/* * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if STM32MP_UART_PROGRAMMER #include #endif #include #include #include #include #include #include #include #include #define PWRLP_TEMPO_5_HSI 5 #define TIMEOUT_US_1MS U(1000) static const char debug_msg[626] = { "***************************************************\n" "** NOTICE NOTICE NOTICE NOTICE NOTICE **\n" "** **\n" "** DEBUG ACCESS PORT IS OPEN! **\n" "** This boot image is only for debugging purpose **\n" "** and is unsafe for production use. **\n" "** **\n" "** If you see this message and you are not **\n" "** debugging report this immediately to your **\n" "** vendor! **\n" "** **\n" "***************************************************\n" }; static struct console_stm32 console; static enum boot_device_e boot_device = BOOT_DEVICE_BOARD; static bool wakeup_standby; static void print_reset_reason(void) { uint32_t rstsr = mmio_read_32(stm32mp_rcc_base() + RCC_MP_RSTSCLRR); if (rstsr == 0U) { WARN("Reset reason unknown\n"); return; } INFO("Reset reason (0x%x):\n", rstsr); if ((rstsr & RCC_MP_RSTSCLRR_PADRSTF) == 0U) { if ((rstsr & RCC_MP_RSTSCLRR_STDBYRSTF) != 0U) { INFO("System exits from STANDBY\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_CSTDBYRSTF) != 0U) { INFO("MPU exits from CSTANDBY\n"); return; } } if ((rstsr & RCC_MP_RSTSCLRR_PORRSTF) != 0U) { INFO(" Power-on Reset (rst_por)\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_BORRSTF) != 0U) { INFO(" Brownout Reset (rst_bor)\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_MCSYSRSTF) != 0U) { if ((rstsr & RCC_MP_RSTSCLRR_PADRSTF) != 0U) { INFO(" System reset generated by MCU (MCSYSRST)\n"); } else { INFO(" Local reset generated by MCU (MCSYSRST)\n"); } return; } if ((rstsr & RCC_MP_RSTSCLRR_MPSYSRSTF) != 0U) { INFO(" System reset generated by MPU (MPSYSRST)\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_HCSSRSTF) != 0U) { INFO(" Reset due to a clock failure on HSE\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_IWDG1RSTF) != 0U) { INFO(" IWDG1 Reset (rst_iwdg1)\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_IWDG2RSTF) != 0U) { INFO(" IWDG2 Reset (rst_iwdg2)\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_MPUP0RSTF) != 0U) { INFO(" MPU Processor 0 Reset\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_MPUP1RSTF) != 0U) { INFO(" MPU Processor 1 Reset\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_PADRSTF) != 0U) { INFO(" Pad Reset from NRST\n"); return; } if ((rstsr & RCC_MP_RSTSCLRR_VCORERSTF) != 0U) { INFO(" Reset due to a failure of VDD_CORE\n"); return; } ERROR(" Unidentified reset reason\n"); } enum boot_device_e get_boot_device(void) { return boot_device; } void bl2_el3_early_platform_setup(u_register_t arg0, u_register_t arg1 __unused, u_register_t arg2 __unused, u_register_t arg3 __unused) { stm32mp_save_boot_ctx_address(arg0); } void bl2_platform_setup(void) { int ret; /* * Map DDR non cacheable during its initialisation to avoid * speculative loads before accesses are fully setup. */ ret = mmap_add_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_BASE, STM32MP_DDR_MAX_SIZE, MT_NON_CACHEABLE | MT_RW | MT_NS); assert(ret == 0); ret = stm32mp1_ddr_probe(); if (ret < 0) { ERROR("Invalid DDR init: error %d\n", ret); panic(); } ret = mmap_remove_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_MAX_SIZE); assert(ret == 0); #ifdef AARCH32_SP_OPTEE INFO("BL2 runs OP-TEE setup\n"); /* Map non secure DDR for BL33 load, now with cacheable attribute */ ret = mmap_add_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_BASE, dt_get_ddr_size() - STM32MP_DDR_S_SIZE - STM32MP_DDR_SHMEM_SIZE, MT_MEMORY | MT_RW | MT_NS); assert(ret == 0); ret = mmap_add_dynamic_region(STM32MP_DDR_BASE + dt_get_ddr_size() - STM32MP_DDR_S_SIZE - STM32MP_DDR_SHMEM_SIZE, STM32MP_DDR_BASE + dt_get_ddr_size() - STM32MP_DDR_S_SIZE - STM32MP_DDR_SHMEM_SIZE, STM32MP_DDR_S_SIZE, MT_MEMORY | MT_RW | MT_SECURE); assert(ret == 0); /* Initialize tzc400 after DDR initialization */ stm32mp1_security_setup(); #else INFO("BL2 runs SP_MIN setup\n"); /* Map non secure DDR for BL33 load, now with cacheable attribute */ ret = mmap_add_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_BASE, dt_get_ddr_size(), MT_MEMORY | MT_RW | MT_NS); assert(ret == 0); #endif if ((dt_pmic_status() > 0) && (!wakeup_standby)) { configure_pmic(); } } static void update_monotonic_counter(void) { uint32_t version; uint32_t otp; CASSERT(STM32_TF_VERSION <= MAX_MONOTONIC_VALUE, assert_stm32mp1_monotonic_counter_reach_max); /* Check if monotonic counter needs to be incremented */ if (stm32_get_otp_index(MONOTONIC_OTP, &otp, NULL) != 0) { panic(); } if (stm32_get_otp_value(MONOTONIC_OTP, &version) != 0) { panic(); } if ((version + 1U) < BIT(STM32_TF_VERSION)) { uint32_t result; /* Need to increment the monotonic counter. */ version = BIT(STM32_TF_VERSION) - 1U; result = bsec_program_otp(version, otp); if (result != BSEC_OK) { ERROR("BSEC: MONOTONIC_OTP program Error %i\n", result); panic(); } INFO("Monotonic counter has been incremented (value 0x%x)\n", version); } } static void initialize_clock(void) { uint32_t voltage_mv = 0U; uint32_t freq_khz = 0U; int ret = 0; if (wakeup_standby) { ret = stm32_get_pll1_settings_from_context(); } /* * If no pre-defined PLL1 settings in DT, find the highest frequency * in the OPP table (in DT, compatible with plaform capabilities, or * in structure restored in RAM), and set related CPU supply voltage. * If PLL1 settings found in DT, we consider CPU supply voltage in DT * is consistent with it. */ if ((ret == 0) && !fdt_is_pll1_predefined()) { if (wakeup_standby) { ret = stm32mp1_clk_get_maxfreq_opp(&freq_khz, &voltage_mv); } else { ret = dt_get_max_opp_freqvolt(&freq_khz, &voltage_mv); } if (ret != 0) { panic(); } if (dt_pmic_status() > 0) { int read_voltage; const char *name; name = stm32mp_get_cpu_supply_name(); if (name == NULL) { panic(); } read_voltage = stpmic1_regulator_voltage_get(name); if (read_voltage < 0) { panic(); } if (voltage_mv != (uint32_t)read_voltage) { if (stpmic1_regulator_voltage_set(name, (uint16_t)voltage_mv) != 0) { panic(); } } } } if (stm32mp1_clk_init(freq_khz) < 0) { panic(); } } static void reset_uart(uint32_t reset) { if (stm32mp_reset_assert_to(reset, TIMEOUT_US_1MS)) { panic(); } udelay(2); if (stm32mp_reset_deassert_to(reset, TIMEOUT_US_1MS)) { panic(); } mdelay(1); } void bl2_el3_plat_arch_setup(void) { int32_t result; struct dt_node_info dt_uart_info; const char *board_model; boot_api_context_t *boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address(); uint32_t clk_rate; uintptr_t pwr_base; uintptr_t rcc_base; uint32_t bkpr_core1_magic = tamp_bkpr(BOOT_API_CORE1_MAGIC_NUMBER_TAMP_BCK_REG_IDX); uint32_t bkpr_core1_addr = tamp_bkpr(BOOT_API_CORE1_BRANCH_ADDRESS_TAMP_BCK_REG_IDX); mmap_add_region(BL_CODE_BASE, BL_CODE_BASE, BL_CODE_END - BL_CODE_BASE, MT_CODE | MT_SECURE); #ifdef AARCH32_SP_OPTEE mmap_add_region(STM32MP_OPTEE_BASE, STM32MP_OPTEE_BASE, STM32MP_OPTEE_SIZE, MT_MEMORY | MT_RW | MT_SECURE); #else /* Prevent corruption of preloaded BL32 */ mmap_add_region(BL32_BASE, BL32_BASE, BL32_LIMIT - BL32_BASE, MT_RO_DATA | MT_SECURE); #endif /* Prevent corruption of preloaded Device Tree */ mmap_add_region(DTB_BASE, DTB_BASE, DTB_LIMIT - DTB_BASE, MT_RO_DATA | MT_SECURE); configure_mmu(); if (dt_open_and_check() < 0) { panic(); } pwr_base = stm32mp_pwr_base(); rcc_base = stm32mp_rcc_base(); /* Clear Stop Request bits to correctly manage low-power exit */ mmio_write_32(rcc_base + RCC_MP_SREQCLRR, (uint32_t)(RCC_MP_SREQCLRR_STPREQ_P0 | RCC_MP_SREQCLRR_STPREQ_P1)); /* * Disable the backup domain write protection. * The protection is enable at each reset by hardware * and must be disabled by software. */ mmio_setbits_32(pwr_base + PWR_CR1, PWR_CR1_DBP); while ((mmio_read_32(pwr_base + PWR_CR1) & PWR_CR1_DBP) == 0U) { ; } /* * Configure Standby mode available for MCU by default * and allow to switch in standby SoC in all case */ mmio_setbits_32(pwr_base + PWR_MCUCR, PWR_MCUCR_PDDS); if (bsec_probe() != 0) { panic(); } /* Reset backup domain on cold boot cases */ if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_RTCSRC_MASK) == 0U) { mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_VSWRST); while ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_VSWRST) == 0U) { ; } mmio_clrbits_32(rcc_base + RCC_BDCR, RCC_BDCR_VSWRST); } /* Wait 5 HSI periods before re-enabling PLLs after STOP modes */ mmio_clrsetbits_32(rcc_base + RCC_PWRLPDLYCR, RCC_PWRLPDLYCR_PWRLP_DLY_MASK, PWRLP_TEMPO_5_HSI); /* Disable retention and backup RAM content after standby */ mmio_clrbits_32(pwr_base + PWR_CR2, PWR_CR2_BREN | PWR_CR2_RREN); /* Disable MCKPROT */ mmio_clrbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT); /* Enable BKP Register protection */ mmio_write_32(TAMP_SMCR, TAMP_BKP_SEC_NUMBER << TAMP_BKP_SEC_WDPROT_SHIFT | TAMP_BKP_SEC_NUMBER << TAMP_BKP_SEC_RWDPROT_SHIFT); if ((boot_context->boot_action != BOOT_API_CTX_BOOT_ACTION_WAKEUP_CSTANDBY) && (boot_context->boot_action != BOOT_API_CTX_BOOT_ACTION_WAKEUP_STANDBY)) { mmio_write_32(bkpr_core1_addr, 0); mmio_write_32(bkpr_core1_magic, 0); } wakeup_standby = (mmio_read_32(bkpr_core1_addr) != 0U); generic_delay_timer_init(); #if STM32MP_USB_PROGRAMMER if (boot_context->boot_interface_selected == BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) { boot_device = BOOT_DEVICE_USB; } #endif #if STM32MP_UART_PROGRAMMER /* Disable programmer UART before changing clock tree */ if (boot_context->boot_interface_selected == BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART) { uintptr_t uart_prog_addr = get_uart_address(boot_context->boot_interface_instance); ((USART_TypeDef *)uart_prog_addr)->CR1 &= ~USART_CR1_UE; } #endif if (stm32mp1_clk_probe() < 0) { panic(); } if (dt_pmic_status() > 0) { initialize_pmic(); } initialize_clock(); result = dt_get_stdout_uart_info(&dt_uart_info); if ((result <= 0) || (dt_uart_info.status == 0U) || #if STM32MP_UART_PROGRAMMER ((boot_context->boot_interface_selected == BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART) && (get_uart_address(boot_context->boot_interface_instance) == dt_uart_info.base)) || #endif (dt_uart_info.clock < 0) || (dt_uart_info.reset < 0)) { goto skip_console_init; } if (dt_set_stdout_pinctrl() != 0) { goto skip_console_init; } if (dt_uart_info.status == DT_DISABLED) { panic(); } else if (dt_uart_info.status == DT_SECURE) { stm32mp_register_secure_periph_iomem(dt_uart_info.base); } else { stm32mp_register_non_secure_periph_iomem(dt_uart_info.base); } stm32mp_clk_enable((unsigned long)dt_uart_info.clock); reset_uart((uint32_t)dt_uart_info.reset); clk_rate = stm32mp_clk_get_rate((unsigned long)dt_uart_info.clock); if (console_stm32_register(dt_uart_info.base, clk_rate, STM32MP_UART_BAUDRATE, &console) == 0) { panic(); } console_set_scope(&console.console, CONSOLE_FLAG_BOOT | CONSOLE_FLAG_CRASH | CONSOLE_FLAG_TRANSLATE_CRLF); stm32mp_print_cpuinfo(); board_model = dt_get_board_model(); if (board_model != NULL) { NOTICE("Model: %s\n", board_model); } stm32mp_print_boardinfo(); #if TRUSTED_BOARD_BOOT if (boot_context->auth_status != BOOT_API_CTX_AUTH_NO) { NOTICE("Bootrom authentication %s\n", (boot_context->auth_status == BOOT_API_CTX_AUTH_FAILED) ? "failed" : "succeeded"); } #endif skip_console_init: #if !TRUSTED_BOARD_BOOT if (stm32mp_is_closed_device()) { /* Closed chip required authentication */ ERROR("Secured chip must enabled TRUSTED_BOARD_BOOT\n"); panic(); } #endif stm32mp1_syscfg_init(); if (stm32_iwdg_init() < 0) { panic(); } stm32_iwdg_refresh(); if (bsec_read_debug_conf() != 0U) { result = stm32mp1_dbgmcu_freeze_iwdg2(); if (result != 0) { INFO("IWDG2 freeze error : %i\n", result); } if (stm32mp_is_closed_device()) { NOTICE("\n%s", debug_msg); } } if (stm32_save_boot_interface(boot_context->boot_interface_selected, boot_context->boot_interface_instance) != 0) { ERROR("Cannot save boot interface\n"); } stm32mp1_arch_security_setup(); print_reset_reason(); update_monotonic_counter(); if (dt_pmic_status() > 0) { initialize_pmic(); print_pmic_info_and_debug(); } stm32mp_io_setup(); } #if defined(AARCH32_SP_OPTEE) static void set_mem_params_info(entry_point_info_t *ep_info, image_info_t *unpaged, image_info_t *paged) { uintptr_t bl32_ep = 0; /* Use the default dram setup if no valid ep found */ if (get_optee_header_ep(ep_info, &bl32_ep) && (bl32_ep >= STM32MP_OPTEE_BASE) && (bl32_ep < (STM32MP_OPTEE_BASE + STM32MP_OPTEE_SIZE))) { assert((STM32MP_OPTEE_BASE >= BL2_LIMIT) || ((STM32MP_OPTEE_BASE + STM32MP_OPTEE_SIZE) <= BL2_BASE)); unpaged->image_base = STM32MP_OPTEE_BASE; unpaged->image_max_size = STM32MP_OPTEE_SIZE; } else { unpaged->image_base = STM32MP_DDR_BASE + dt_get_ddr_size() - STM32MP_DDR_S_SIZE - STM32MP_DDR_SHMEM_SIZE; unpaged->image_max_size = STM32MP_DDR_S_SIZE; } paged->image_base = STM32MP_DDR_BASE + dt_get_ddr_size() - STM32MP_DDR_S_SIZE - STM32MP_DDR_SHMEM_SIZE; paged->image_max_size = STM32MP_DDR_S_SIZE; } #endif /******************************************************************************* * This function can be used by the platforms to update/use image * information for given `image_id`. ******************************************************************************/ int bl2_plat_handle_post_image_load(unsigned int image_id) { int err = 0; bl_mem_params_node_t *bl_mem_params = get_bl_mem_params_node(image_id); #if defined(AARCH32_SP_OPTEE) bl_mem_params_node_t *bl32_mem_params; bl_mem_params_node_t *pager_mem_params; bl_mem_params_node_t *paged_mem_params; #endif assert(bl_mem_params != NULL); #if TRUSTED_BOARD_BOOT /* Clean header to avoid loaded header reused */ stm32mp_delete_loaded_header(); #endif switch (image_id) { case BL32_IMAGE_ID: #if defined(AARCH32_SP_OPTEE) bl_mem_params->ep_info.pc = bl_mem_params->image_info.image_base; pager_mem_params = get_bl_mem_params_node(BL32_EXTRA1_IMAGE_ID); assert(pager_mem_params != NULL); paged_mem_params = get_bl_mem_params_node(BL32_EXTRA2_IMAGE_ID); assert(paged_mem_params != NULL); set_mem_params_info(&bl_mem_params->ep_info, &pager_mem_params->image_info, &paged_mem_params->image_info); err = parse_optee_header(&bl_mem_params->ep_info, &pager_mem_params->image_info, &paged_mem_params->image_info); if (err) { ERROR("OPTEE header parse error.\n"); panic(); } /* Set optee boot info from parsed header data */ bl_mem_params->ep_info.pc = pager_mem_params->image_info.image_base; bl_mem_params->ep_info.args.arg0 = paged_mem_params->image_info.image_base; bl_mem_params->ep_info.args.arg1 = 0; /* Unused */ bl_mem_params->ep_info.args.arg2 = 0; /* No DT supported */ #endif break; case BL33_IMAGE_ID: #ifdef AARCH32_SP_OPTEE bl32_mem_params = get_bl_mem_params_node(BL32_IMAGE_ID); assert(bl32_mem_params != NULL); bl32_mem_params->ep_info.lr_svc = bl_mem_params->ep_info.pc; #endif flush_dcache_range(bl_mem_params->image_info.image_base, bl_mem_params->image_info.image_max_size); break; default: /* Do nothing in default case */ break; } return err; }