tf-a/tf-a-stm32mp-2.2.r1/plat/marvell/a8k/common/plat_pm.c

833 lines
24 KiB
C
Raw Normal View History

2024-01-10 05:21:13 +00:00
/*
* Copyright (C) 2018 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
#include <assert.h>
#include <common/debug.h>
#include <drivers/arm/gicv2.h>
#include <drivers/console.h>
#include <drivers/delay_timer.h>
#include <drivers/marvell/cache_llc.h>
#include <lib/bakery_lock.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>
#include <armada_common.h>
#include <marvell_pm.h>
#include <mss_pm_ipc.h>
#include <plat_marvell.h>
#include <plat_pm_trace.h>
#define MVEBU_PRIVATE_UID_REG 0x30
#define MVEBU_RFU_GLOBL_SW_RST 0x84
#define MVEBU_CCU_RVBAR(cpu) (MVEBU_REGS_BASE + 0x640 + (cpu * 4))
#define MVEBU_CCU_CPU_UN_RESET(cpu) (MVEBU_REGS_BASE + 0x650 + (cpu * 4))
#define MPIDR_CPU_GET(mpidr) ((mpidr) & MPIDR_CPU_MASK)
#define MPIDR_CLUSTER_GET(mpidr) MPIDR_AFFLVL1_VAL((mpidr))
#define MVEBU_GPIO_MASK(index) (1 << (index % 32))
#define MVEBU_MPP_MASK(index) (0xF << (4 * (index % 8)))
#define MVEBU_GPIO_VALUE(index, value) (value << (index % 32))
#define MVEBU_USER_CMD_0_REG (MVEBU_DRAM_MAC_BASE + 0x20)
#define MVEBU_USER_CMD_CH0_OFFSET 28
#define MVEBU_USER_CMD_CH0_MASK (1 << MVEBU_USER_CMD_CH0_OFFSET)
#define MVEBU_USER_CMD_CH0_EN (1 << MVEBU_USER_CMD_CH0_OFFSET)
#define MVEBU_USER_CMD_CS_OFFSET 24
#define MVEBU_USER_CMD_CS_MASK (0xF << MVEBU_USER_CMD_CS_OFFSET)
#define MVEBU_USER_CMD_CS_ALL (0xF << MVEBU_USER_CMD_CS_OFFSET)
#define MVEBU_USER_CMD_SR_OFFSET 6
#define MVEBU_USER_CMD_SR_MASK (0x3 << MVEBU_USER_CMD_SR_OFFSET)
#define MVEBU_USER_CMD_SR_ENTER (0x1 << MVEBU_USER_CMD_SR_OFFSET)
#define MVEBU_MC_PWR_CTRL_REG (MVEBU_DRAM_MAC_BASE + 0x54)
#define MVEBU_MC_AC_ON_DLY_OFFSET 8
#define MVEBU_MC_AC_ON_DLY_MASK (0xF << MVEBU_MC_AC_ON_DLY_OFFSET)
#define MVEBU_MC_AC_ON_DLY_DEF_VAR (8 << MVEBU_MC_AC_ON_DLY_OFFSET)
#define MVEBU_MC_AC_OFF_DLY_OFFSET 4
#define MVEBU_MC_AC_OFF_DLY_MASK (0xF << MVEBU_MC_AC_OFF_DLY_OFFSET)
