2279 lines
83 KiB
C
2279 lines
83 KiB
C
/* Definitions of target machine for GNU compiler, for ARM.
|
||
Copyright (C) 1991-2019 Free Software Foundation, Inc.
|
||
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
|
||
and Martin Simmons (@harleqn.co.uk).
|
||
More major hacks by Richard Earnshaw (rearnsha@arm.com)
|
||
Minor hacks by Nick Clifton (nickc@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published
|
||
by the Free Software Foundation; either version 3, or (at your
|
||
option) any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
Under Section 7 of GPL version 3, you are granted additional
|
||
permissions described in the GCC Runtime Library Exception, version
|
||
3.1, as published by the Free Software Foundation.
|
||
|
||
You should have received a copy of the GNU General Public License and
|
||
a copy of the GCC Runtime Library Exception along with this program;
|
||
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#ifndef GCC_ARM_H
|
||
#define GCC_ARM_H
|
||
|
||
/* We can't use machine_mode inside a generator file because it
|
||
hasn't been created yet; we shouldn't be using any code that
|
||
needs the real definition though, so this ought to be safe. */
|
||
#ifdef GENERATOR_FILE
|
||
#define MACHMODE int
|
||
#else
|
||
#include "insn-modes.h"
|
||
#define MACHMODE machine_mode
|
||
#endif
|
||
|
||
#include "config/vxworks-dummy.h"
|
||
|
||
/* The architecture define. */
|
||
extern char arm_arch_name[];
|
||
|
||
/* Target CPU builtins. */
|
||
#define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
|
||
|
||
/* Target CPU versions for D. */
|
||
#define TARGET_D_CPU_VERSIONS arm_d_target_versions
|
||
|
||
#include "config/arm/arm-opts.h"
|
||
|
||
/* The processor for which instructions should be scheduled. */
|
||
extern enum processor_type arm_tune;
|
||
|
||
typedef enum arm_cond_code
|
||
{
|
||
ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
|
||
ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
|
||
}
|
||
arm_cc;
|
||
|
||
extern arm_cc arm_current_cc;
|
||
|
||
#define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
|
||
|
||
/* The maximum number of instructions that is beneficial to
|
||
conditionally execute. */
|
||
#undef MAX_CONDITIONAL_EXECUTE
|
||
#define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
|
||
|
||
extern int arm_target_label;
|
||
extern int arm_ccfsm_state;
|
||
extern GTY(()) rtx arm_target_insn;
|
||
/* Callback to output language specific object attributes. */
|
||
extern void (*arm_lang_output_object_attributes_hook)(void);
|
||
|
||
/* This type is the user-visible __fp16. We need it in a few places in
|
||
the backend. Defined in arm-builtins.c. */
|
||
extern tree arm_fp16_type_node;
|
||
|
||
|
||
#undef CPP_SPEC
|
||
#define CPP_SPEC "%(subtarget_cpp_spec) \
|
||
%{mfloat-abi=soft:%{mfloat-abi=hard: \
|
||
%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
|
||
%{mbig-endian:%{mlittle-endian: \
|
||
%e-mbig-endian and -mlittle-endian may not be used together}}"
|
||
|
||
#ifndef CC1_SPEC
|
||
#define CC1_SPEC ""
|
||
#endif
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GCC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
#define EXTRA_SPECS \
|
||
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
|
||
{ "asm_cpu_spec", ASM_CPU_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#ifndef SUBTARGET_CPP_SPEC
|
||
#define SUBTARGET_CPP_SPEC ""
|
||
#endif
|
||
|
||
/* Tree Target Specification. */
|
||
#define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
|
||
#define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
|
||
#define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
|
||
#define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
|
||
|
||
/* Run-time Target Specification. */
|
||
/* Use hardware floating point instructions. -mgeneral-regs-only prevents
|
||
the use of floating point instructions and registers but does not prevent
|
||
emission of floating point pcs attributes. */
|
||
#define TARGET_HARD_FLOAT_SUB (arm_float_abi != ARM_FLOAT_ABI_SOFT \
|
||
&& bitmap_bit_p (arm_active_target.isa, \
|
||
isa_bit_vfpv2) \
|
||
&& TARGET_32BIT)
|
||
|
||
#define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_SUB \
|
||
&& !TARGET_GENERAL_REGS_ONLY)
|
||
|
||
#define TARGET_SOFT_FLOAT (!TARGET_HARD_FLOAT_SUB)
|
||
/* User has permitted use of FP instructions, if they exist for this
|
||
target. */
|
||
#define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
|
||
/* Use hardware floating point calling convention. */
|
||
#define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
|
||
#define TARGET_IWMMXT (arm_arch_iwmmxt)
|
||
#define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
|
||
#define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT \
|
||
&& !TARGET_GENERAL_REGS_ONLY)
|
||
#define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT \
|
||
&& !TARGET_GENERAL_REGS_ONLY)
|
||
#define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
|
||
#define TARGET_ARM (! TARGET_THUMB)
|
||
#define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
|
||
#define TARGET_BACKTRACE (crtl->is_leaf \
|
||
? TARGET_TPCS_LEAF_FRAME \
|
||
: TARGET_TPCS_FRAME)
|
||
#define TARGET_AAPCS_BASED \
|
||
(arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
|
||
|
||
#define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
|
||
#define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
|
||
#define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
|
||
|
||
/* Only 16-bit thumb code. */
|
||
#define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
|
||
/* Arm or Thumb-2 32-bit code. */
|
||
#define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
|
||
/* 32-bit Thumb-2 code. */
|
||
#define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
|
||
/* Thumb-1 only. */
|
||
#define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
|
||
|
||
#define TARGET_LDRD (arm_arch5te && ARM_DOUBLEWORD_ALIGN \
|
||
&& !TARGET_THUMB1)
|
||
|
||
#define TARGET_CRC32 (arm_arch_crc)
|
||
|
||
/* The following two macros concern the ability to execute coprocessor
|
||
instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
|
||
only ever tested when we know we are generating for VFP hardware; we need
|
||
to be more careful with TARGET_NEON as noted below. */
|
||
|
||
/* FPU is has the full VFPv3/NEON register file of 32 D registers. */
|
||
#define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
|
||
|
||
/* FPU supports VFPv3 instructions. */
|
||
#define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
|
||
|
||
/* FPU supports FPv5 instructions. */
|
||
#define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
|
||
|
||
/* FPU only supports VFP single-precision instructions. */
|
||
#define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
|
||
|
||
/* FPU supports VFP double-precision instructions. */
|
||
#define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
|
||
|
||
/* FPU supports half-precision floating-point with NEON element load/store. */
|
||
#define TARGET_NEON_FP16 \
|
||
(bitmap_bit_p (arm_active_target.isa, isa_bit_neon) \
|
||
&& bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
|
||
|
||
/* FPU supports VFP half-precision floating-point conversions. */
|
||
#define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
|
||
|
||
/* FPU supports converting between HFmode and DFmode in a single hardware
|
||
step. */
|
||
#define TARGET_FP16_TO_DOUBLE \
|
||
(TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
|
||
|
||
/* FPU supports fused-multiply-add operations. */
|
||
#define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
|
||
|
||
/* FPU supports Crypto extensions. */
|
||
#define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
|
||
|
||
/* FPU supports Neon instructions. The setting of this macro gets
|
||
revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
|
||
and TARGET_HARD_FLOAT to ensure that NEON instructions are
|
||
available. */
|
||
#define TARGET_NEON \
|
||
(TARGET_32BIT && TARGET_HARD_FLOAT \
|
||
&& bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
|
||
|
||
/* FPU supports ARMv8.1 Adv.SIMD extensions. */
|
||
#define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
|
||
|
||
/* Supports the Dot Product AdvSIMD extensions. */
|
||
#define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5 \
|
||
&& bitmap_bit_p (arm_active_target.isa, \
|
||
isa_bit_dotprod) \
|
||
&& arm_arch8_2)
|
||
|
||
/* Supports the Armv8.3-a Complex number AdvSIMD extensions. */
|
||
#define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
|
||
|
||
/* FPU supports the floating point FP16 instructions for ARMv8.2-A
|
||
and later. */
|
||
#define TARGET_VFP_FP16INST \
|
||
(TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
|
||
|
||
/* Target supports the floating point FP16 instructions from ARMv8.2-A
|
||
and later. */
|
||
#define TARGET_FP16FML (TARGET_NEON \
|
||
&& bitmap_bit_p (arm_active_target.isa, \
|
||
isa_bit_fp16fml) \
|
||
&& arm_arch8_2)
|
||
|
||
/* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later. */
|
||
#define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
|
||
|
||
/* Q-bit is present. */
|
||
#define TARGET_ARM_QBIT \
|
||
(TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
|
||
/* Saturation operation, e.g. SSAT. */
|
||
#define TARGET_ARM_SAT \
|
||
(TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
|
||
/* "DSP" multiply instructions, eg. SMULxy. */
|
||
#define TARGET_DSP_MULTIPLY \
|
||
(TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
|
||
/* Integer SIMD instructions, and extend-accumulate instructions. */
|
||
#define TARGET_INT_SIMD \
|
||
(TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
|
||
|
||
/* Should MOVW/MOVT be used in preference to a constant pool. */
|
||
#define TARGET_USE_MOVT \
|
||
(TARGET_HAVE_MOVT \
|
||
&& (arm_disable_literal_pool \
|
||
|| (!optimize_size && !current_tune->prefer_constant_pool)))
|
||
|
||
/* Nonzero if this chip provides the DMB instruction. */
|
||
#define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
|
||
|
||
/* Nonzero if this chip implements a memory barrier via CP15. */
|
||
#define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
|
||
&& ! TARGET_THUMB1)
|
||
|
||
/* Nonzero if this chip implements a memory barrier instruction. */
|
||
#define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
|
||
|
||
/* Nonzero if this chip supports ldrex and strex */
|
||
#define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) \
|
||
|| arm_arch7 \
|
||
|| (arm_arch8 && !arm_arch_notm))
|
||
|
||
/* Nonzero if this chip supports LPAE. */
|
||
#define TARGET_HAVE_LPAE (arm_arch_lpae)
|
||
|
||
/* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
|
||
#define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) \
|
||
|| arm_arch7 \
|
||
|| (arm_arch8 && !arm_arch_notm))
|
||
|
||
/* Nonzero if this chip supports ldrexd and strexd. */
|
||
#define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
|
||
|| arm_arch7) && arm_arch_notm)
|
||
|
||
/* Nonzero if this chip supports load-acquire and store-release. */
|
||
#define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
|
||
|
||
/* Nonzero if this chip supports LDAEXD and STLEXD. */
|
||
#define TARGET_HAVE_LDACQEXD (TARGET_ARM_ARCH >= 8 \
|
||
&& TARGET_32BIT \
|
||
&& arm_arch_notm)
|
||
|
||
/* Nonzero if this chip provides the MOVW and MOVT instructions. */
|
||
#define TARGET_HAVE_MOVT (arm_arch_thumb2 || arm_arch8)
|
||
|
||
/* Nonzero if this chip provides the CBZ and CBNZ instructions. */
|
||
#define TARGET_HAVE_CBZ (arm_arch_thumb2 || arm_arch8)
|
||
|
||
/* Nonzero if integer division instructions supported. */
|
||
#define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
|
||
|| (TARGET_THUMB && arm_arch_thumb_hwdiv))
|
||
|
||
/* Nonzero if disallow volatile memory access in IT block. */
|
||
#define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
|
||
|
||
/* Should NEON be used for 64-bits bitops. */
|
||
#define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
|
||
|
||
/* Should constant I be slplit for OP. */
|
||
#define DONT_EARLY_SPLIT_CONSTANT(i, op) \
|
||
((optimize >= 2) \
|
||
&& can_create_pseudo_p () \
|
||
&& !const_ok_for_op (i, op))
|
||
|
||
/* True iff the full BPABI is being used. If TARGET_BPABI is true,
|
||
then TARGET_AAPCS_BASED must be true -- but the converse does not
|
||
hold. TARGET_BPABI implies the use of the BPABI runtime library,
|
||
etc., in addition to just the AAPCS calling conventions. */
|
||
#ifndef TARGET_BPABI
|
||
#define TARGET_BPABI false
|
||
#endif
|
||
|
||
/* Transform lane numbers on big endian targets. This is used to allow for the
|
||
endianness difference between NEON architectural lane numbers and those
|
||
used in RTL */
|
||
#define NEON_ENDIAN_LANE_N(mode, n) \
|
||
(BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
|
||
|
||
/* Support for a compile-time default CPU, et cetera. The rules are:
|
||
--with-arch is ignored if -march or -mcpu are specified.
