There is a case similar to an argument in a register, which is an argument that is actually stored as a local variable. Sometimes this happens when the argument was passed in a register and then the compiler stores it as a local variable. If possible, the compiler should claim that it's in a register, but this isn't always done.
If a parameter is passed as one type and converted to a smaller type by
the prologue (for example, the parameter is declared as a float
,
but the calling conventions specify that it is passed as a
double
), then GCC2 (sometimes) uses a pair of symbols. The first
symbol uses symbol descriptor ‘p’ and the type which is passed.
The second symbol has the type and location which the parameter actually
has after the prologue. For example, suppose the following C code
appears with no prototypes involved:
void subr (f) float f; {
if f
is passed as a double at stack offset 8, and the prologue
converts it to a float in register number 0, then the stabs look like:
.stabs "f:p13",160,0,3,8 # 160 isN_PSYM
, here 13 isdouble
.stabs "f:r12",64,0,3,0 # 64 isN_RSYM
, here 12 isfloat
In both stabs 3 is the line number where f
is declared
(see Line Numbers).
GCC, at least on the 960, has another solution to the same problem. It
uses a single ‘p’ symbol descriptor for an argument which is stored
as a local variable but uses N_LSYM
instead of N_PSYM
. In
this case, the value of the symbol is an offset relative to the local
variables for that function, not relative to the arguments; on some
machines those are the same thing, but not on all.
On the VAX or on other machines in which the calling convention includes the number of words of arguments actually passed, the debugger (GDB at least) uses the parameter symbols to keep track of whether it needs to print nameless arguments in addition to the formal parameters which it has printed because each one has a stab. For example, in
extern int fprintf (FILE *stream, char *format, ...); ... fprintf (stdout, "%d\n", x);
there are stabs for stream
and format
. On most machines,
the debugger can only print those two arguments (because it has no way
of knowing that additional arguments were passed), but on the VAX or
other machines with a calling convention which indicates the number of
words of arguments, the debugger can print all three arguments. To do
so, the parameter symbol (symbol descriptor ‘p’) (not necessarily
‘r’ or symbol descriptor omitted symbols) needs to contain the
actual type as passed (for example, double
not float
if it
is passed as a double and converted to a float).