#define MVEBU_MC_AC_OFF_DLY_DEF_VAR (0xC << MVEBU_MC_AC_OFF_DLY_OFFSET)
#define MVEBU_MC_PHY_AUTO_OFF_OFFSET 0
#define MVEBU_MC_PHY_AUTO_OFF_MASK (1 << MVEBU_MC_PHY_AUTO_OFF_OFFSET)
#define MVEBU_MC_PHY_AUTO_OFF_EN (1 << MVEBU_MC_PHY_AUTO_OFF_OFFSET)
/* this lock synchronize AP multiple cores execution with MSS */
DEFINE_BAKERY_LOCK(pm_sys_lock);
/* Weak definitions may be overridden in specific board */
#pragma weak plat_marvell_get_pm_cfg
/* AP806 CPU power down /power up definitions */
enum CPU_ID {
CPU0,
CPU1,
CPU2,
CPU3
};
#define REG_WR_VALIDATE_TIMEOUT (2000)
#define FEATURE_DISABLE_STATUS_REG \
(MVEBU_REGS_BASE + 0x6F8230)
#define FEATURE_DISABLE_STATUS_CPU_CLUSTER_OFFSET 4
#define FEATURE_DISABLE_STATUS_CPU_CLUSTER_MASK \
(0x1 << FEATURE_DISABLE_STATUS_CPU_CLUSTER_OFFSET)
#ifdef MVEBU_SOC_AP807
#define PWRC_CPUN_CR_PWR_DN_RQ_OFFSET 1
#define PWRC_CPUN_CR_LDO_BYPASS_RDY_OFFSET 0
#else
#define PWRC_CPUN_CR_PWR_DN_RQ_OFFSET 0
#define PWRC_CPUN_CR_LDO_BYPASS_RDY_OFFSET 31
#endif
#define PWRC_CPUN_CR_REG(cpu_id) \
(MVEBU_REGS_BASE + 0x680000 + (cpu_id * 0x10))
#define PWRC_CPUN_CR_PWR_DN_RQ_MASK \
(0x1 << PWRC_CPUN_CR_PWR_DN_RQ_OFFSET)
#define PWRC_CPUN_CR_ISO_ENABLE_OFFSET 16
#define PWRC_CPUN_CR_ISO_ENABLE_MASK \
(0x1 << PWRC_CPUN_CR_ISO_ENABLE_OFFSET)
#define PWRC_CPUN_CR_LDO_BYPASS_RDY_MASK \
(0x1U << PWRC_CPUN_CR_LDO_BYPASS_RDY_OFFSET)
#define CCU_B_PRCRN_REG(cpu_id) \
(MVEBU_REGS_BASE + 0x1A50 + \
((cpu_id / 2) * (0x400)) + ((cpu_id % 2) * 4))
#define CCU_B_PRCRN_CPUPORESET_STATIC_OFFSET 0
#define CCU_B_PRCRN_CPUPORESET_STATIC_MASK \
(0x1 << CCU_B_PRCRN_CPUPORESET_STATIC_OFFSET)
/* power switch fingers */
#define AP807_PWRC_LDO_CR0_REG \
(MVEBU_REGS_BASE + 0x680000 + 0x100)
#define AP807_PWRC_LDO_CR0_OFFSET 16
#define AP807_PWRC_LDO_CR0_MASK \
(0xff << AP807_PWRC_LDO_CR0_OFFSET)
#define AP807_PWRC_LDO_CR0_VAL 0xfc
/*
* Power down CPU:
* Used to reduce power consumption, and avoid SoC unnecessary temperature rise.