|
||
--with-cpu is ignored if -march or -mcpu are specified, and is overridden
|
||
by --with-arch.
|
||
--with-tune is ignored if -mtune or -mcpu are specified (but not affected
|
||
by -march).
|
||
--with-float is ignored if -mfloat-abi is specified.
|
||
--with-fpu is ignored if -mfpu is specified.
|
||
--with-abi is ignored if -mabi is specified.
|
||
--with-tls is ignored if -mtls-dialect is specified. */
|
||
#define OPTION_DEFAULT_SPECS \
|
||
{"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
|
||
{"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
|
||
{"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
|
||
{"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
|
||
{"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
|
||
{"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
|
||
{"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
|
||
{"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
|
||
|
||
extern const struct arm_fpu_desc
|
||
{
|
||
const char *name;
|
||
enum isa_feature isa_bits[isa_num_bits];
|
||
} all_fpus[];
|
||
|
||
/* Which floating point hardware to schedule for. */
|
||
extern int arm_fpu_attr;
|
||
|
||
#ifndef TARGET_DEFAULT_FLOAT_ABI
|
||
#define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
|
||
#endif
|
||
|
||
#ifndef ARM_DEFAULT_ABI
|
||
#define ARM_DEFAULT_ABI ARM_ABI_APCS
|
||
#endif
|
||
|
||
/* AAPCS based ABIs use short enums by default. */
|
||
#ifndef ARM_DEFAULT_SHORT_ENUMS
|
||
#define ARM_DEFAULT_SHORT_ENUMS \
|
||
(TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
|
||
#endif
|
||
|
||
/* Map each of the micro-architecture variants to their corresponding
|
||
major architecture revision. */
|
||
|
||
enum base_architecture
|
||
{
|
||
BASE_ARCH_0 = 0,
|
||
BASE_ARCH_2 = 2,
|
||
BASE_ARCH_3 = 3,
|
||
BASE_ARCH_3M = 3,
|
||
BASE_ARCH_4 = 4,
|
||
BASE_ARCH_4T = 4,
|
||
BASE_ARCH_5T = 5,
|
||
BASE_ARCH_5TE = 5,
|
||
BASE_ARCH_5TEJ = 5,
|
||
BASE_ARCH_6 = 6,
|
||
BASE_ARCH_6J = 6,
|
||
BASE_ARCH_6KZ = 6,
|
||
BASE_ARCH_6K = 6,
|
||
BASE_ARCH_6T2 = 6,
|
||
BASE_ARCH_6M = 6,
|
||
BASE_ARCH_6Z = 6,
|
||
BASE_ARCH_7 = 7,
|
||
BASE_ARCH_7A = 7,
|
||
BASE_ARCH_7R = 7,
|
||
BASE_ARCH_7M = 7,
|
||
BASE_ARCH_7EM = 7,
|
||
BASE_ARCH_8A = 8,
|
||
BASE_ARCH_8M_BASE = 8,
|
||
BASE_ARCH_8M_MAIN = 8,
|
||
BASE_ARCH_8R = 8
|
||
};
|
||
|
||
/* The major revision number of the ARM Architecture implemented by the target. */
|
||
extern enum base_architecture arm_base_arch;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 4 extensions. */
|
||
extern int arm_arch4;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 4T extensions. */
|
||
extern int arm_arch4t;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 5T extensions. */
|
||
extern int arm_arch5t;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 5TE extensions. */
|
||
extern int arm_arch5te;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 6 extensions. */
|
||
extern int arm_arch6;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 6k extensions. */
|
||
extern int arm_arch6k;
|
||
|
||
/* Nonzero if instructions present in ARMv6-M can be used. */
|
||
extern int arm_arch6m;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 7 extensions. */
|
||
extern int arm_arch7;
|
||
|
||
/* Nonzero if instructions not present in the 'M' profile can be used. */
|
||
extern int arm_arch_notm;
|
||
|
||
/* Nonzero if instructions present in ARMv7E-M can be used. */
|
||
extern int arm_arch7em;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 8 extensions. */
|
||
extern int arm_arch8;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
|
||
extern int arm_arch8_1;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 8.2 extensions. */
|
||
extern int arm_arch8_2;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 8.3 extensions. */
|
||
extern int arm_arch8_3;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 8.4 extensions. */
|
||
extern int arm_arch8_4;
|
||
|
||
/* Nonzero if this chip supports the FP16 instructions extension of ARM
|
||
Architecture 8.2. */
|
||
extern int arm_fp16_inst;
|
||
|
||
/* Nonzero if this chip can benefit from load scheduling. */
|
||
extern int arm_ld_sched;
|
||
|
||
/* Nonzero if this chip is a StrongARM. */
|
||
extern int arm_tune_strongarm;
|
||
|
||
/* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
|
||
extern int arm_arch_iwmmxt;
|
||
|
||
/* Nonzero if this chip supports Intel Wireless MMX2 technology. */
|
||
extern int arm_arch_iwmmxt2;
|
||
|
||
/* Nonzero if this chip is an XScale. */
|
||
extern int arm_arch_xscale;
|
||
|
||
/* Nonzero if tuning for XScale. */
|
||
extern int arm_tune_xscale;
|
||
|
||
/* Nonzero if tuning for stores via the write buffer. */
|
||
extern int arm_tune_wbuf;
|
||
|
||
/* Nonzero if tuning for Cortex-A9. */
|
||
extern int arm_tune_cortex_a9;
|
||
|
||
/* Nonzero if we should define __THUMB_INTERWORK__ in the
|
||
preprocessor.
|
||
XXX This is a bit of a hack, it's intended to help work around
|
||
problems in GLD which doesn't understand that armv5t code is
|
||
interworking clean. */
|
||
extern int arm_cpp_interwork;
|
||
|
||
/* Nonzero if chip supports Thumb 1. */
|
||
extern int arm_arch_thumb1;
|
||
|
||
/* Nonzero if chip supports Thumb 2. */
|
||
extern int arm_arch_thumb2;
|
||
|
||
/* Nonzero if chip supports integer division instruction in ARM mode. */
|
||
extern int arm_arch_arm_hwdiv;
|
||
|
||
/* Nonzero if chip supports integer division instruction in Thumb mode. */
|
||
extern int arm_arch_thumb_hwdiv;
|
||
|
||
/* Nonzero if chip disallows volatile memory access in IT block. */
|
||
extern int arm_arch_no_volatile_ce;
|
||
|
||
/* Nonzero if we should use Neon to handle 64-bits operations rather
|
||
than core registers. */
|
||
extern int prefer_neon_for_64bits;
|
||
|
||
/* Nonzero if we shouldn't use literal pools. */
|
||
#ifndef USED_FOR_TARGET
|
||
extern bool arm_disable_literal_pool;
|
||
#endif
|
||
|
||
/* Nonzero if chip supports the ARMv8 CRC instructions. */
|
||
extern int arm_arch_crc;
|
||
|
||
/* Nonzero if chip supports the ARMv8-M Security Extensions. */
|
||
extern int arm_arch_cmse;
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT (MASK_APCS_FRAME)
|
||
#endif
|
||
|
||
/* Nonzero if PIC code requires explicit qualifiers to generate
|
||
PLT and GOT relocs rather than the assembler doing so implicitly.
