408 lines
10 KiB
C
408 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2017, Gustavo Romero, Breno Leitao, Cyril Bur, IBM Corp.
|
|
*
|
|
* Force FP, VEC and VSX unavailable exception during transaction in all
|
|
* possible scenarios regarding the MSR.FP and MSR.VEC state, e.g. when FP
|
|
* is enable and VEC is disable, when FP is disable and VEC is enable, and
|
|
* so on. Then we check if the restored state is correctly set for the
|
|
* FP and VEC registers to the previous state we set just before we entered
|
|
* in TM, i.e. we check if it corrupts somehow the recheckpointed FP and
|
|
* VEC/Altivec registers on abortion due to an unavailable exception in TM.
|
|
* N.B. In this test we do not test all the FP/Altivec/VSX registers for
|
|
* corruption, but only for registers vs0 and vs32, which are respectively
|
|
* representatives of FP and VEC/Altivec reg sets.
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <error.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
|
|
#include "tm.h"
|
|
|
|
#define DEBUG 0
|
|
|
|
/* Unavailable exceptions to test in HTM */
|
|
#define FP_UNA_EXCEPTION 0
|
|
#define VEC_UNA_EXCEPTION 1
|
|
#define VSX_UNA_EXCEPTION 2
|
|
|
|
#define NUM_EXCEPTIONS 3
|
|
#define err_at_line(status, errnum, format, ...) \
|
|
error_at_line(status, errnum, __FILE__, __LINE__, format ##__VA_ARGS__)
|
|
|
|
#define pr_warn(code, format, ...) err_at_line(0, code, format, ##__VA_ARGS__)
|
|
#define pr_err(code, format, ...) err_at_line(1, code, format, ##__VA_ARGS__)
|
|
|
|
struct Flags {
|
|
int touch_fp;
|
|
int touch_vec;
|
|
int result;
|
|
int exception;
|
|
} flags;
|
|
|
|
bool expecting_failure(void)
|
|
{
|
|
if (flags.touch_fp && flags.exception == FP_UNA_EXCEPTION)
|
|
return false;
|
|
|
|
if (flags.touch_vec && flags.exception == VEC_UNA_EXCEPTION)
|
|
return false;
|
|
|
|
/*
|
|
* If both FP and VEC are touched it does not mean that touching VSX
|
|
* won't raise an exception. However since FP and VEC state are already
|
|
* correctly loaded, the transaction is not aborted (i.e.
|
|
* treclaimed/trecheckpointed) and MSR.VSX is just set as 1, so a TM
|
|
* failure is not expected also in this case.
|
|
*/
|
|
if ((flags.touch_fp && flags.touch_vec) &&
|
|
flags.exception == VSX_UNA_EXCEPTION)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Check if failure occurred whilst in transaction. */
|
|
bool is_failure(uint64_t condition_reg)
|
|
{
|
|
/*
|
|
* When failure handling occurs, CR0 is set to 0b1010 (0xa). Otherwise
|
|
* transaction completes without failure and hence reaches out 'tend.'
|
|
* that sets CR0 to 0b0100 (0x4).
|
|
*/
|
|
return ((condition_reg >> 28) & 0xa) == 0xa;
|
|
}
|
|
|
|
void *tm_una_ping(void *input)
|
|
{
|
|
|
|
/*
|
|
* Expected values for vs0 and vs32 after a TM failure. They must never
|
|
* change, otherwise they got corrupted.
|
|
*/
|
|
uint64_t high_vs0 = 0x5555555555555555;
|
|
uint64_t low_vs0 = 0xffffffffffffffff;
|
|
uint64_t high_vs32 = 0x5555555555555555;
|
|
uint64_t low_vs32 = 0xffffffffffffffff;
|
|
|
|
/* Counter for busy wait */
|
|
uint64_t counter = 0x1ff000000;
|
|
|
|
/*
|
|
* Variable to keep a copy of CR register content taken just after we
|
|
* leave the transactional state.
|
|
*/
|
|
uint64_t cr_ = 0;
|
|
|
|
/*
|
|
* Wait a bit so thread can get its name "ping". This is not important
|
|
* to reproduce the issue but it's nice to have for systemtap debugging.