*/
static int plat_marvell_cpu_powerdown(int cpu_id)
{
uint32_t reg_val;
int exit_loop = REG_WR_VALIDATE_TIMEOUT;
INFO("Powering down CPU%d\n", cpu_id);
/* 1. Isolation enable */
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
reg_val |= 0x1 << PWRC_CPUN_CR_ISO_ENABLE_OFFSET;
mmio_write_32(PWRC_CPUN_CR_REG(cpu_id), reg_val);
/* 2. Read and check Isolation enabled - verify bit set to 1 */
do {
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
exit_loop--;
} while (!(reg_val & (0x1 << PWRC_CPUN_CR_ISO_ENABLE_OFFSET)) &&
exit_loop > 0);
/* 3. Switch off CPU power */
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
reg_val &= ~PWRC_CPUN_CR_PWR_DN_RQ_MASK;
mmio_write_32(PWRC_CPUN_CR_REG(cpu_id), reg_val);
/* 4. Read and check Switch Off - verify bit set to 0 */
exit_loop = REG_WR_VALIDATE_TIMEOUT;
do {
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
exit_loop--;
} while (reg_val & PWRC_CPUN_CR_PWR_DN_RQ_MASK && exit_loop > 0);
if (exit_loop <= 0)
goto cpu_poweroff_error;
/* 5. De-Assert power ready */
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
reg_val &= ~PWRC_CPUN_CR_LDO_BYPASS_RDY_MASK;
mmio_write_32(PWRC_CPUN_CR_REG(cpu_id), reg_val);
/* 6. Assert CPU POR reset */
reg_val = mmio_read_32(CCU_B_PRCRN_REG(cpu_id));
reg_val &= ~CCU_B_PRCRN_CPUPORESET_STATIC_MASK;
mmio_write_32(CCU_B_PRCRN_REG(cpu_id), reg_val);
/* 7. Read and poll on Validate the CPU is out of reset */
exit_loop = REG_WR_VALIDATE_TIMEOUT;
do {
reg_val = mmio_read_32(CCU_B_PRCRN_REG(cpu_id));
exit_loop--;
} while (reg_val & CCU_B_PRCRN_CPUPORESET_STATIC_MASK && exit_loop > 0);
if (exit_loop <= 0)
goto cpu_poweroff_error;
INFO("Successfully powered down CPU%d\n", cpu_id);
return 0;
cpu_poweroff_error:
ERROR("ERROR: Can't power down CPU%d\n", cpu_id);
return -1;
}
/*
* Power down CPUs 1-3 at early boot stage,
* to reduce power consumption and SoC temperature.
* This is triggered by BLE prior to DDR initialization.
*
* Note:
* All CPUs will be powered up by plat_marvell_cpu_powerup on Linux boot stage,
* which is triggered by PSCI ops (pwr_domain_on).
*/
int plat_marvell_early_cpu_powerdown(void)
{
uint32_t cpu_cluster_status =
mmio_read_32(FEATURE_DISABLE_STATUS_REG) &
FEATURE_DISABLE_STATUS_CPU_CLUSTER_MASK;
/* if cpu_cluster_status bit is set,
* that means we have only single cluster
*/
int cluster_count = cpu_cluster_status ? 1 : 2;
INFO("Powering off unused CPUs\n");
/* CPU1 is in AP806 cluster-0, which always exists, so power it down */
if (plat_marvell_cpu_powerdown(CPU1) == -1)
return -1;
/*
* CPU2-3 are in AP806 2nd cluster (cluster-1),
* which doesn't exists in dual-core systems.
* so need to check if we have dual-core (single cluster)
* or quad-code (2 clusters)
*/
if (cluster_count == 2) {
/* CPU2-3 are part of 2nd cluster */
if (plat_marvell_cpu_powerdown(CPU2) == -1)
return -1;
if (plat_marvell_cpu_powerdown(CPU3) == -1)
return -1;
}
return 0;
}
/*
* Power up CPU - part of Linux boot stage
*/
static int plat_marvell_cpu_powerup(u_register_t mpidr)
{
uint32_t reg_val;
int cpu_id = MPIDR_CPU_GET(mpidr),
cluster = MPIDR_CLUSTER_GET(mpidr);
int exit_loop = REG_WR_VALIDATE_TIMEOUT;
/* calculate absolute CPU ID */
cpu_id = cluster * PLAT_MARVELL_CLUSTER_CORE_COUNT + cpu_id;
INFO("Powering on CPU%d\n", cpu_id);