|
||
Subtargets can override these if required. */
|
||
#ifndef NEED_GOT_RELOC
|
||
#define NEED_GOT_RELOC 0
|
||
#endif
|
||
#ifndef NEED_PLT_RELOC
|
||
#define NEED_PLT_RELOC 0
|
||
#endif
|
||
|
||
#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
|
||
#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
|
||
#endif
|
||
|
||
/* Nonzero if we need to refer to the GOT with a PC-relative
|
||
offset. In other words, generate
|
||
|
||
.word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
|
||
|
||
rather than
|
||
|
||
.word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
|
||
|
||
The default is true, which matches NetBSD. Subtargets can
|
||
override this if required. */
|
||
#ifndef GOT_PCREL
|
||
#define GOT_PCREL 1
|
||
#endif
|
||
|
||
/* Target machine storage Layout. */
|
||
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
{ \
|
||
(MODE) = SImode; \
|
||
}
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered.
|
||
Most ARM processors are run in little endian mode, so that is the default.
|
||
If you want to have it run-time selectable, change the definition in a
|
||
cover file to be TARGET_BIG_ENDIAN. */
|
||
#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
|
||
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* True if natural alignment is used for doubleword types. */
|
||
#define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
|
||
|
||
#define DOUBLEWORD_ALIGNMENT 64
|
||
|
||
#define PARM_BOUNDARY 32
|
||
|
||
#define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
|
||
|
||
#define PREFERRED_STACK_BOUNDARY \
|
||
(arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
|
||
|
||
#define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
|
||
#define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
|
||
|
||
/* The lowest bit is used to indicate Thumb-mode functions, so the
|
||
vbit must go into the delta field of pointers to member
|
||
functions. */
|
||
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
|
||
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
#define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
|
||
|
||
#define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
|
||
|
||
/* XXX Blah -- this macro is used directly by libobjc. Since it
|
||
supports no vector modes, cut out the complexity and fall back
|
||
on BIGGEST_FIELD_ALIGNMENT. */
|
||
#ifdef IN_TARGET_LIBS
|
||
#define BIGGEST_FIELD_ALIGNMENT 64
|
||
#endif
|
||
|
||
/* Align definitions of arrays, unions and structures so that
|
||
initializations and copies can be made more efficient. This is not
|
||
ABI-changing, so it only affects places where we can see the
|
||
definition. Increasing the alignment tends to introduce padding,
|
||
so don't do this when optimizing for size/conserving stack space. */
|
||
#define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
|
||
(((COND) && ((ALIGN) < BITS_PER_WORD) \
|
||
&& (TREE_CODE (EXP) == ARRAY_TYPE \
|
||
|| TREE_CODE (EXP) == UNION_TYPE \
|
||
|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Align global data. */
|
||
#define DATA_ALIGNMENT(EXP, ALIGN) \
|
||
ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
|
||
|
||
/* Similarly, make sure that objects on the stack are sensibly aligned. */
|
||
#define LOCAL_ALIGNMENT(EXP, ALIGN) \
|
||
ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
|
||
|
||
/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
|
||
value set in previous versions of this toolchain was 8, which produces more
|
||
compact structures. The command line option -mstructure_size_boundary=<n>
|
||
can be used to change this value. For compatibility with the ARM SDK
|
||
however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
|
||
0020D) page 2-20 says "Structures are aligned on word boundaries".
|
||
The AAPCS specifies a value of 8. */
|
||
#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
|
||
|
||
/* This is the value used to initialize arm_structure_size_boundary. If a
|
||
particular arm target wants to change the default value it should change
|
||
the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
|
||
for an example of this. */
|
||
#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
|
||
#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
|
||
#endif
|
||
|
||
/* Nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* wchar_t is unsigned under the AAPCS. */
|
||
#ifndef WCHAR_TYPE
|
||
#define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
|
||
|
||
#define WCHAR_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
/* Sized for fixed-point types. */
|
||
|
||
#define SHORT_FRACT_TYPE_SIZE 8
|
||
#define FRACT_TYPE_SIZE 16
|
||
#define LONG_FRACT_TYPE_SIZE 32
|
||
#define LONG_LONG_FRACT_TYPE_SIZE 64
|
||
|
||
#define SHORT_ACCUM_TYPE_SIZE 16
|
||
#define ACCUM_TYPE_SIZE 32
|
||
#define LONG_ACCUM_TYPE_SIZE 64
|
||
#define LONG_LONG_ACCUM_TYPE_SIZE 64
|
||
|
||
#define MAX_FIXED_MODE_SIZE 64
|
||
|
||
#ifndef SIZE_TYPE
|
||
#define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
|
||
#endif
|
||
|
||
#ifndef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
|
||
#endif
|
||
|
||
/* AAPCS requires that structure alignment is affected by bitfields. */
|
||
#ifndef PCC_BITFIELD_TYPE_MATTERS
|
||
#define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
|
||
#endif
|
||
|
||
/* The maximum size of the sync library functions supported. */
|
||
#ifndef MAX_SYNC_LIBFUNC_SIZE
|
||
#define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
|
||
#endif
|
||
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Register allocation in ARM Procedure Call Standard
|
||
(S - saved over call, F - Frame-related).
|
||
|
||
r0 * argument word/integer result
|
||
r1-r3 argument word
|
||
|
||
r4-r8 S register variable
|
||
r9 S (rfp) register variable (real frame pointer)
|
||
|
||
r10 F S (sl) stack limit (used by -mapcs-stack-check)
|
||
r11 F S (fp) argument pointer
|
||
r12 (ip) temp workspace
|
||
r13 F S (sp) lower end of current stack frame
|
||
r14 (lr) link address/workspace
|
||
r15 F (pc) program counter
|
||
|
||
cc This is NOT a real register, but is used internally
|
||
to represent things that use or set the condition
|
||
codes.
|
||
sfp This isn't either. It is used during rtl generation
|
||
since the offset between the frame pointer and the
|
||
auto's isn't known until after register allocation.
|
||
afp Nor this, we only need this because of non-local
|
||
goto. Without it fp appears to be used and the
|
||
elimination code won't get rid of sfp. It tracks
|
||
fp exactly at all times.
|
||
|
||
*: See TARGET_CONDITIONAL_REGISTER_USAGE */
|
||
|
||
/* s0-s15 VFP scratch (aka d0-d7).
|
||
s16-s31 S VFP variable (aka d8-d15).
|
||
vfpcc Not a real register. Represents the VFP condition
|
||
code flags. */
|
||
|
||
/* The stack backtrace structure is as follows:
|
||
fp points to here: | save code pointer | [fp]
|
||
| return link value | [fp, #-4]
|
||
| return sp value | [fp, #-8]
|
||
| return fp value | [fp, #-12]
|
||
[| saved r10 value |]
|
||
[| saved r9 value |]
|
||
[| saved r8 value |]
|
||
[| saved r7 value |]
|
||
[| saved r6 value |]
|
||
[| saved r5 value |]
|
||
[| saved r4 value |]
|
||
[| saved r3 value |]
|
||
[| saved r2 value |]
|
||
[| saved r1 value |]
|
||
[| saved r0 value |]
|
||
r0-r3 are not normally saved in a C function. */
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator. */
|
||
#define FIXED_REGISTERS \
|
||
{ \
|
||
/* Core regs. */ \
|
||
0,0,0,0,0,0,0,0, \
|
||
0,0,0,0,0,1,0,1, \
|
||
/* VFP regs. */ \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
/* IWMMXT regs. */ \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1, \
|
||
/* Specials. */ \
|
||
1,1,1,1 \
|
||
}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
The CC is not preserved over function calls on the ARM 6, so it is
|
||
easier to assume this for all. SFP is preserved, since FP is. */
|
||
#define CALL_USED_REGISTERS \
|
||
{ \
|
||
/* Core regs. */ \
|
||
1,1,1,1,0,0,0,0, \
|
||
0,0,0,0,1,1,1,1, \
|
||
/* VFP Regs. */ \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
/* IWMMXT regs. */ \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1, \
|
||
/* Specials. */ \
|
||
1,1,1,1 \
|
||
}
|
||
|
||
#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
||
#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
||
#endif
|
||
|
||
/* These are a couple of extensions to the formats accepted
|
||
by asm_fprintf:
|
||
%@ prints out ASM_COMMENT_START
|
||
%r prints out REGISTER_PREFIX reg_names[arg] */
|
||
#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
|
||
case '@': \
|
||
fputs (ASM_COMMENT_START, FILE); \
|
||
break; \
|
||
\
|
||
case 'r': \
|
||
fputs (REGISTER_PREFIX, FILE); \
|
||
fputs (reg_names [va_arg (ARGS, int)], FILE); \
|
||
break;
|
||
|
||
/* Round X up to the nearest word. */
|
||
#define ROUND_UP_WORD(X) (((X) + 3) & ~3)
|
||
|
||
/* Convert fron bytes to ints. */
|
||
#define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* The number of (integer) registers required to hold a quantity of type MODE.