|
|
*/
|
|
if (DEBUG)
|
|
sleep(1);
|
|
|
|
printf("If MSR.FP=%d MSR.VEC=%d: ", flags.touch_fp, flags.touch_vec);
|
|
|
|
if (flags.exception != FP_UNA_EXCEPTION &&
|
|
flags.exception != VEC_UNA_EXCEPTION &&
|
|
flags.exception != VSX_UNA_EXCEPTION) {
|
|
printf("No valid exception specified to test.\n");
|
|
return NULL;
|
|
}
|
|
|
|
asm (
|
|
/* Prepare to merge low and high. */
|
|
" mtvsrd 33, %[high_vs0] ;"
|
|
" mtvsrd 34, %[low_vs0] ;"
|
|
|
|
/*
|
|
* Adjust VS0 expected value after an TM failure,
|
|
* i.e. vs0 = 0x5555555555555555555FFFFFFFFFFFFFFFF
|
|
*/
|
|
" xxmrghd 0, 33, 34 ;"
|
|
|
|
/*
|
|
* Adjust VS32 expected value after an TM failure,
|
|
* i.e. vs32 = 0x5555555555555555555FFFFFFFFFFFFFFFF
|
|
*/
|
|
" xxmrghd 32, 33, 34 ;"
|
|
|
|
/*
|
|
* Wait an amount of context switches so load_fp and load_vec
|
|
* overflow and MSR.FP, MSR.VEC, and MSR.VSX become zero (off).
|
|
*/
|
|
" mtctr %[counter] ;"
|
|
|
|
/* Decrement CTR branch if CTR non zero. */
|
|
"1: bdnz 1b ;"
|
|
|
|
/*
|
|
* Check if we want to touch FP prior to the test in order
|
|
* to set MSR.FP = 1 before provoking an unavailable
|
|
* exception in TM.
|
|
*/
|
|
" cmpldi %[touch_fp], 0 ;"
|
|
" beq no_fp ;"
|
|
" fadd 10, 10, 10 ;"
|
|
"no_fp: ;"
|
|
|
|
/*
|
|
* Check if we want to touch VEC prior to the test in order
|
|
* to set MSR.VEC = 1 before provoking an unavailable
|
|
* exception in TM.
|
|
*/
|
|
" cmpldi %[touch_vec], 0 ;"
|
|
" beq no_vec ;"
|
|
" vaddcuw 10, 10, 10 ;"
|
|
"no_vec: ;"
|
|
|
|
/*
|
|
* Perhaps it would be a better idea to do the
|
|
* compares outside transactional context and simply
|
|
* duplicate code.
|
|
*/
|
|
" tbegin. ;"
|
|
" beq trans_fail ;"
|
|
|
|
/* Do we do FP Unavailable? */
|
|
" cmpldi %[exception], %[ex_fp] ;"
|
|
" bne 1f ;"
|
|
" fadd 10, 10, 10 ;"
|
|
" b done ;"
|
|
|
|
/* Do we do VEC Unavailable? */
|
|
"1: cmpldi %[exception], %[ex_vec] ;"
|
|
" bne 2f ;"
|
|
" vaddcuw 10, 10, 10 ;"
|
|
" b done ;"
|
|
|
|
/*
|
|
* Not FP or VEC, therefore VSX. Ensure this
|
|
* instruction always generates a VSX Unavailable.
|
|
* ISA 3.0 is tricky here.
