, see bitmap.h.
|
|
|
|
Sparse sets storage requirements are relatively large: O(U) with a
|
|
larger constant than sbitmaps (if the storage requirement for an
|
|
sbitmap with universe U is S, then the storage required for a sparse
|
|
set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S).
|
|
Accessing the sparse vector is not very cache-friendly, but iterating
|
|
over the members in the set is cache-friendly because only the dense
|
|
vector is used. */
|
|
|
|
/* Data Structure used for the SparseSet representation. */
|
|
|
|
#define SPARSESET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
|
|
#define SPARSESET_ELT_TYPE unsigned HOST_WIDEST_FAST_INT
|
|
|
|
typedef struct sparseset_def
|
|
{
|
|
SPARSESET_ELT_TYPE *dense; /* Dense array. */
|
|
SPARSESET_ELT_TYPE *sparse; /* Sparse array. */
|
|
SPARSESET_ELT_TYPE members; /* Number of elements. */
|
|
SPARSESET_ELT_TYPE size; /* Maximum number of elements. */
|
|
SPARSESET_ELT_TYPE iter; /* Iterator index. */
|
|
unsigned char iter_inc; /* Iteration increment amount. */
|
|
bool iterating;
|
|
SPARSESET_ELT_TYPE elms[2]; /* Combined dense and sparse arrays. */
|
|
} *sparseset;
|
|
|
|
#define sparseset_free(MAP) free(MAP)
|
|
extern sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms);
|
|
extern void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE);
|
|
extern void sparseset_copy (sparseset, sparseset);
|
|
extern void sparseset_and (sparseset, sparseset, sparseset);
|
|
extern void sparseset_and_compl (sparseset, sparseset, sparseset);
|
|
extern void sparseset_ior (sparseset, sparseset, sparseset);
|
|
extern bool sparseset_equal_p (sparseset, sparseset);
|
|
|
|
/* Operation: S = {}
|
|
Clear the set of all elements. */
|
|
|
|
static inline void
|
|
sparseset_clear (sparseset s)
|
|
{
|
|
s->members = 0;
|
|
s->iterating = false;
|
|
}
|
|
|
|
/* Return the number of elements currently in the set. */
|
|
|
|
static inline SPARSESET_ELT_TYPE
|
|
sparseset_cardinality (sparseset s)
|
|
{
|
|
return s->members;
|
|
}
|
|
|
|
/* Return the maximum number of elements this set can hold. */
|
|
|
|
static inline SPARSESET_ELT_TYPE
|
|
sparseset_size (sparseset s)
|
|
{
|
|
return s->size;
|
|
}
|
|
|
|
/* Return true if e is a member of the set S, otherwise return false. */
|
|
|
|
static inline bool
|
|
sparseset_bit_p (sparseset s, SPARSESET_ELT_TYPE e)
|
|
{
|
|
SPARSESET_ELT_TYPE idx;
|
|
|
|
gcc_checking_assert (e < s->size);
|
|
|
|
idx = s->sparse[e];
|
|
|
|
return idx < s->members && s->dense[idx] == e;
|
|
}
|
|
|
|
/* Low level insertion routine not meant for use outside of sparseset.[ch].
|
|
Assumes E is valid and not already a member of the set S. */
|
|
|
|
static inline void
|
|
sparseset_insert_bit (sparseset s, SPARSESET_ELT_TYPE e, SPARSESET_ELT_TYPE idx)
|
|
{
|
|
s->sparse[e] = idx;
|
|
s->dense[idx] = e;
|
|
}
|
|
|
|
/* Operation: S = S + {e}
|
|
Insert E into the set S, if it isn't already a member. */
|
|
|
|
static inline void
|
|
sparseset_set_bit (sparseset s, SPARSESET_ELT_TYPE e)
|
|
{
|
|
if (!sparseset_bit_p (s, e))
|
|
sparseset_insert_bit (s, e, s->members++);
|
|
}
|
|
|
|
/* Return and remove the last member added to the set S. */
|
|
|
|
static inline SPARSESET_ELT_TYPE
|
|
sparseset_pop (sparseset s)
|
|
{
|
|
SPARSESET_ELT_TYPE mem = s->members;
|
|
|
|
gcc_checking_assert (mem != 0);
|
|
|
|
s->members = mem - 1;
|
|
return s->dense[s->members];
|
|
}
|
|
|
|
static inline void
|
|
sparseset_iter_init (sparseset s)
|
|
{
|
|
s->iter = 0;
|
|
s->iter_inc = 1;
|
|
s->iterating = true;
|
|
}
|
|
|
|
static inline bool
|
|
sparseset_iter_p (sparseset s)
|
|
{
|
|
if (s->iterating && s->iter < s->members)
|
|
return true;
|
|
else
|
|
return s->iterating = false;
|
|
}
|
|
|
|
static inline SPARSESET_ELT_TYPE
|
|
sparseset_iter_elm (sparseset s)
|
|
{
|
|
return s->dense[s->iter];
|
|
}
|
|
|
|
static inline void
|
|
sparseset_iter_next (sparseset s)
|
|
{
|
|
s->iter += s->iter_inc;
|
|
s->iter_inc = 1;
|
|
}
|
|
|
|
#define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER) \
|
|
for (sparseset_iter_init (SPARSESET); \
|
|
sparseset_iter_p (SPARSESET) \
|
|
&& (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \
|
|
sparseset_iter_next (SPARSESET))
|
|
|
|
#endif /* GCC_SPARSESET_H */
|