|
||
Also used for VFP registers. */
|
||
#define ARM_NUM_REGS(MODE) \
|
||
ARM_NUM_INTS (GET_MODE_SIZE (MODE))
|
||
|
||
/* The number of (integer) registers required to hold a quantity of TYPE MODE. */
|
||
#define ARM_NUM_REGS2(MODE, TYPE) \
|
||
ARM_NUM_INTS ((MODE) == BLKmode ? \
|
||
int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
|
||
|
||
/* The number of (integer) argument register available. */
|
||
#define NUM_ARG_REGS 4
|
||
|
||
/* And similarly for the VFP. */
|
||
#define NUM_VFP_ARG_REGS 16
|
||
|
||
/* Return the register number of the N'th (integer) argument. */
|
||
#define ARG_REGISTER(N) (N - 1)
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* The number of the last argument register. */
|
||
#define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
|
||
|
||
/* The numbers of the Thumb register ranges. */
|
||
#define FIRST_LO_REGNUM 0
|
||
#define LAST_LO_REGNUM 7
|
||
#define FIRST_HI_REGNUM 8
|
||
#define LAST_HI_REGNUM 11
|
||
|
||
/* Overridden by config/arm/bpabi.h. */
|
||
#ifndef ARM_UNWIND_INFO
|
||
#define ARM_UNWIND_INFO 0
|
||
#endif
|
||
|
||
/* Use r0 and r1 to pass exception handling information. */
|
||
#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
|
||
|
||
/* The register that holds the return address in exception handlers. */
|
||
#define ARM_EH_STACKADJ_REGNUM 2
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
|
||
|
||
#ifndef ARM_TARGET2_DWARF_FORMAT
|
||
#define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
|
||
#endif
|
||
|
||
/* ttype entries (the only interesting data references used)
|
||
use TARGET2 relocations. */
|
||
#define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
|
||
(((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
|
||
: DW_EH_PE_absptr)
|
||
|
||
/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
|
||
as an invisible last argument (possible since varargs don't exist in
|
||
Pascal), so the following is not true. */
|
||
#define STATIC_CHAIN_REGNUM 12
|
||
|
||
/* Define this to be where the real frame pointer is if it is not possible to
|
||
work out the offset between the frame pointer and the automatic variables
|
||
until after register allocation has taken place. FRAME_POINTER_REGNUM
|
||
should point to a special register that we will make sure is eliminated.
|
||
|
||
For the Thumb we have another problem. The TPCS defines the frame pointer
|
||
as r11, and GCC believes that it is always possible to use the frame pointer
|
||
as base register for addressing purposes. (See comments in
|
||
find_reloads_address()). But - the Thumb does not allow high registers,
|
||
including r11, to be used as base address registers. Hence our problem.
|
||
|
||
The solution used here, and in the old thumb port is to use r7 instead of
|
||
r11 as the hard frame pointer and to have special code to generate
|
||
backtrace structures on the stack (if required to do so via a command line
|
||
option) using r11. This is the only 'user visible' use of r11 as a frame
|
||
pointer. */
|
||
#define ARM_HARD_FRAME_POINTER_REGNUM 11
|
||
#define THUMB_HARD_FRAME_POINTER_REGNUM 7
|
||
|
||
#define HARD_FRAME_POINTER_REGNUM \
|
||
(TARGET_ARM \
|
||
? ARM_HARD_FRAME_POINTER_REGNUM \
|
||
: THUMB_HARD_FRAME_POINTER_REGNUM)
|
||
|
||
#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
|
||
#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
|
||
|
||
#define FP_REGNUM HARD_FRAME_POINTER_REGNUM
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM SP_REGNUM
|
||
|
||
#define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
|
||
#define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
|
||
|
||
/* Need to sync with WCGR in iwmmxt.md. */
|
||
#define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
|
||
#define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
|
||
|
||
#define IS_IWMMXT_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
|
||
#define IS_IWMMXT_GR_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 102
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 103
|
||
|
||
#define FIRST_VFP_REGNUM 16
|
||
#define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
|
||
#define LAST_VFP_REGNUM \
|
||
(TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
|
||
|
||
#define IS_VFP_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
|
||
|
||
/* VFP registers are split into two types: those defined by VFP versions < 3
|
||
have D registers overlaid on consecutive pairs of S registers. VFP version 3
|
||
defines 16 new D registers (d16-d31) which, for simplicity and correctness
|
||
in various parts of the backend, we implement as "fake" single-precision
|
||
registers (which would be S32-S63, but cannot be used in that way). The
|
||
following macros define these ranges of registers. */
|
||
#define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
|
||
#define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
|
||
#define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
|
||
|
||
#define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
|
||
((REGNUM) <= LAST_LO_VFP_REGNUM)
|
||
|
||
/* DFmode values are only valid in even register pairs. */
|
||
#define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
|
||
((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
|
||
|
||
/* Neon Quad values must start at a multiple of four registers. */
|
||
#define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
|
||
((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
|
||
|
||
/* Neon structures of vectors must be in even register pairs and there
|
||
must be enough registers available. Because of various patterns
|
||
requiring quad registers, we require them to start at a multiple of
|
||
four. */
|
||
#define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
|
||
((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
|
||
&& (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
|
||
|
||
/* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
|
||
/* Intel Wireless MMX Technology registers add 16 + 4 more. */
|
||
/* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
|
||
#define FIRST_PSEUDO_REGISTER 104
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms may be accessed
|
||
via the stack pointer) in functions that seem suitable.
|
||
If we have to have a frame pointer we might as well make use of it.
|
||
APCS says that the frame pointer does not need to be pushed in leaf
|
||
functions, or simple tail call functions. */
|
||
|
||
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
|
||
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
|
||
#endif
|
||
|
||
#define VALID_IWMMXT_REG_MODE(MODE) \
|
||
(arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
|
||
|
||
/* Modes valid for Neon D registers. */
|
||
#define VALID_NEON_DREG_MODE(MODE) \
|
||
((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
|
||
|| (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
|
||
|
||
/* Modes valid for Neon Q registers. */
|
||
#define VALID_NEON_QREG_MODE(MODE) \
|
||
((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
|
||
|| (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
|
||
|
||
/* Structure modes valid for Neon registers. */
|
||
#define VALID_NEON_STRUCT_MODE(MODE) \
|
||
((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
|
||
|| (MODE) == CImode || (MODE) == XImode)
|
||
|
||
/* The register numbers in sequence, for passing to arm_gen_load_multiple. */
|
||
extern int arm_regs_in_sequence[];
|
||
|
||
/* The order in which register should be allocated. It is good to use ip
|
||
since no saving is required (though calls clobber it) and it never contains
|
||
function parameters. It is quite good to use lr since other calls may
|
||
clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
|
||
least likely to contain a function parameter; in addition results are
|
||
returned in r0.
|
||
For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
|
||
then D8-D15. The reason for doing this is to attempt to reduce register
|
||
pressure when both single- and double-precision registers are used in a
|
||
function. */
|
||
|
||
#define VREG(X) (FIRST_VFP_REGNUM + (X))
|
||
#define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
|
||
#define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
/* General registers. */ \
|
||
3, 2, 1, 0, 12, 14, 4, 5, \
|
||
6, 7, 8, 9, 10, 11, \
|
||
/* High VFP registers. */ \
|
||
VREG(32), VREG(33), VREG(34), VREG(35), \
|
||
VREG(36), VREG(37), VREG(38), VREG(39), \
|
||
VREG(40), VREG(41), VREG(42), VREG(43), \
|
||
VREG(44), VREG(45), VREG(46), VREG(47), \
|
||
VREG(48), VREG(49), VREG(50), VREG(51), \
|
||
VREG(52), VREG(53), VREG(54), VREG(55), \
|
||
VREG(56), VREG(57), VREG(58), VREG(59), \
|
||
VREG(60), VREG(61), VREG(62), VREG(63), \
|
||
/* VFP argument registers. */ \
|
||
VREG(15), VREG(14), VREG(13), VREG(12), \
|
||
VREG(11), VREG(10), VREG(9), VREG(8), \
|
||
VREG(7), VREG(6), VREG(5), VREG(4), \
|
||
VREG(3), VREG(2), VREG(1), VREG(0), \
|
||
/* VFP call-saved registers. */ \
|
||
VREG(16), VREG(17), VREG(18), VREG(19), \
|
||
VREG(20), VREG(21), VREG(22), VREG(23), \
|
||
VREG(24), VREG(25), VREG(26), VREG(27), \
|
||
VREG(28), VREG(29), VREG(30), VREG(31), \
|
||
/* IWMMX registers. */ \
|
||
WREG(0), WREG(1), WREG(2), WREG(3), \
|
||
WREG(4), WREG(5), WREG(6), WREG(7), \
|
||
WREG(8), WREG(9), WREG(10), WREG(11), \
|
||
WREG(12), WREG(13), WREG(14), WREG(15), \
|
||
WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
|
||
/* Registers not for general use. */ \
|
||
CC_REGNUM, VFPCC_REGNUM, \
|
||
FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
|
||
SP_REGNUM, PC_REGNUM \
|
||
}
|
||
|
||
/* Use different register alloc ordering for Thumb. */
|
||
#define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
|
||
|
||
/* Tell IRA to use the order we define rather than messing it up with its
|
||
own cost calculations. */
|
||
#define HONOR_REG_ALLOC_ORDER 1
|
||
|
||
/* Interrupt functions can only use registers that have already been
|
||
saved by the prologue, even if they would normally be
|
||
call-clobbered. */
|
||
#define HARD_REGNO_RENAME_OK(SRC, DST) \
|
||
(! IS_INTERRUPT (cfun->machine->func_type) || \
|
||
df_regs_ever_live_p (DST))
|
||
|
||
/* Register and constant classes. */
|
||
|
||
/* Register classes. */
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
LO_REGS,
|
||
STACK_REG,
|
||
BASE_REGS,
|
||
HI_REGS,
|
||
CALLER_SAVE_REGS,
|
||
GENERAL_REGS,
|
||
CORE_REGS,
|
||
VFP_D0_D7_REGS,
|
||
VFP_LO_REGS,
|
||
VFP_HI_REGS,
|
||
VFP_REGS,
|
||
IWMMXT_REGS,
|
||
IWMMXT_GR_REGS,
|
||
CC_REG,
|
||
VFPCC_REG,
|
||
SFP_REG,
|
||
AFP_REG,
|
||
ALL_REGS,
|
||
LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"LO_REGS", \
|
||
"STACK_REG", \
|
||
"BASE_REGS", \
|
||
"HI_REGS", \
|
||
"CALLER_SAVE_REGS", \
|
||
"GENERAL_REGS", \
|
||
"CORE_REGS", \
|
||
"VFP_D0_D7_REGS", \
|
||
"VFP_LO_REGS", \
|
||
"VFP_HI_REGS", \
|
||
"VFP_REGS", \
|
||
"IWMMXT_REGS", \
|
||
"IWMMXT_GR_REGS", \
|
||
"CC_REG", \
|
||
"VFPCC_REG", \
|
||
"SFP_REG", \
|
||
"AFP_REG", \
|
||
"ALL_REGS" \
|
||
}
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
||
{ 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
|
||
{ 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
|
||
{ 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
|
||
{ 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
|
||
{ 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
|
||
{ 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
|
||
{ 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
|
||
{ 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
|
||
{ 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
|
||
{ 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
|
||
{ 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
|
||
{ 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
|
||
}
|
||
|
||
/* Any of the VFP register classes. */