|
|
* (xxmrghd will on ISA 2.07 and ISA 3.0)
|
|
*/
|
|
"2: xxmrghd 10, 10, 10 ;"
|
|
|
|
"done: tend. ;"
|
|
|
|
"trans_fail: ;"
|
|
|
|
/* Give values back to C. */
|
|
" mfvsrd %[high_vs0], 0 ;"
|
|
" xxsldwi 3, 0, 0, 2 ;"
|
|
" mfvsrd %[low_vs0], 3 ;"
|
|
" mfvsrd %[high_vs32], 32 ;"
|
|
" xxsldwi 3, 32, 32, 2 ;"
|
|
" mfvsrd %[low_vs32], 3 ;"
|
|
|
|
/* Give CR back to C so that it can check what happened. */
|
|
" mfcr %[cr_] ;"
|
|
|
|
: [high_vs0] "+r" (high_vs0),
|
|
[low_vs0] "+r" (low_vs0),
|
|
[high_vs32] "=r" (high_vs32),
|
|
[low_vs32] "=r" (low_vs32),
|
|
[cr_] "+r" (cr_)
|
|
: [touch_fp] "r" (flags.touch_fp),
|
|
[touch_vec] "r" (flags.touch_vec),
|
|
[exception] "r" (flags.exception),
|
|
[ex_fp] "i" (FP_UNA_EXCEPTION),
|
|
[ex_vec] "i" (VEC_UNA_EXCEPTION),
|
|
[ex_vsx] "i" (VSX_UNA_EXCEPTION),
|
|
[counter] "r" (counter)
|
|
|
|
: "cr0", "ctr", "v10", "vs0", "vs10", "vs3", "vs32", "vs33",
|
|
"vs34", "fr10"
|
|
|
|
);
|
|
|
|
/*
|
|
* Check if we were expecting a failure and it did not occur by checking
|
|
* CR0 state just after we leave the transaction. Either way we check if
|
|
* vs0 or vs32 got corrupted.
|
|
*/
|
|
if (expecting_failure() && !is_failure(cr_)) {
|
|
printf("\n\tExpecting the transaction to fail, %s",
|
|
"but it didn't\n\t");
|
|
flags.result++;
|
|
}
|
|
|
|
/* Check if we were not expecting a failure and a it occurred. */
|
|
if (!expecting_failure() && is_failure(cr_) &&
|
|
!failure_is_reschedule()) {
|
|
printf("\n\tUnexpected transaction failure 0x%02lx\n\t",
|
|
failure_code());
|
|
return (void *) -1;
|
|
}
|
|
|
|
/*
|
|
* Check if TM failed due to the cause we were expecting. 0xda is a
|
|
* TM_CAUSE_FAC_UNAV cause, otherwise it's an unexpected cause, unless
|
|
* it was caused by a reschedule.
|
|
*/
|
|
if (is_failure(cr_) && !failure_is_unavailable() &&
|
|
!failure_is_reschedule()) {
|
|
printf("\n\tUnexpected failure cause 0x%02lx\n\t",
|
|
failure_code());
|
|
return (void *) -1;
|
|
}
|
|
|
|
/* 0x4 is a success and 0xa is a fail. See comment in is_failure(). */
|
|
if (DEBUG)
|
|
printf("CR0: 0x%1lx ", cr_ >> 28);
|
|
|
|
/* Check FP (vs0) for the expected value. */
|
|
if (high_vs0 != 0x5555555555555555 || low_vs0 != 0xFFFFFFFFFFFFFFFF) {
|
|
printf("FP corrupted!");
|
|
printf(" high = %#16" PRIx64 " low = %#16" PRIx64 " ",
|
|
high_vs0, low_vs0);
|
|
flags.result++;
|
|
} else
|
|
printf("FP ok ");
|
|
|
|
/* Check VEC (vs32) for the expected value. */
|
|
if (high_vs32 != 0x5555555555555555 || low_vs32 != 0xFFFFFFFFFFFFFFFF) {
|
|
printf("VEC corrupted!");
|
|
printf(" high = %#16" PRIx64 " low = %#16" PRIx64,
|
|
high_vs32, low_vs32);
|
|
flags.result++;
|
|
} else
|
|
printf("VEC ok");
|
|
|
|
putchar('\n');
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Thread to force context switch */
|
|
void *tm_una_pong(void *not_used)
|
|
{
|
|
/* Wait thread get its name "pong". */
|
|
if (DEBUG)
|
|
sleep(1);
|
|
|
|
/* Classed as an interactive-like thread. */
|
|
while (1)
|
|
sched_yield();
|
|
}
|
|
|
|
/* Function that creates a thread and launches the "ping" task. */
|
|
void test_fp_vec(int fp, int vec, pthread_attr_t *attr)
|
|
{
|
|
int retries = 2;
|
|
void *ret_value;
|
|
pthread_t t0;
|
|
|
|
flags.touch_fp = fp;
|
|
flags.touch_vec = vec;
|
|
|
|
/*
|
|
* Without luck it's possible that the transaction is aborted not due to
|
|
* the unavailable exception caught in the middle as we expect but also,
|
|
* for instance, due to a context switch or due to a KVM reschedule (if
|
|
* it's running on a VM). Thus we try a few times before giving up,
|
|
* checking if the failure cause is the one we expect.