#ifdef MVEBU_SOC_AP807
/* Activate 2 power switch fingers */
reg_val = mmio_read_32(AP807_PWRC_LDO_CR0_REG);
reg_val &= ~(AP807_PWRC_LDO_CR0_MASK);
reg_val |= (AP807_PWRC_LDO_CR0_VAL << AP807_PWRC_LDO_CR0_OFFSET);
mmio_write_32(AP807_PWRC_LDO_CR0_REG, reg_val);
udelay(100);
#endif
/* 1. Switch CPU power ON */
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
reg_val |= 0x1 << PWRC_CPUN_CR_PWR_DN_RQ_OFFSET;
mmio_write_32(PWRC_CPUN_CR_REG(cpu_id), reg_val);
/* 2. Wait for CPU on, up to 100 uSec: */
udelay(100);
/* 3. Assert power ready */
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
reg_val |= 0x1U << PWRC_CPUN_CR_LDO_BYPASS_RDY_OFFSET;
mmio_write_32(PWRC_CPUN_CR_REG(cpu_id), reg_val);
/* 4. Read & Validate power ready
* used in order to generate 16 Host CPU cycles
*/
do {
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
exit_loop--;
} while (!(reg_val & (0x1U << PWRC_CPUN_CR_LDO_BYPASS_RDY_OFFSET)) &&
exit_loop > 0);
if (exit_loop <= 0)
goto cpu_poweron_error;
/* 5. Isolation disable */
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
reg_val &= ~PWRC_CPUN_CR_ISO_ENABLE_MASK;
mmio_write_32(PWRC_CPUN_CR_REG(cpu_id), reg_val);
/* 6. Read and check Isolation enabled - verify bit set to 1 */
exit_loop = REG_WR_VALIDATE_TIMEOUT;
do {
reg_val = mmio_read_32(PWRC_CPUN_CR_REG(cpu_id));
exit_loop--;
} while ((reg_val & (0x1 << PWRC_CPUN_CR_ISO_ENABLE_OFFSET)) &&
exit_loop > 0);
/* 7. De Assert CPU POR reset & Core reset */
reg_val = mmio_read_32(CCU_B_PRCRN_REG(cpu_id));
reg_val |= 0x1 << CCU_B_PRCRN_CPUPORESET_STATIC_OFFSET;
mmio_write_32(CCU_B_PRCRN_REG(cpu_id), reg_val);
/* 8. Read & Validate CPU POR reset */
exit_loop = REG_WR_VALIDATE_TIMEOUT;
do {
reg_val = mmio_read_32(CCU_B_PRCRN_REG(cpu_id));
exit_loop--;
} while (!(reg_val & (0x1 << CCU_B_PRCRN_CPUPORESET_STATIC_OFFSET)) &&
exit_loop > 0);
if (exit_loop <= 0)
goto cpu_poweron_error;
INFO("Successfully powered on CPU%d\n", cpu_id);
return 0;
cpu_poweron_error:
ERROR("ERROR: Can't power up CPU%d\n", cpu_id);
return -1;
}
static int plat_marvell_cpu_on(u_register_t mpidr)
{
int cpu_id;
int cluster;
/* Set barierr */
dsbsy();
/* Get cpu number - use CPU ID */
cpu_id = MPIDR_CPU_GET(mpidr);
/* Get cluster number - use affinity level 1 */
cluster = MPIDR_CLUSTER_GET(mpidr);
/* Set CPU private UID */
mmio_write_32(MVEBU_REGS_BASE + MVEBU_PRIVATE_UID_REG, cluster + 0x4);
/* Set the cpu start address to BL1 entry point (align to 0x10000) */
mmio_write_32(MVEBU_CCU_RVBAR(cpu_id),
PLAT_MARVELL_CPU_ENTRY_ADDR >> 16);
/* Get the cpu out of reset */
mmio_write_32(MVEBU_CCU_CPU_UN_RESET(cpu_id), 0x10001);
return 0;
}
/*****************************************************************************
* A8K handler called to check the validity of the power state
* parameter.
*****************************************************************************
*/
static int a8k_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pstate = psci_get_pstate_type(power_state);
int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
int i;
if (pwr_lvl > PLAT_MAX_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
/* Sanity check the requested state */
if (pstate == PSTATE_TYPE_STANDBY) {
/*
* It's possible to enter standby only on power level 0
* Ignore any other power level.