|
||
#define IS_VFP_CLASS(X) \
|
||
((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
|
||
|| (X) == VFP_HI_REGS || (X) == VFP_REGS)
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
#define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
|
||
#define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
|
||
|
||
/* For the Thumb the high registers cannot be used as base registers
|
||
when addressing quantities in QI or HI mode; if we don't know the
|
||
mode, then we must be conservative. */
|
||
#define MODE_BASE_REG_CLASS(MODE) \
|
||
(TARGET_32BIT ? CORE_REGS \
|
||
: GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
|
||
: LO_REGS)
|
||
|
||
/* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
|
||
instead of BASE_REGS. */
|
||
#define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
|
||
|
||
/* When this hook returns true for MODE, the compiler allows
|
||
registers explicitly used in the rtl to be used as spill registers
|
||
but prevents the compiler from extending the lifetime of these
|
||
registers. */
|
||
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
|
||
arm_small_register_classes_for_mode_p
|
||
|
||
/* Must leave BASE_REGS reloads alone */
|
||
#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
(lra_in_progress ? NO_REGS \
|
||
: ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
|
||
? ((true_regnum (X) == -1 ? LO_REGS \
|
||
: (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
|
||
: NO_REGS)) \
|
||
: NO_REGS))
|
||
|
||
#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
(lra_in_progress ? NO_REGS \
|
||
: (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
|
||
? ((true_regnum (X) == -1 ? LO_REGS \
|
||
: (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
|
||
: NO_REGS)) \
|
||
: NO_REGS)
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly,
|
||
NO_REGS is returned. */
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
/* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
|
||
((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
|
||
? coproc_secondary_reload_class (MODE, X, FALSE) \
|
||
: (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
|
||
? coproc_secondary_reload_class (MODE, X, TRUE) \
|
||
: TARGET_32BIT \
|
||
? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
|
||
? GENERAL_REGS : NO_REGS) \
|
||
: THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
|
||
|
||
/* If we need to load shorts byte-at-a-time, then we need a scratch. */
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
/* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
|
||
((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
|
||
? coproc_secondary_reload_class (MODE, X, FALSE) : \
|
||
(TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
|
||
coproc_secondary_reload_class (MODE, X, TRUE) : \
|
||
(TARGET_32BIT ? \
|
||
(((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
|
||
&& CONSTANT_P (X)) \
|
||
? GENERAL_REGS : \
|
||
(((MODE) == HImode && ! arm_arch4 \
|
||
&& (MEM_P (X) \
|
||
|| ((REG_P (X) || GET_CODE (X) == SUBREG) \
|
||
&& true_regnum (X) == -1))) \
|
||
? GENERAL_REGS : NO_REGS) \
|
||
: THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS.
|
||
ARM regs are UNITS_PER_WORD bits.
|
||
FIXME: Is this true for iWMMX? */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
(ARM_NUM_REGS (MODE))
|
||
|
||
/* If defined, gives a class of registers that cannot be used as the
|
||
operand of a SUBREG that changes the mode of the object illegally. */
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD 1
|
||
|
||
/* Define this to nonzero if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
/* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
|
||
When present, it is one word in size, and sits at the top of the frame,
|
||
between the soft frame pointer and either r7 or r11.
|
||
|
||
We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
|
||
and only then if some outgoing arguments are passed on the stack. It would
|
||
be tempting to also check whether the stack arguments are passed by indirect
|
||
calls, but there seems to be no reason in principle why a post-reload pass
|
||
couldn't convert a direct call into an indirect one. */
|
||
#define CALLER_INTERWORKING_SLOT_SIZE \
|
||
(TARGET_CALLER_INTERWORKING \
|
||
&& maybe_ne (crtl->outgoing_args_size, 0) \
|
||
? UNITS_PER_WORD : 0)
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
/* The push insns do not do this rounding implicitly.
|
||
So don't define this. */
|
||
/* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
|
||
|
||
/* Define this if the maximum size of all the outgoing args is to be
|
||
accumulated and pushed during the prologue. The amount can be
|
||
found in the variable crtl->outgoing_args_size. */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
|
||
|
||
/* Amount of memory needed for an untyped call to save all possible return
|
||
registers. */
|
||
#define APPLY_RESULT_SIZE arm_apply_result_size()
|
||
|
||
/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
|
||
values must be in memory. On the ARM, they need only do so if larger
|
||
than a word, or if they contain elements offset from zero in the struct. */
|
||
#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
|
||
/* These bits describe the different types of function supported
|
||
by the ARM backend. They are exclusive. i.e. a function cannot be both a
|
||
normal function and an interworked function, for example. Knowing the
|
||
type of a function is important for determining its prologue and
|
||
epilogue sequences.
|
||
Note value 7 is currently unassigned. Also note that the interrupt
|
||
function types all have bit 2 set, so that they can be tested for easily.
|
||
Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
|
||
machine_function structure is initialized (to zero) func_type will
|
||
default to unknown. This will force the first use of arm_current_func_type
|
||
to call arm_compute_func_type. */
|
||
#define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
|
||
#define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
|
||
#define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
|
||
#define ARM_FT_ISR 4 /* An interrupt service routine. */
|
||
#define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
|
||
#define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
|
||
|
||
#define ARM_FT_TYPE_MASK ((1 << 3) - 1)
|
||
|
||
/* In addition functions can have several type modifiers,
|
||
outlined by these bit masks: */
|
||
#define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
|
||
#define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
|
||
#define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
|
||
#define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
|
||
#define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
|
||
#define ARM_FT_CMSE_ENTRY (1 << 7) /* ARMv8-M non-secure entry function. */
|
||
|
||
/* Some macros to test these flags. */
|
||
#define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
|
||
#define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
|
||
#define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
|
||
#define IS_NAKED(t) (t & ARM_FT_NAKED)
|
||
#define IS_NESTED(t) (t & ARM_FT_NESTED)
|
||
#define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
|
||
#define IS_CMSE_ENTRY(t) (t & ARM_FT_CMSE_ENTRY)
|
||
|
||
|
||
/* Structure used to hold the function stack frame layout. Offsets are
|
||
relative to the stack pointer on function entry. Positive offsets are
|
||
in the direction of stack growth.
|
||
Only soft_frame is used in thumb mode. */
|
||
|
||
typedef struct GTY(()) arm_stack_offsets
|
||
{
|
||
int saved_args; /* ARG_POINTER_REGNUM. */
|
||
int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
|
||
int saved_regs;
|
||
int soft_frame; /* FRAME_POINTER_REGNUM. */
|
||
int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
|
||
int outgoing_args; /* STACK_POINTER_REGNUM. */
|
||
unsigned int saved_regs_mask;
|
||
}
|
||
arm_stack_offsets;
|
||
|
||
#if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
|
||
/* A C structure for machine-specific, per-function data.
|
||
This is added to the cfun structure. */
|
||
typedef struct GTY(()) machine_function
|
||
{
|
||
/* Additional stack adjustment in __builtin_eh_throw. */
|
||
rtx eh_epilogue_sp_ofs;
|
||
/* Records if LR has to be saved for far jumps. */
|
||
int far_jump_used;
|
||
/* Records if ARG_POINTER was ever live. */
|
||
int arg_pointer_live;
|
||
/* Records if the save of LR has been eliminated. */
|
||
int lr_save_eliminated;
|
||
/* The size of the stack frame. Only valid after reload. */
|
||
arm_stack_offsets stack_offsets;
|
||
/* Records the type of the current function. */
|
||
unsigned long func_type;
|
||
/* Record if the function has a variable argument list. */
|
||
int uses_anonymous_args;
|
||
/* Records if sibcalls are blocked because an argument
|
||
register is needed to preserve stack alignment. */
|
||
int sibcall_blocked;
|
||
/* The PIC register for this function. This might be a pseudo. */
|
||
rtx pic_reg;
|
||
/* Labels for per-function Thumb call-via stubs. One per potential calling
|
||
register. We can never call via LR or PC. We can call via SP if a
|
||
trampoline happens to be on the top of the stack. */
|
||
rtx call_via[14];
|
||
/* Set to 1 when a return insn is output, this means that the epilogue
|
||
is not needed. */
|
||
int return_used_this_function;
|
||
/* When outputting Thumb-1 code, record the last insn that provides
|
||
information about condition codes, and the comparison operands. */
|
||
rtx thumb1_cc_insn;
|
||
rtx thumb1_cc_op0;
|
||
rtx thumb1_cc_op1;
|
||
/* Also record the CC mode that is supported. */
|
||
machine_mode thumb1_cc_mode;
|
||
/* Set to 1 after arm_reorg has started. */
|
||
int after_arm_reorg;
|
||
/* The number of bytes used to store the static chain register on the
|
||
stack, above the stack frame. */
|
||
int static_chain_stack_bytes;
|
||
}
|
||
machine_function;
|
||
#endif
|
||
|
||
/* As in the machine_function, a global set of call-via labels, for code
|
||
that is in text_section. */
|
||
extern GTY(()) rtx thumb_call_via_label[14];
|
||
|
||
/* The number of potential ways of assigning to a co-processor. */
|
||
#define ARM_NUM_COPROC_SLOTS 1
|
||
|
||
/* Enumeration of procedure calling standard variants. We don't really
|
||
support all of these yet. */
|
||
enum arm_pcs
|
||
{
|
||
ARM_PCS_AAPCS, /* Base standard AAPCS. */
|
||
ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
|
||
ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
|
||
/* This must be the last AAPCS variant. */
|
||
ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
|
||
ARM_PCS_ATPCS, /* ATPCS. */
|
||
ARM_PCS_APCS, /* APCS (legacy Linux etc). */
|
||
ARM_PCS_UNKNOWN
|
||
};
|
||
|
||
/* Default procedure calling standard of current compilation unit. */
|
||
extern enum arm_pcs arm_pcs_default;
|
||
|
||
#if !defined (USED_FOR_TARGET)
|
||
/* A C type for declaring a variable that is used as the first argument of
|
||
`FUNCTION_ARG' and other related values. */
|
||
typedef struct
|
||
{
|
||
/* This is the number of registers of arguments scanned so far. */
|
||
int nregs;
|
||
/* This is the number of iWMMXt register arguments scanned so far. */
|
||
int iwmmxt_nregs;
|
||
int named_count;
|
||
int nargs;
|
||
/* Which procedure call variant to use for this call. */
|
||
enum arm_pcs pcs_variant;
|
||
|
||
/* AAPCS related state tracking. */
|
||
int aapcs_arg_processed; /* No need to lay out this argument again. */
|
||
int aapcs_cprc_slot; /* Index of co-processor rules to handle
|
||
this argument, or -1 if using core
|
||
registers. */
|
||
int aapcs_ncrn;
|
||
int aapcs_next_ncrn;
|
||
rtx aapcs_reg; /* Register assigned to this argument. */
|
||
int aapcs_partial; /* How many bytes are passed in regs (if
|
||
split between core regs and stack.
