/* A memory statistics tracking infrastructure. Copyright (C) 2015-2019 Free Software Foundation, Inc. Contributed by Martin Liska This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_MEM_STATS_H #define GCC_MEM_STATS_H /* Forward declaration. */ template, Value> > class hash_map; #define LOCATION_LINE_EXTRA_SPACE 30 #define LOCATION_LINE_WIDTH 48 /* Memory allocation location. */ struct mem_location { /* Default constructor. */ inline mem_location () {} /* Constructor. */ inline mem_location (mem_alloc_origin origin, bool ggc, const char *filename = NULL, int line = 0, const char *function = NULL): m_filename (filename), m_function (function), m_line (line), m_origin (origin), m_ggc (ggc) {} /* Copy constructor. */ inline mem_location (mem_location &other): m_filename (other.m_filename), m_function (other.m_function), m_line (other.m_line), m_origin (other.m_origin), m_ggc (other.m_ggc) {} /* Compute hash value based on file name, function name and line in source code. As there is just a single pointer registered for every constant that points to e.g. the same file name, we can use hash of the pointer. */ hashval_t hash () { inchash::hash hash; hash.add_ptr (m_filename); hash.add_ptr (m_function); hash.add_int (m_line); return hash.end (); } /* Return true if the memory location is equal to OTHER. */ int equal (mem_location &other) { return m_filename == other.m_filename && m_function == other.m_function && m_line == other.m_line; } /* Return trimmed filename for the location. */ inline const char * get_trimmed_filename () { const char *s1 = m_filename; const char *s2; while ((s2 = strstr (s1, "gcc/"))) s1 = s2 + 4; return s1; } inline char * to_string () { unsigned l = strlen (get_trimmed_filename ()) + strlen (m_function) + LOCATION_LINE_EXTRA_SPACE; char *s = XNEWVEC (char, l); sprintf (s, "%s:%i (%s)", get_trimmed_filename (), m_line, m_function); s[MIN (LOCATION_LINE_WIDTH, l - 1)] = '\0'; return s; } /* Return display name associated to ORIGIN type. */ static const char * get_origin_name (mem_alloc_origin origin) { return mem_alloc_origin_names[(unsigned) origin]; } /* File name of source code. */ const char *m_filename; /* Funcation name. */ const char *m_function; /* Line number in source code. */ int m_line; /* Origin type. */ mem_alloc_origin m_origin; /* Flag if used by GGC allocation. */ bool m_ggc; }; /* Memory usage register to a memory location. */ struct mem_usage { /* Default constructor. */ mem_usage (): m_allocated (0), m_times (0), m_peak (0), m_instances (1) {} /* Constructor. */ mem_usage (size_t allocated, size_t times, size_t peak, size_t instances = 0): m_allocated (allocated), m_times (times), m_peak (peak), m_instances (instances) {} /* Register overhead of SIZE bytes. */ inline void register_overhead (size_t size) { m_allocated += size; m_times++; if (m_peak < m_allocated) m_peak = m_allocated; } /* Release overhead of SIZE bytes. */ inline void release_overhead (size_t size) { gcc_assert (size <= m_allocated); m_allocated -= size; } /* Sum the usage with SECOND usage. */ mem_usage operator+ (const mem_usage &second) { return mem_usage (m_allocated + second.m_allocated, m_times + second.m_times, m_peak + second.m_peak, m_instances + second.m_instances); } /* Equality operator. */ inline bool operator== (const mem_usage &second) const { return (m_allocated == second.m_allocated && m_peak == second.m_peak && m_times == second.m_times); } /* Comparison operator. */ inline bool operator< (const mem_usage &second) const { if (*this == second) return false; return (m_allocated == second.m_allocated ? (m_peak == second.m_peak ? m_times < second.m_times : m_peak < second.m_peak) : m_allocated < second.m_allocated); } /* Compare wrapper used by qsort method. */ static int compare (const void *first, const void *second) { typedef std::pair mem_pair_t; const mem_pair_t f = *(const mem_pair_t *)first; const mem_pair_t s = *(const mem_pair_t *)second; if (*f.second == *s.second) return 0; return *f.second < *s.second ? 