*/
if (pwr_lvl != MARVELL_PWR_LVL0)
return PSCI_E_INVALID_PARAMS;
req_state->pwr_domain_state[MARVELL_PWR_LVL0] =
MARVELL_LOCAL_STATE_RET;
} else {
for (i = MARVELL_PWR_LVL0; i <= pwr_lvl; i++)
req_state->pwr_domain_state[i] =
MARVELL_LOCAL_STATE_OFF;
}
/*
* We expect the 'state id' to be zero.
*/
if (psci_get_pstate_id(power_state))
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*****************************************************************************
* A8K handler called when a CPU is about to enter standby.
*****************************************************************************
*/
static void a8k_cpu_standby(plat_local_state_t cpu_state)
{
if (!is_pm_fw_running()) {
ERROR("%s: needs to be implemented\n", __func__);
panic();
}
}
/*****************************************************************************
* A8K handler called when a power domain is about to be turned on. The
* mpidr determines the CPU to be turned on.
*****************************************************************************
*/
static int a8k_pwr_domain_on(u_register_t mpidr)
{
/* Power up CPU (CPUs 1-3 are powered off at start of BLE) */
plat_marvell_cpu_powerup(mpidr);
if (is_pm_fw_running()) {
unsigned int target =
((mpidr & 0xFF) + (((mpidr >> 8) & 0xFF) * 2));
/*
* pm system synchronization - used to synchronize
* multiple core access to MSS
*/
bakery_lock_get(&pm_sys_lock);
/* send CPU ON IPC Message to MSS */
mss_pm_ipc_msg_send(target, PM_IPC_MSG_CPU_ON, 0);
/* trigger IPC message to MSS */
mss_pm_ipc_msg_trigger();
/* pm system synchronization */
bakery_lock_release(&pm_sys_lock);
/* trace message */
PM_TRACE(TRACE_PWR_DOMAIN_ON | target);
} else {
/* proprietary CPU ON exection flow */
plat_marvell_cpu_on(mpidr);
}
return 0;
}
/*****************************************************************************
* A8K handler called to validate the entry point.
*****************************************************************************
*/
static int a8k_validate_ns_entrypoint(uintptr_t entrypoint)
{
return PSCI_E_SUCCESS;
}
/*****************************************************************************
* A8K handler called when a power domain is about to be turned off. The
* target_state encodes the power state that each level should transition to.
*****************************************************************************
*/
static void a8k_pwr_domain_off(const psci_power_state_t *target_state)
{
if (is_pm_fw_running()) {
unsigned int idx = plat_my_core_pos();
/* Prevent interrupts from spuriously waking up this cpu */
gicv2_cpuif_disable();
/* pm system synchronization - used to synchronize multiple
* core access to MSS
*/
bakery_lock_get(&pm_sys_lock);
/* send CPU OFF IPC Message to MSS */
mss_pm_ipc_msg_send(idx, PM_IPC_MSG_CPU_OFF, target_state);
/* trigger IPC message to MSS */
mss_pm_ipc_msg_trigger();
/* pm system synchronization */
bakery_lock_release(&pm_sys_lock);
/* trace message */
PM_TRACE(TRACE_PWR_DOMAIN_OFF);
} else {
INFO("%s: is not supported without SCP\n", __func__);
}
}
/* Get PM config to power off the SoC */