|
||
Zero otherwise. */
|
||
int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
|
||
int can_split; /* Argument can be split between core regs
|
||
and the stack. */
|
||
/* Private data for tracking VFP register allocation */
|
||
unsigned aapcs_vfp_regs_free;
|
||
unsigned aapcs_vfp_reg_alloc;
|
||
int aapcs_vfp_rcount;
|
||
MACHMODE aapcs_vfp_rmode;
|
||
} CUMULATIVE_ARGS;
|
||
#endif
|
||
|
||
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
|
||
(arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
|
||
|
||
/* For AAPCS, padding should never be below the argument. For other ABIs,
|
||
* mimic the default. */
|
||
#define PAD_VARARGS_DOWN \
|
||
((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
On the ARM, the offset starts at 0. */
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
||
arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the ARM, r0-r3 are used to pass args. */
|
||
#define FUNCTION_ARG_REGNO_P(REGNO) \
|
||
(IN_RANGE ((REGNO), 0, 3) \
|
||
|| (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT \
|
||
&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
|
||
|| (TARGET_IWMMXT_ABI \
|
||
&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
|
||
|
||
|
||
/* If your target environment doesn't prefix user functions with an
|
||
underscore, you may wish to re-define this to prevent any conflicts. */
|
||
#ifndef ARM_MCOUNT_NAME
|
||
#define ARM_MCOUNT_NAME "*mcount"
|
||
#endif
|
||
|
||
/* Call the function profiler with a given profile label. The Acorn
|
||
compiler puts this BEFORE the prolog but gcc puts it afterwards.
|
||
On the ARM the full profile code will look like:
|
||
.data
|
||
LP1
|
||
.word 0
|
||
.text
|
||
mov ip, lr
|
||
bl mcount
|
||
.word LP1
|
||
|
||
profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
|
||
will output the .text section.
|
||
|
||
The ``mov ip,lr'' seems like a good idea to stick with cc convention.
|
||
``prof'' doesn't seem to mind about this!
|
||
|
||
Note - this version of the code is designed to work in both ARM and
|
||
Thumb modes. */
|
||
#ifndef ARM_FUNCTION_PROFILER
|
||
#define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
{ \
|
||
char temp[20]; \
|
||
rtx sym; \
|
||
\
|
||
asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
|
||
IP_REGNUM, LR_REGNUM); \
|
||
assemble_name (STREAM, ARM_MCOUNT_NAME); \
|
||
fputc ('\n', STREAM); \
|
||
ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
|
||
sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, sym); \
|
||
}
|
||
#endif
|
||
|
||
#ifdef THUMB_FUNCTION_PROFILER
|
||
#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
if (TARGET_ARM) \
|
||
ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
|
||
else \
|
||
THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
|
||
#else
|
||
#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
ARM_FUNCTION_PROFILER (STREAM, LABELNO)
|
||
#endif
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero.
|
||
|
||
On the ARM, the function epilogue recovers the stack pointer from the
|
||
frame. */
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
#define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
|
||
|
||
/* Determine if the epilogue should be output as RTL.
|
||
You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
|
||
#define USE_RETURN_INSN(ISCOND) \
|
||
(TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
We have two registers that can be eliminated on the ARM. First, the
|
||
arg pointer register can often be eliminated in favor of the stack
|
||
pointer register. Secondly, the pseudo frame pointer register can always
|
||
be eliminated; it is replaced with either the stack or the real frame
|
||
pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
|
||
because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the
|
||
other its replacement, at the start of a routine. */
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
if (TARGET_ARM) \
|
||
(OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
|
||
else \
|
||
(OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
|
||
|
||
/* Special case handling of the location of arguments passed on the stack. */
|
||
#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
|
||
|
||
/* Initialize data used by insn expanders. This is called from insn_emit,
|
||
once for every function before code is generated. */
|
||
#define INIT_EXPANDERS arm_init_expanders ()
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
#define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
|
||
|
||
/* Alignment required for a trampoline in bits. */
|
||
#define TRAMPOLINE_ALIGNMENT 32
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
#define HAVE_POST_INCREMENT 1
|
||
#define HAVE_PRE_INCREMENT TARGET_32BIT
|
||
#define HAVE_POST_DECREMENT TARGET_32BIT
|
||
#define HAVE_PRE_DECREMENT TARGET_32BIT
|
||
#define HAVE_PRE_MODIFY_DISP TARGET_32BIT
|
||
#define HAVE_POST_MODIFY_DISP TARGET_32BIT
|
||
#define HAVE_PRE_MODIFY_REG TARGET_32BIT
|
||
#define HAVE_POST_MODIFY_REG TARGET_32BIT
|
||
|
||
enum arm_auto_incmodes
|
||
{
|
||
ARM_POST_INC,
|
||
ARM_PRE_INC,
|
||
ARM_POST_DEC,
|
||
ARM_PRE_DEC
|
||
};
|
||
|
||
#define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
|
||
(TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
|
||
#define USE_LOAD_POST_INCREMENT(mode) \
|
||
ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
|
||
#define USE_LOAD_PRE_INCREMENT(mode) \
|
||
ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
|
||
#define USE_LOAD_POST_DECREMENT(mode) \
|
||
ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
|
||
#define USE_LOAD_PRE_DECREMENT(mode) \
|
||
ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
|
||
|
||
#define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
|
||
#define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
|
||
#define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
|
||
#define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg. */
|
||
#define TEST_REGNO(R, TEST, VALUE) \
|
||
((R TEST VALUE) \
|
||
|| (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
|
||
|
||
/* Don't allow the pc to be used. */
|
||
#define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
|
||
(TEST_REGNO (REGNO, <, PC_REGNUM) \
|
||
|| TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
|
||
|| TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
|
||
|
||
#define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
(TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
|
||
|| (GET_MODE_SIZE (MODE) >= 4 \
|
||
&& TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
|
||
|
||
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
(TARGET_THUMB1 \
|
||
? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
|
||
: ARM_REGNO_OK_FOR_BASE_P (REGNO))
|
||
|
||
/* Nonzero if X can be the base register in a reg+reg addressing mode.
|
||
For Thumb, we cannot use SP + reg, so reject SP. */
|
||
#define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
|
||
REGNO_MODE_OK_FOR_BASE_P (X, QImode)
|
||
|
||
/* For ARM code, we don't care about the mode, but for Thumb, the index
|
||
must be suitable for use in a QImode load. */
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
(REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
|
||
&& !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address.
|
||
Shifts in addresses can't be by a register. */
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
/* XXX We can address any constant, eventually... */
|
||
/* ??? Should the TARGET_ARM here also apply to thumb2? */
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == SYMBOL_REF \
|
||
&& (CONSTANT_POOL_ADDRESS_P (X) \
|
||
|| (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
|
||
|
||
/* True if SYMBOL + OFFSET constants must refer to something within
|
||
SYMBOL's section. */
|
||
#define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
|
||
|
||
/* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
|
||
#ifndef TARGET_DEFAULT_WORD_RELOCATIONS
|
||
#define TARGET_DEFAULT_WORD_RELOCATIONS 0
|
||
#endif
|
||
|
||
#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
|
||
#define SUBTARGET_NAME_ENCODING_LENGTHS
|
||
#endif
|
||
|
||
/* This is a C fragment for the inside of a switch statement.
|
||
Each case label should return the number of characters to
|
||
be stripped from the start of a function's name, if that
|
||
name starts with the indicated character. */
|
||
#define ARM_NAME_ENCODING_LENGTHS \
|
||
case '*': return 1; \
|
||
SUBTARGET_NAME_ENCODING_LENGTHS
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
#undef ASM_OUTPUT_LABELREF
|
||
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
|
||
arm_asm_output_labelref (FILE, NAME)
|
||
|
||
/* Output IT instructions for conditionally executed Thumb-2 instructions. */
|
||
#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
|
||
if (TARGET_THUMB2) \
|
||
thumb2_asm_output_opcode (STREAM);
|
||
|
||
/* The EABI specifies that constructors should go in .init_array.