1 : -1; } /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */ inline void dump (mem_location *loc, mem_usage &total) const { char *location_string = loc->to_string (); fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%" PRsa (9) PRsa (9) ":%5.1f%%%10s\n", location_string, SIZE_AMOUNT (m_allocated), get_percent (m_allocated, total.m_allocated), SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times), get_percent (m_times, total.m_times), loc->m_ggc ? "ggc" : "heap"); free (location_string); } /* Dump footer. */ inline void dump_footer () const { fprintf (stderr, "%s" PRsa (53) PRsa (26) "\n", "Total", SIZE_AMOUNT (m_allocated), SIZE_AMOUNT (m_times)); } /* Return fraction of NOMINATOR and DENOMINATOR in percent. */ static inline float get_percent (size_t nominator, size_t denominator) { return denominator == 0 ? 0.0f : nominator * 100.0 / denominator; } /* Print line made of dashes. */ static inline void print_dash_line (size_t count = 140) { while (count--) fputc ('-', stderr); fputc ('\n', stderr); } /* Dump header with NAME. */ static inline void dump_header (const char *name) { fprintf (stderr, "%-48s %11s%16s%10s%17s\n", name, "Leak", "Peak", "Times", "Type"); } /* Current number of allocated bytes. */ size_t m_allocated; /* Number of allocations. */ size_t m_times; /* Peak allocation in bytes. */ size_t m_peak; /* Number of container instances. */ size_t m_instances; }; /* Memory usage pair that connectes memory usage and number of allocated bytes. */ template struct mem_usage_pair { mem_usage_pair (T *usage_, size_t allocated_): usage (usage_), allocated (allocated_) {} T *usage; size_t allocated; }; /* Memory allocation description. */ template class mem_alloc_description { public: struct mem_location_hash : nofree_ptr_hash { static hashval_t hash (value_type l) { inchash::hash hstate; hstate.add_ptr ((const void *)l->m_filename); hstate.add_ptr (l->m_function); hstate.add_int (l->m_line); return hstate.end (); } static bool equal (value_type l1, value_type l2) { return (l1->m_filename == l2->m_filename && l1->m_function == l2->m_function && l1->m_line == l2->m_line); } }; /* Internal class type definitions. */ typedef hash_map mem_map_t; typedef hash_map > reverse_mem_map_t; typedef hash_map > reverse_object_map_t; typedef std::pair mem_list_t; /* Default contructor. */ mem_alloc_description (); /* Default destructor. */ ~mem_alloc_description (); /* Returns true if instance PTR is registered by the memory description. */ bool contains_descriptor_for_instance (const void *ptr); /* Return descriptor for instance PTR. */ T *get_descriptor_for_instance (const void *ptr); /* Register memory allocation descriptor for container PTR which is described by a memory LOCATION. */ T *register_descriptor (const void *ptr, mem_location *location); /* Register memory allocation descriptor for container PTR. ORIGIN identifies type of container and GGC identifes if the allocation is handled in GGC memory. Each location is identified by file NAME, LINE in source code and FUNCTION name. */ T *register_descriptor (const void *ptr, mem_alloc_origin origin, bool ggc, const char *name, int line, const char *function); /* Register instance overhead identified by PTR pointer. Allocation takes SIZE bytes. */ T *register_instance_overhead (size_t size, const void *ptr); /* For containers (and GGC) where we want to track every instance object, we register allocation of SIZE bytes, identified by PTR pointer, belonging to USAGE descriptor. */ void register_object_overhead (T *usage, size_t size, const void *ptr); /* Release PTR pointer of SIZE bytes. If REMOVE_FROM_MAP is set to true, remove the instance from reverse map. Return memory usage that belongs to this memory description. */ T *release_instance_overhead (void *ptr, size_t size, bool remove_from_map = false); /* Release instance object identified by PTR pointer. */ void release_object_overhead (void *ptr); /* Unregister a memory allocation descriptor registered with register_descriptor (remove from reverse map), unless it is unregistered through release_instance_overhead with REMOVE_FROM_MAP = true. */ void unregister_descriptor (void *ptr); /* Get sum value for ORIGIN type of allocation for the descriptor. */ T get_sum (mem_alloc_origin origin); /* Get all tracked instances registered by the description. Items are filtered by ORIGIN type, LENGTH is return value where we register the number of elements in the list. If we want to process custom order, CMP comparator can be provided. */ mem_list_t *get_list (mem_alloc_origin origin, unsigned *length, int (*cmp) (const void *first, const void *second) = NULL); /* Dump all tracked instances of type ORIGIN. If we want to process custom order, CMP comparator can be provided. */ void dump (mem_alloc_origin origin, int (*cmp) (const void *first, const void *second) = NULL); /* Reverse object map used for every object allocation mapping. */ reverse_object_map_t *m_reverse_object_map; private: /* Register overhead of SIZE bytes of ORIGIN type. PTR pointer is allocated in NAME source file, at LINE in source code, in FUNCTION. */ T *register_overhead (size_t size, mem_alloc_origin origin, const char *name, int line, const char *function, const void *ptr); /* Allocation location coupled to the description. */ mem_location m_location; /* Location to usage mapping. */ mem_map_t *m_map; /* Reverse pointer to usage mapping. */ reverse_mem_map_t *m_reverse_map; }; /* Returns true if instance PTR is registered by the memory description. */ template inline bool mem_alloc_description::contains_descriptor_for_instance (const void *ptr) { return m_reverse_map->get (ptr); } /* Return descriptor for instance PTR. */ template inline T* mem_alloc_description::get_descriptor_for_instance (const void *ptr) { return m_reverse_map->get (ptr) ? (*m_reverse_map->get (ptr)).usage : NULL; } /* Register memory allocation descriptor for container PTR which is described by a memory LOCATION. */ template inline T* mem_alloc_description::register_descriptor (const void *ptr, mem_location *location) { T *usage = NULL; T **slot = m_map->get (location); if (slot) { delete location; usage = *slot; usage->m_instances++; } else { usage = new T (); m_map->put (location, usage); } if (!m_reverse_map->get (ptr)) m_reverse_map->put (ptr, mem_usage_pair (usage, 0)); return usage; } /* Register memory allocation descriptor for container PTR. ORIGIN identifies type of container and GGC identifes if the allocation is handled in GGC memory. Each location is identified by file NAME, LINE in source code and FUNCTION name. */ template inline T* mem_alloc_description::register_descriptor (const void *ptr, mem_alloc_origin origin, bool ggc, const char *filename, int line, const char *function) { mem_location *l = new mem_location (origin, ggc, filename, line, function); return register_descriptor (ptr, l); } /* Register instance overhead identified by PTR pointer. Allocation takes SIZE bytes. */ template inline T* mem_alloc_description::register_instance_overhead (size_t size, const void *ptr) { mem_usage_pair *slot = m_reverse_map->get (ptr); if (!slot) { /* Due to PCH, it can really happen. */ return NULL; } T *usage = (*slot).usage; usage->register_overhead (size); return usage; } /* For containers (and GGC) where we want to track every instance object, we register allocation of SIZE bytes, identified by PTR pointer, belonging to USAGE descriptor. */ template void mem_alloc_description::register_object_overhead (T *usage, size_t size, const void *ptr) { /* In case of GGC, it is possible to have already occupied the memory location. */ m_reverse_object_map->put (ptr, std::pair (usage, size)); } /* Register overhead of SIZE bytes of ORIGIN type. PTR pointer