void *plat_marvell_get_pm_cfg(void)
{
return NULL;
}
/*
* This function should be called on restore from
* "suspend to RAM" state when the execution flow
* has to bypass BootROM image to RAM copy and speed up
* the system recovery
*
*/
static void plat_marvell_exit_bootrom(void)
{
marvell_exit_bootrom(PLAT_MARVELL_TRUSTED_ROM_BASE);
}
/*
* Prepare for the power off of the system via GPIO
*/
static void plat_marvell_power_off_gpio(struct power_off_method *pm_cfg,
register_t *gpio_addr,
register_t *gpio_data)
{
unsigned int gpio;
unsigned int idx;
unsigned int shift;
unsigned int reg;
unsigned int addr;
gpio_info_t *info;
unsigned int tog_bits;
assert((pm_cfg->cfg.gpio.pin_count < PMIC_GPIO_MAX_NUMBER) &&
(pm_cfg->cfg.gpio.step_count < PMIC_GPIO_MAX_TOGGLE_STEP));
/* Prepare GPIOs for PMIC */
for (gpio = 0; gpio < pm_cfg->cfg.gpio.pin_count; gpio++) {
info = &pm_cfg->cfg.gpio.info[gpio];
/* Set PMIC GPIO to output mode */
reg = mmio_read_32(MVEBU_CP_GPIO_DATA_OUT_EN(
info->cp_index, info->gpio_index));
mmio_write_32(MVEBU_CP_GPIO_DATA_OUT_EN(
info->cp_index, info->gpio_index),
reg & ~MVEBU_GPIO_MASK(info->gpio_index));
/* Set the appropriate MPP to GPIO mode */
reg = mmio_read_32(MVEBU_PM_MPP_REGS(info->cp_index,
info->gpio_index));
mmio_write_32(MVEBU_PM_MPP_REGS(info->cp_index,
info->gpio_index),
reg & ~MVEBU_MPP_MASK(info->gpio_index));
}
/* Wait for MPP & GPIO pre-configurations done */
mdelay(pm_cfg->cfg.gpio.delay_ms);
/* Toggle the GPIO values, and leave final step to be triggered
* after DDR self-refresh is enabled
*/
for (idx = 0; idx < pm_cfg->cfg.gpio.step_count; idx++) {
tog_bits = pm_cfg->cfg.gpio.seq[idx];
/* The GPIOs must be within same GPIO register,
* thus could get the original value by first GPIO
*/
info = &pm_cfg->cfg.gpio.info[0];
reg = mmio_read_32(MVEBU_CP_GPIO_DATA_OUT(
info->cp_index, info->gpio_index));
addr = MVEBU_CP_GPIO_DATA_OUT(info->cp_index, info->gpio_index);
for (gpio = 0; gpio < pm_cfg->cfg.gpio.pin_count; gpio++) {
shift = pm_cfg->cfg.gpio.info[gpio].gpio_index % 32;
if (GPIO_LOW == (tog_bits & (1 << gpio)))
reg &= ~(1 << shift);
else
reg |= (1 << shift);
}
/* Set the GPIO register, for last step just store
* register address and values to system registers
*/
if (idx < pm_cfg->cfg.gpio.step_count - 1) {
mmio_write_32(MVEBU_CP_GPIO_DATA_OUT(
info->cp_index, info->gpio_index), reg);
mdelay(pm_cfg->cfg.gpio.delay_ms);
} else {
/* Save GPIO register and address values for
* finishing the power down operation later
*/
*gpio_addr = addr;
*gpio_data = reg;
}
}
}
/*
* Prepare for the power off of the system
*/
static void plat_marvell_power_off_prepare(struct power_off_method *pm_cfg,
register_t *addr, register_t *data)
{
switch (pm_cfg->type) {
case PMIC_GPIO:
plat_marvell_power_off_gpio(pm_cfg, addr, data);
break;
default:
break;
}
}
/*****************************************************************************
* A8K handler called when a power domain is about to be suspended. The
* target_state encodes the power state that each level should transition to.