|
||
Other targets use .ctors for compatibility. */
|
||
#ifndef ARM_EABI_CTORS_SECTION_OP
|
||
#define ARM_EABI_CTORS_SECTION_OP \
|
||
"\t.section\t.init_array,\"aw\",%init_array"
|
||
#endif
|
||
#ifndef ARM_EABI_DTORS_SECTION_OP
|
||
#define ARM_EABI_DTORS_SECTION_OP \
|
||
"\t.section\t.fini_array,\"aw\",%fini_array"
|
||
#endif
|
||
#define ARM_CTORS_SECTION_OP \
|
||
"\t.section\t.ctors,\"aw\",%progbits"
|
||
#define ARM_DTORS_SECTION_OP \
|
||
"\t.section\t.dtors,\"aw\",%progbits"
|
||
|
||
/* Define CTORS_SECTION_ASM_OP. */
|
||
#undef CTORS_SECTION_ASM_OP
|
||
#undef DTORS_SECTION_ASM_OP
|
||
#ifndef IN_LIBGCC2
|
||
# define CTORS_SECTION_ASM_OP \
|
||
(TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
|
||
# define DTORS_SECTION_ASM_OP \
|
||
(TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
|
||
#else /* !defined (IN_LIBGCC2) */
|
||
/* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
|
||
so we cannot use the definition above. */
|
||
# ifdef __ARM_EABI__
|
||
/* The .ctors section is not part of the EABI, so we do not define
|
||
CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
|
||
from trying to use it. We do define it when doing normal
|
||
compilation, as .init_array can be used instead of .ctors. */
|
||
/* There is no need to emit begin or end markers when using
|
||
init_array; the dynamic linker will compute the size of the
|
||
array itself based on special symbols created by the static
|
||
linker. However, we do need to arrange to set up
|
||
exception-handling here. */
|
||
# define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
|
||
# define CTOR_LIST_END /* empty */
|
||
# define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
|
||
# define DTOR_LIST_END /* empty */
|
||
# else /* !defined (__ARM_EABI__) */
|
||
# define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
|
||
# define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
|
||
# endif /* !defined (__ARM_EABI__) */
|
||
#endif /* !defined (IN_LIBCC2) */
|
||
|
||
/* True if the operating system can merge entities with vague linkage
|
||
(e.g., symbols in COMDAT group) during dynamic linking. */
|
||
#ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
|
||
#define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
|
||
#endif
|
||
|
||
#define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
Thumb-2 has the same restrictions as arm. */
|
||
#ifndef REG_OK_STRICT
|
||
|
||
#define ARM_REG_OK_FOR_BASE_P(X) \
|
||
(REGNO (X) <= LAST_ARM_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM)
|
||
|
||
#define ARM_REG_OK_FOR_INDEX_P(X) \
|
||
((REGNO (X) <= LAST_ARM_REGNUM \
|
||
&& REGNO (X) != STACK_POINTER_REGNUM) \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM)
|
||
|
||
#define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
(REGNO (X) <= LAST_LO_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| (GET_MODE_SIZE (MODE) >= 4 \
|
||
&& (REGNO (X) == STACK_POINTER_REGNUM \
|
||
|| (X) == hard_frame_pointer_rtx \
|
||
|| (X) == arg_pointer_rtx)))
|
||
|
||
#define REG_STRICT_P 0
|
||
|
||
#else /* REG_OK_STRICT */
|
||
|
||
#define ARM_REG_OK_FOR_BASE_P(X) \
|
||
ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#define ARM_REG_OK_FOR_INDEX_P(X) \
|
||
ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
|
||
#define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
|
||
|
||
#define REG_STRICT_P 1
|
||
|
||
#endif /* REG_OK_STRICT */
|
||
|
||
/* Now define some helpers in terms of the above. */
|
||
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
(TARGET_THUMB1 \
|
||
? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
|
||
: ARM_REG_OK_FOR_BASE_P (X))
|
||
|
||
/* For 16-bit Thumb, a valid index register is anything that can be used in
|
||
a byte load instruction. */
|
||
#define THUMB1_REG_OK_FOR_INDEX_P(X) \
|
||
THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. On the Thumb, the stack pointer
|
||
is not suitable. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(TARGET_THUMB1 \
|
||
? THUMB1_REG_OK_FOR_INDEX_P (X) \
|
||
: ARM_REG_OK_FOR_INDEX_P (X))
|
||
|
||
/* Nonzero if X can be the base register in a reg+reg addressing mode.
|
||
For Thumb, we cannot use SP + reg, so reject SP. */
|
||
#define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
|
||
REG_OK_FOR_INDEX_P (X)
|
||
|
||
#define ARM_BASE_REGISTER_RTX_P(X) \
|
||
(REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
|
||
|
||
#define ARM_INDEX_REGISTER_RTX_P(X) \
|
||
(REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE Pmode
|
||
|
||
#define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
|
||
|| (TARGET_THUMB1 \
|
||
&& (optimize_size || flag_pic)))
|
||
|
||
#define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
|
||
(TARGET_THUMB1 \
|
||
? (min >= 0 && max < 512 \
|
||
? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
|
||
: min >= -256 && max < 256 \
|
||
? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
|
||
: min >= 0 && max < 8192 \
|
||
? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
|
||
: min >= -4096 && max < 4096 \
|
||
? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
|
||
: SImode) \
|
||
: ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
|
||
: (max >= 0x200) ? HImode \
|
||
: QImode))
|
||
|
||
/* signed 'char' is most compatible, but RISC OS wants it unsigned.
|
||
unsigned is probably best, but may break some code. */
|
||
#ifndef DEFAULT_SIGNED_CHAR
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
#endif
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
#undef MOVE_RATIO
|
||
#define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS 1
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, UNKNOWN if none. */
|
||
#define LOAD_EXTEND_OP(MODE) \
|
||
(TARGET_THUMB ? ZERO_EXTEND : \
|
||
((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
|
||
: ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Immediate shift counts are truncated by the output routines (or was it
|
||
the assembler?). Shift counts in a register are truncated by ARM. Note
|
||
that the native compiler puts too large (> 32) immediate shift counts
|
||
into a register and shifts by the register, letting the ARM decide what
|
||
to do instead of doing that itself. */
|
||
/* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
|
||
code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
|
||
On the arm, Y in a register is used modulo 256 for the shift. Only for
|
||
rotates is modulo 32 used. */
|
||
/* #define SHIFT_COUNT_TRUNCATED 1 */
|
||
|
||
/* Calling from registers is a massive pain. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* The machine modes of pointers and functions */
|
||
#define Pmode SImode
|
||
#define FUNCTION_MODE Pmode
|
||
|
||
#define ARM_FRAME_RTX(X) \
|
||
( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
|
||
|| (X) == arg_pointer_rtx)
|
||
|
||
/* Try to generate sequences that don't involve branches, we can then use
|
||
conditional instructions. */
|
||
#define BRANCH_COST(speed_p, predictable_p) \
|
||
((arm_branch_cost != -1) ? arm_branch_cost : \
|
||
(current_tune->branch_cost (speed_p, predictable_p)))
|
||
|
||
/* False if short circuit operation is preferred. */
|
||
#define LOGICAL_OP_NON_SHORT_CIRCUIT \
|
||
((optimize_size) \
|
||
? (TARGET_THUMB ? false : true) \
|
||
: TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
|
||
: static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
|
||
|
||
|
||
/* Position Independent Code. */
|
||
/* We decide which register to use based on the compilation options and
|
||
the assembler in use; this is more general than the APCS restriction of
|
||
using sb (r9) all the time. */
|
||
extern unsigned arm_pic_register;
|
||
|
||
/* The register number of the register used to address a table of static
|
||
data addresses in memory. */
|
||
#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
|
||
|
||
/* We can't directly access anything that contains a symbol,
|
||
nor can we indirect via the constant pool. One exception is
|
||
UNSPEC_TLS, which is always PIC. */
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) \
|
||
(!(symbol_mentioned_p (X) \
|
||
|| label_mentioned_p (X) \
|
||
|| (GET_CODE (X) == SYMBOL_REF \
|
||
&& CONSTANT_POOL_ADDRESS_P (X) \
|
||
&& (symbol_mentioned_p (get_pool_constant (X)) \
|
||
|| label_mentioned_p (get_pool_constant (X))))) \
|
||
|| tls_mentioned_p (X))
|
||
|
||
/* We need to know when we are making a constant pool; this determines
|
||
whether data needs to be in the GOT or can be referenced via a GOT
|
||
offset. */
|
||
extern int making_const_table;
|
||
|
||
/* Handle pragmas for compatibility with Intel's compilers. */
|
||
/* Also abuse this to register additional C specific EABI attributes. */
|
||
#define REGISTER_TARGET_PRAGMAS() do { \
|
||
c_register_pragma (0, "long_calls", arm_pr_long_calls); \
|
||
c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
|
||
c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
|
||
arm_lang_object_attributes_init(); \
|
||
arm_register_target_pragmas(); \
|
||
} while (0)
|
||
|
||
/* Condition code information. */
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. */
|
||
|
||
#define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
|
||
|
||
#define REVERSIBLE_CC_MODE(MODE) 1
|
||
|
||
#define REVERSE_CONDITION(CODE,MODE) \
|
||
(((MODE) == CCFPmode || (MODE) == CCFPEmode) \
|
||
? reverse_condition_maybe_unordered (code) \
|
||
: reverse_condition (code))
|
||
|
||
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
|
||
((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
|
||
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
|
||
((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
|
||
|
||
#define CC_STATUS_INIT \
|
||
do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
|
||
|
||
#undef ASM_APP_ON
|
||
#define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
|
||
"\t.syntax divided\n")
|
||
|
||
#undef ASM_APP_OFF
|
||
#define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
|
||
"\t.thumb\n\t.syntax unified\n")
|
||
|
||
/* Output a push or a pop instruction (only used when profiling).