|
|
*/
|
|
do {
|
|
int rc;
|
|
|
|
/* Bind to CPU 0, as specified in 'attr'. */
|
|
rc = pthread_create(&t0, attr, tm_una_ping, (void *) &flags);
|
|
if (rc)
|
|
pr_err(rc, "pthread_create()");
|
|
rc = pthread_setname_np(t0, "tm_una_ping");
|
|
if (rc)
|
|
pr_warn(rc, "pthread_setname_np");
|
|
rc = pthread_join(t0, &ret_value);
|
|
if (rc)
|
|
pr_err(rc, "pthread_join");
|
|
|
|
retries--;
|
|
} while (ret_value != NULL && retries);
|
|
|
|
if (!retries) {
|
|
flags.result = 1;
|
|
if (DEBUG)
|
|
printf("All transactions failed unexpectedly\n");
|
|
|
|
}
|
|
}
|
|
|
|
int tm_unavailable_test(void)
|
|
{
|
|
int rc, exception; /* FP = 0, VEC = 1, VSX = 2 */
|
|
pthread_t t1;
|
|
pthread_attr_t attr;
|
|
cpu_set_t cpuset;
|
|
|
|
SKIP_IF(!have_htm());
|
|
|
|
/* Set only CPU 0 in the mask. Both threads will be bound to CPU 0. */
|
|
CPU_ZERO(&cpuset);
|
|
CPU_SET(0, &cpuset);
|
|
|
|
/* Init pthread attribute. */
|
|
rc = pthread_attr_init(&attr);
|
|
if (rc)
|
|
pr_err(rc, "pthread_attr_init()");
|
|
|
|
/* Set CPU 0 mask into the pthread attribute. */
|
|
rc = pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_t), &cpuset);
|
|
if (rc)
|
|
pr_err(rc, "pthread_attr_setaffinity_np()");
|
|
|
|
rc = pthread_create(&t1, &attr /* Bind to CPU 0 */, tm_una_pong, NULL);
|
|
if (rc)
|
|
pr_err(rc, "pthread_create()");
|
|
|
|
/* Name it for systemtap convenience */
|
|
rc = pthread_setname_np(t1, "tm_una_pong");
|
|
if (rc)
|
|
pr_warn(rc, "pthread_create()");
|
|
|
|
flags.result = 0;
|
|
|
|
for (exception = 0; exception < NUM_EXCEPTIONS; exception++) {
|
|
printf("Checking if FP/VEC registers are sane after");
|
|
|
|
if (exception == FP_UNA_EXCEPTION)
|
|
printf(" a FP unavailable exception...\n");
|
|
|
|
else if (exception == VEC_UNA_EXCEPTION)
|
|
printf(" a VEC unavailable exception...\n");
|
|
|
|
else
|
|
printf(" a VSX unavailable exception...\n");
|
|
|
|
flags.exception = exception;
|
|
|
|
test_fp_vec(0, 0, &attr);
|
|
test_fp_vec(1, 0, &attr);
|
|
test_fp_vec(0, 1, &attr);
|
|
test_fp_vec(1, 1, &attr);
|
|
|
|
}
|
|
|
|
if (flags.result > 0) {
|
|
printf("result: failed!\n");
|
|
exit(1);
|
|
} else {
|
|
printf("result: success\n");
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
test_harness_set_timeout(220);
|
|
return test_harness(tm_unavailable_test, "tm_unavailable_test");
|
|
}
|