*****************************************************************************
*/
static void a8k_pwr_domain_suspend(const psci_power_state_t *target_state)
{
if (is_pm_fw_running()) {
unsigned int idx;
/* Prevent interrupts from spuriously waking up this cpu */
gicv2_cpuif_disable();
idx = plat_my_core_pos();
/* pm system synchronization - used to synchronize multiple
* core access to MSS
*/
bakery_lock_get(&pm_sys_lock);
/* send CPU Suspend IPC Message to MSS */
mss_pm_ipc_msg_send(idx, PM_IPC_MSG_CPU_SUSPEND, target_state);
/* trigger IPC message to MSS */
mss_pm_ipc_msg_trigger();
/* pm system synchronization */
bakery_lock_release(&pm_sys_lock);
/* trace message */
PM_TRACE(TRACE_PWR_DOMAIN_SUSPEND);
} else {
uintptr_t *mailbox = (void *)PLAT_MARVELL_MAILBOX_BASE;
INFO("Suspending to RAM\n");
marvell_console_runtime_end();
/* Prevent interrupts from spuriously waking up this cpu */
gicv2_cpuif_disable();
mailbox[MBOX_IDX_SUSPEND_MAGIC] = MVEBU_MAILBOX_SUSPEND_STATE;
mailbox[MBOX_IDX_ROM_EXIT_ADDR] = (uintptr_t)&plat_marvell_exit_bootrom;
#if PLAT_MARVELL_SHARED_RAM_CACHED
flush_dcache_range(PLAT_MARVELL_MAILBOX_BASE +
MBOX_IDX_SUSPEND_MAGIC * sizeof(uintptr_t),
2 * sizeof(uintptr_t));
#endif
/* Flush and disable LLC before going off-power */
llc_disable(0);
isb();
/*
* Do not halt here!
* The function must return for allowing the caller function
* psci_power_up_finish() to do the proper context saving and
* to release the CPU lock.
*/
}
}
/*****************************************************************************
* A8K handler called when a power domain has just been powered on after
* being turned off earlier. The target_state encodes the low power state that
* each level has woken up from.
*****************************************************************************
*/
static void a8k_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
/* arch specific configuration */
marvell_psci_arch_init(0);
/* Interrupt initialization */
gicv2_pcpu_distif_init();
gicv2_cpuif_enable();
if (is_pm_fw_running()) {
/* trace message */
PM_TRACE(TRACE_PWR_DOMAIN_ON_FINISH);
}
}
/*****************************************************************************
* A8K handler called when a power domain has just been powered on after
* having been suspended earlier. The target_state encodes the low power state
* that each level has woken up from.
* TODO: At the moment we reuse the on finisher and reinitialize the secure
* context. Need to implement a separate suspend finisher.
*****************************************************************************
*/
static void a8k_pwr_domain_suspend_finish(
const psci_power_state_t *target_state)
{
if (is_pm_fw_running()) {
/* arch specific configuration */
marvell_psci_arch_init(0);
/* Interrupt initialization */
gicv2_cpuif_enable();
/* trace message */
PM_TRACE(TRACE_PWR_DOMAIN_SUSPEND_FINISH);
} else {
uintptr_t *mailbox = (void *)PLAT_MARVELL_MAILBOX_BASE;
/* Only primary CPU requres platform init */
if (!plat_my_core_pos()) {
/* Initialize the console to provide
* early debug support
*/
marvell_console_runtime_init();
bl31_plat_arch_setup();
marvell_bl31_platform_setup();
/*
* Remove suspend to RAM marker from the mailbox
* for treating a regular reset as a cold boot
*/
mailbox[MBOX_IDX_SUSPEND_MAGIC] = 0;
mailbox[MBOX_IDX_ROM_EXIT_ADDR] = 0;
#if PLAT_MARVELL_SHARED_RAM_CACHED
flush_dcache_range(PLAT_MARVELL_MAILBOX_BASE +
MBOX_IDX_SUSPEND_MAGIC * sizeof(uintptr_t),
2 * sizeof(uintptr_t));
#endif
}
}
}
/*****************************************************************************
* This handler is called by the PSCI implementation during the `SYSTEM_SUSPEND`
* call to get the `power_state` parameter. This allows the platform to encode
* the appropriate State-ID field within the `power_state` parameter which can
* be utilized in `pwr_domain_suspend()` to suspend to system affinity level.