|
||
We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
|
||
that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
|
||
that r7 isn't used by the function profiler, so we can use it as a
|
||
scratch reg. WARNING: This isn't safe in the general case! It may be
|
||
sensitive to future changes in final.c:profile_function. */
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
|
||
do \
|
||
{ \
|
||
if (TARGET_THUMB1 \
|
||
&& (REGNO) == STATIC_CHAIN_REGNUM) \
|
||
{ \
|
||
asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
|
||
asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
|
||
asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
|
||
} \
|
||
else \
|
||
asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
|
||
} while (0)
|
||
|
||
|
||
/* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
|
||
#define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
|
||
do \
|
||
{ \
|
||
if (TARGET_THUMB1 \
|
||
&& (REGNO) == STATIC_CHAIN_REGNUM) \
|
||
{ \
|
||
asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
|
||
asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
|
||
asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
|
||
} \
|
||
else \
|
||
asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
|
||
} while (0)
|
||
|
||
#define ADDR_VEC_ALIGN(JUMPTABLE) \
|
||
((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
|
||
|
||
/* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
|
||
default alignment from elfos.h. */
|
||
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
|
||
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
|
||
|
||
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
|
||
(GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
|
||
? 1 : 0)
|
||
|
||
#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
|
||
arm_declare_function_name ((STREAM), (NAME), (DECL));
|
||
|
||
/* For aliases of functions we use .thumb_set instead. */
|
||
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
|
||
do \
|
||
{ \
|
||
const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
|
||
const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
|
||
\
|
||
if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
|
||
{ \
|
||
fprintf (FILE, "\t.thumb_set "); \
|
||
assemble_name (FILE, LABEL1); \
|
||
fprintf (FILE, ","); \
|
||
assemble_name (FILE, LABEL2); \
|
||
fprintf (FILE, "\n"); \
|
||
} \
|
||
else \
|
||
ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
|
||
} \
|
||
while (0)
|
||
|
||
#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
|
||
/* To support -falign-* switches we need to use .p2align so
|
||
that alignment directives in code sections will be padded
|
||
with no-op instructions, rather than zeroes. */
|
||
#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
|
||
if ((LOG) != 0) \
|
||
{ \
|
||
if ((MAX_SKIP) == 0) \
|
||
fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
|
||
else \
|
||
fprintf ((FILE), "\t.p2align %d,,%d\n", \
|
||
(int) (LOG), (int) (MAX_SKIP)); \
|
||
}
|
||
#endif
|
||
|
||
/* Add two bytes to the length of conditionally executed Thumb-2
|
||
instructions for the IT instruction. */
|
||
#define ADJUST_INSN_LENGTH(insn, length) \
|
||
if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
|
||
length += 2;
|
||
|
||
/* Only perform branch elimination (by making instructions conditional) if
|
||
we're optimizing. For Thumb-2 check if any IT instructions need
|
||
outputting. */
|
||
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
||
if (TARGET_ARM && optimize) \
|
||
arm_final_prescan_insn (INSN); \
|
||
else if (TARGET_THUMB2) \
|
||
thumb2_final_prescan_insn (INSN); \
|
||
else if (TARGET_THUMB1) \
|
||
thumb1_final_prescan_insn (INSN)
|
||
|
||
#define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
|
||
(HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
|
||
: ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
|
||
((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
|
||
? ((~ (unsigned HOST_WIDE_INT) 0) \
|
||
& ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
|
||
: 0))))
|
||
|
||
/* A C expression whose value is RTL representing the value of the return
|
||
address for the frame COUNT steps up from the current frame. */
|
||
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
arm_return_addr (COUNT, FRAME)
|
||
|
||
/* Mask of the bits in the PC that contain the real return address
|
||
when running in 26-bit mode. */
|
||
#define RETURN_ADDR_MASK26 (0x03fffffc)
|
||
|
||
/* Pick up the return address upon entry to a procedure. Used for
|
||
dwarf2 unwind information. This also enables the table driven
|
||
mechanism. */
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
|
||
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
|
||
|
||
/* Used to mask out junk bits from the return address, such as
|
||
processor state, interrupt status, condition codes and the like. */
|
||
#define MASK_RETURN_ADDR \
|
||
/* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
|
||
in 26 bit mode, the condition codes must be masked out of the \
|
||
return address. This does not apply to ARM6 and later processors \
|
||
when running in 32 bit mode. */ \
|
||
((arm_arch4 || TARGET_THUMB) \
|
||
? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
|
||
: arm_gen_return_addr_mask ())
|
||
|
||
|
||
/* Do not emit .note.GNU-stack by default. */
|
||
#ifndef NEED_INDICATE_EXEC_STACK
|
||
#define NEED_INDICATE_EXEC_STACK 0
|
||
#endif
|
||
|
||
#define TARGET_ARM_ARCH \
|
||
(arm_base_arch) \
|
||
|
||
/* The highest Thumb instruction set version supported by the chip. */
|
||
#define TARGET_ARM_ARCH_ISA_THUMB \
|
||
(arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
|
||
|
||
/* Expands to an upper-case char of the target's architectural
|
||
profile. */
|
||
#define TARGET_ARM_ARCH_PROFILE \
|
||
(arm_active_target.profile)
|
||
|
||
/* Bit-field indicating what size LDREX/STREX loads/stores are available.
|
||
Bit 0 for bytes, up to bit 3 for double-words. */
|
||
#define TARGET_ARM_FEATURE_LDREX \
|
||
((TARGET_HAVE_LDREX ? 4 : 0) \
|
||
| (TARGET_HAVE_LDREXBH ? 3 : 0) \
|
||
| (TARGET_HAVE_LDREXD ? 8 : 0))
|
||
|
||
/* Set as a bit mask indicating the available widths of hardware floating
|
||
point types. Where bit 1 indicates 16-bit support, bit 2 indicates
|
||
32-bit support, bit 3 indicates 64-bit support. */
|
||
#define TARGET_ARM_FP \
|
||
(!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
|
||
: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
|
||
: 0)
|
||
|
||
|
||
/* Set as a bit mask indicating the available widths of floating point
|
||
types for hardware NEON floating point. This is the same as
|
||
TARGET_ARM_FP without the 64-bit bit set. */
|
||
#define TARGET_NEON_FP \
|
||
(TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
|
||
: 0)
|
||
|
||
/* Name of the automatic fpu-selection option. */
|
||
#define FPUTYPE_AUTO "auto"
|
||
|
||
/* The maximum number of parallel loads or stores we support in an ldm/stm
|
||
instruction. */
|
||
#define MAX_LDM_STM_OPS 4
|
||
|
||
extern const char *arm_rewrite_mcpu (int argc, const char **argv);
|
||
extern const char *arm_rewrite_march (int argc, const char **argv);
|
||
extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
|
||
#define ASM_CPU_SPEC_FUNCTIONS \
|
||
{ "rewrite_mcpu", arm_rewrite_mcpu }, \
|
||
{ "rewrite_march", arm_rewrite_march }, \
|
||
{ "asm_auto_mfpu", arm_asm_auto_mfpu },
|
||
|
||
#define ASM_CPU_SPEC \
|
||
" %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}" \
|
||
" %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});" \
|
||
" march=*:-march=%:rewrite_march(%{march=*:%*});" \
|
||
" mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})" \
|
||
" }"
|
||
|
||
extern const char *arm_target_thumb_only (int argc, const char **argv);
|
||
#define TARGET_MODE_SPEC_FUNCTIONS \
|
||
{ "target_mode_check", arm_target_thumb_only },
|
||
|
||
/* -mcpu=native handling only makes sense with compiler running on
|
||
an ARM chip. */
|
||
#if defined(__arm__)
|
||
extern const char *host_detect_local_cpu (int argc, const char **argv);
|
||
#define HAVE_LOCAL_CPU_DETECT
|
||
# define MCPU_MTUNE_NATIVE_FUNCTIONS \
|
||
{ "local_cpu_detect", host_detect_local_cpu },
|
||
# define MCPU_MTUNE_NATIVE_SPECS \
|
||
" %{march=native:%<march=native %:local_cpu_detect(arch)}" \
|
||
" %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
|
||
" %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
|
||
#else
|
||
# define MCPU_MTUNE_NATIVE_FUNCTIONS
|
||
# define MCPU_MTUNE_NATIVE_SPECS ""
|
||
#endif
|
||
|
||
const char *arm_canon_arch_option (int argc, const char **argv);
|
||
|
||
#define CANON_ARCH_SPEC_FUNCTION \
|
||
{ "canon_arch", arm_canon_arch_option },
|
||
|
||
const char *arm_be8_option (int argc, const char **argv);
|
||
#define BE8_SPEC_FUNCTION \
|
||
{ "be8_linkopt", arm_be8_option },
|
||
|
||
# define EXTRA_SPEC_FUNCTIONS \
|
||
MCPU_MTUNE_NATIVE_FUNCTIONS \
|
||
ASM_CPU_SPEC_FUNCTIONS \
|
||
CANON_ARCH_SPEC_FUNCTION \
|
||
TARGET_MODE_SPEC_FUNCTIONS \
|
||
BE8_SPEC_FUNCTION
|
||
|
||
/* Automatically add -mthumb for Thumb-only targets if mode isn't specified
|
||
via the configuration option --with-mode or via the command line. The
|
||
function target_mode_check is called to do the check with either:
|
||
- an array of -march values if any is given;
|
||
- an array of -mcpu values if any is given;
|
||
- an empty array. */
|
||
#define TARGET_MODE_SPECS \
|
||
" %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
|
||
|
||
/* Generate a canonical string to represent the architecture selected. */
|
||
#define ARCH_CANONICAL_SPECS \
|
||
" -march=%:canon_arch(%{mcpu=*: cpu %*} " \
|
||
" %{march=*: arch %*} " \
|
||
" %{mfpu=*: fpu %*} " \
|
||
" %{mfloat-abi=*: abi %*}" \
|
||
" %<march=*) "
|
||
|
||
/* Complete set of specs for the driver. Commas separate the
|
||
individual rules so that any option suppression (%<opt...)is
|
||
completed before starting subsequent rules. */
|
||
#define DRIVER_SELF_SPECS \
|
||
MCPU_MTUNE_NATIVE_SPECS, \
|
||
TARGET_MODE_SPECS, \
|
||
ARCH_CANONICAL_SPECS
|
||
|
||
#define TARGET_SUPPORTS_WIDE_INT 1
|
||
|
||
/* For switching between functions with different target attributes. */
|
||
#define SWITCHABLE_TARGET 1
|
||
|
||
/* Define SECTION_ARM_PURECODE as the ARM specific section attribute
|
||
representation for SHF_ARM_PURECODE in GCC. */
|
||
#define SECTION_ARM_PURECODE SECTION_MACH_DEP
|
||
|
||
#endif /* ! GCC_ARM_H */
|