is allocated in NAME source file, at LINE in source code, in FUNCTION. */ template inline T* mem_alloc_description::register_overhead (size_t size, mem_alloc_origin origin, const char *filename, int line, const char *function, const void *ptr) { T *usage = register_descriptor (ptr, origin, filename, line, function); usage->register_overhead (size); return usage; } /* Release PTR pointer of SIZE bytes. */ template inline T * mem_alloc_description::release_instance_overhead (void *ptr, size_t size, bool remove_from_map) { mem_usage_pair *slot = m_reverse_map->get (ptr); if (!slot) { /* Due to PCH, it can really happen. */ return NULL; } T *usage = (*slot).usage; usage->release_overhead (size); if (remove_from_map) m_reverse_map->remove (ptr); return usage; } /* Release instance object identified by PTR pointer. */ template inline void mem_alloc_description::release_object_overhead (void *ptr) { std::pair *entry = m_reverse_object_map->get (ptr); if (entry) { entry->first->release_overhead (entry->second); m_reverse_object_map->remove (ptr); } } /* Unregister a memory allocation descriptor registered with register_descriptor (remove from reverse map), unless it is unregistered through release_instance_overhead with REMOVE_FROM_MAP = true. */ template inline void mem_alloc_description::unregister_descriptor (void *ptr) { m_reverse_map->remove (ptr); } /* Default contructor. */ template inline mem_alloc_description::mem_alloc_description () { m_map = new mem_map_t (13, false, false); m_reverse_map = new reverse_mem_map_t (13, false, false); m_reverse_object_map = new reverse_object_map_t (13, false, false); } /* Default destructor. */ template inline mem_alloc_description::~mem_alloc_description () { for (typename mem_map_t::iterator it = m_map->begin (); it != m_map->end (); ++it) { delete (*it).first; delete (*it).second; } delete m_map; delete m_reverse_map; delete m_reverse_object_map; } /* Get all tracked instances registered by the description. Items are filtered by ORIGIN type, LENGTH is return value where we register the number of elements in the list. If we want to process custom order, CMP comparator can be provided. */ template inline typename mem_alloc_description::mem_list_t * mem_alloc_description::get_list (mem_alloc_origin origin, unsigned *length, int (*cmp) (const void *first, const void *second)) { /* vec data structure is not used because all vectors generate memory allocation info a it would create a cycle. */ size_t element_size = sizeof (mem_list_t); mem_list_t *list = XCNEWVEC (mem_list_t, m_map->elements ()); unsigned i = 0; for (typename mem_map_t::iterator it = m_map->begin (); it != m_map->end (); ++it) if ((*it).first->m_origin == origin) list[i++] = std::pair (*it); qsort (list, i, element_size, cmp == NULL ? T::compare : cmp); *length = i; return list; } /* Get sum value for ORIGIN type of allocation for the descriptor. */ template inline T mem_alloc_description::get_sum (mem_alloc_origin origin) { unsigned length; mem_list_t *list = get_list (origin, &length); T sum; for (unsigned i = 0; i < length; i++) sum = sum + *list[i].second; XDELETEVEC (list); return sum; } /* Dump all tracked instances of type ORIGIN. If we want to process custom order, CMP comparator can be provided. */ template inline void mem_alloc_description::dump (mem_alloc_origin origin, int (*cmp) (const void *first, const void *second)) { unsigned length; fprintf (stderr, "\n"); mem_list_t *list = get_list (origin, &length, cmp); T total = get_sum (origin); T::print_dash_line (); T::dump_header (mem_location::get_origin_name (origin)); T::print_dash_line (); for (int i = length - 1; i >= 0; i--) list[i].second->dump (list[i].first, total); T::print_dash_line (); T::dump_header (mem_location::get_origin_name (origin)); T::print_dash_line (); total.dump_footer (); T::print_dash_line (); XDELETEVEC (list); fprintf (stderr, "\n"); } #endif // GCC_MEM_STATS_H