*****************************************************************************
*/
static void a8k_get_sys_suspend_power_state(psci_power_state_t *req_state)
{
/* lower affinities use PLAT_MAX_OFF_STATE */
for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++)
req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE;
}
static void
__dead2 a8k_pwr_domain_pwr_down_wfi(const psci_power_state_t *target_state)
{
struct power_off_method *pm_cfg;
unsigned int srcmd;
unsigned int sdram_reg;
register_t gpio_data = 0, gpio_addr = 0;
if (is_pm_fw_running()) {
psci_power_down_wfi();
panic();
}
pm_cfg = (struct power_off_method *)plat_marvell_get_pm_cfg();
/* Prepare for power off */
plat_marvell_power_off_prepare(pm_cfg, &gpio_addr, &gpio_data);
/* First step to enable DDR self-refresh
* to keep the data during suspend
*/
mmio_write_32(MVEBU_MC_PWR_CTRL_REG, 0x8C1);
/* Save DDR self-refresh second step register
* and value to be issued later
*/
sdram_reg = MVEBU_USER_CMD_0_REG;
srcmd = mmio_read_32(sdram_reg);
srcmd &= ~(MVEBU_USER_CMD_CH0_MASK | MVEBU_USER_CMD_CS_MASK |
MVEBU_USER_CMD_SR_MASK);
srcmd |= (MVEBU_USER_CMD_CH0_EN | MVEBU_USER_CMD_CS_ALL |
MVEBU_USER_CMD_SR_ENTER);
/*
* Wait for DRAM is done using registers access only.
* At this stage any access to DRAM (procedure call) will
* release it from the self-refresh mode
*/
__asm__ volatile (
/* Align to a cache line */
" .balign 64\n\t"
/* Enter self refresh */
" str %[srcmd], [%[sdram_reg]]\n\t"
/*
* Wait 100 cycles for DDR to enter self refresh, by
* doing 50 times two instructions.
*/
" mov x1, #50\n\t"
"1: subs x1, x1, #1\n\t"
" bne 1b\n\t"
/* Issue the command to trigger the SoC power off */
" str %[gpio_data], [%[gpio_addr]]\n\t"
/* Trap the processor */
" b .\n\t"
: : [srcmd] "r" (srcmd), [sdram_reg] "r" (sdram_reg),
[gpio_addr] "r" (gpio_addr), [gpio_data] "r" (gpio_data)
: "x1");
panic();
}
/*****************************************************************************
* A8K handlers to shutdown/reboot the system
*****************************************************************************
*/
static void __dead2 a8k_system_off(void)
{
ERROR("%s: needs to be implemented\n", __func__);
panic();
}
void plat_marvell_system_reset(void)
{
mmio_write_32(MVEBU_RFU_BASE + MVEBU_RFU_GLOBL_SW_RST, 0x0);
}
static void __dead2 a8k_system_reset(void)
{
plat_marvell_system_reset();
/* we shouldn't get to this point */
panic();
}
/*****************************************************************************
* Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
* platform layer will take care of registering the handlers with PSCI.
*****************************************************************************
*/
const plat_psci_ops_t plat_arm_psci_pm_ops = {
.cpu_standby = a8k_cpu_standby,
.pwr_domain_on = a8k_pwr_domain_on,
.pwr_domain_off = a8k_pwr_domain_off,
.pwr_domain_suspend = a8k_pwr_domain_suspend,
.pwr_domain_on_finish = a8k_pwr_domain_on_finish,
.get_sys_suspend_power_state = a8k_get_sys_suspend_power_state,
.pwr_domain_suspend_finish = a8k_pwr_domain_suspend_finish,
.pwr_domain_pwr_down_wfi = a8k_pwr_domain_pwr_down_wfi,
.system_off = a8k_system_off,
.system_reset = a8k_system_reset,
.validate_power_state = a8k_validate_power_state,
.validate_ns_entrypoint = a8k_validate_ns_entrypoint
};