linux/linux-5.4.31/drivers/sbus/char/oradax.c

993 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Oracle Data Analytics Accelerator (DAX)
*
* DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8
* (DAX2) processor chips, and has direct access to the CPU's L3
* caches as well as physical memory. It can perform several
* operations on data streams with various input and output formats.
* The driver provides a transport mechanism only and has limited
* knowledge of the various opcodes and data formats. A user space
* library provides high level services and translates these into low
* level commands which are then passed into the driver and
* subsequently the hypervisor and the coprocessor. The library is
* the recommended way for applications to use the coprocessor, and
* the driver interface is not intended for general use.
*
* See Documentation/sparc/oradax/oracle-dax.rst for more details.
*/
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/hypervisor.h>
#include <asm/mdesc.h>
#include <asm/oradax.h>
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Driver for Oracle Data Analytics Accelerator");
#define DAX_DBG_FLG_BASIC 0x01
#define DAX_DBG_FLG_STAT 0x02
#define DAX_DBG_FLG_INFO 0x04
#define DAX_DBG_FLG_ALL 0xff
#define dax_err(fmt, ...) pr_err("%s: " fmt "\n", __func__, ##__VA_ARGS__)
#define dax_info(fmt, ...) pr_info("%s: " fmt "\n", __func__, ##__VA_ARGS__)
#define dax_dbg(fmt, ...) do { \
if (dax_debug & DAX_DBG_FLG_BASIC)\
dax_info(fmt, ##__VA_ARGS__); \
} while (0)
#define dax_stat_dbg(fmt, ...) do { \
if (dax_debug & DAX_DBG_FLG_STAT) \
dax_info(fmt, ##__VA_ARGS__); \
} while (0)
#define dax_info_dbg(fmt, ...) do { \
if (dax_debug & DAX_DBG_FLG_INFO) \
dax_info(fmt, ##__VA_ARGS__); \
} while (0)
#define DAX1_MINOR 1
#define DAX1_MAJOR 1
#define DAX2_MINOR 0
#define DAX2_MAJOR 2
#define DAX1_STR "ORCL,sun4v-dax"
#define DAX2_STR "ORCL,sun4v-dax2"
#define DAX_CA_ELEMS (DAX_MMAP_LEN / sizeof(struct dax_cca))
#define DAX_CCB_USEC 100
#define DAX_CCB_RETRIES 10000
/* stream types */
enum {
OUT,
PRI,
SEC,
TBL,
NUM_STREAM_TYPES
};
/* completion status */
#define CCA_STAT_NOT_COMPLETED 0
#define CCA_STAT_COMPLETED 1
#define CCA_STAT_FAILED 2
#define CCA_STAT_KILLED 3
#define CCA_STAT_NOT_RUN 4
#define CCA_STAT_PIPE_OUT 5
#define CCA_STAT_PIPE_SRC 6
#define CCA_STAT_PIPE_DST 7
/* completion err */
#define CCA_ERR_SUCCESS 0x0 /* no error */
#define CCA_ERR_OVERFLOW 0x1 /* buffer overflow */
#define CCA_ERR_DECODE 0x2 /* CCB decode error */
#define CCA_ERR_PAGE_OVERFLOW 0x3 /* page overflow */
#define CCA_ERR_KILLED 0x7 /* command was killed */
#define CCA_ERR_TIMEOUT 0x8 /* Timeout */
#define CCA_ERR_ADI 0x9 /* ADI error */
#define CCA_ERR_DATA_FMT 0xA /* data format error */
#define CCA_ERR_OTHER_NO_RETRY 0xE /* Other error, do not retry */
#define CCA_ERR_OTHER_RETRY 0xF /* Other error, retry */
#define CCA_ERR_PARTIAL_SYMBOL 0x80 /* QP partial symbol warning */
/* CCB address types */
#define DAX_ADDR_TYPE_NONE 0
#define DAX_ADDR_TYPE_VA_ALT 1 /* secondary context */
#define DAX_ADDR_TYPE_RA 2 /* real address */
#define DAX_ADDR_TYPE_VA 3 /* virtual address */
/* dax_header_t opcode */
#define DAX_OP_SYNC_NOP 0x0
#define DAX_OP_EXTRACT 0x1
#define DAX_OP_SCAN_VALUE 0x2
#define DAX_OP_SCAN_RANGE 0x3
#define DAX_OP_TRANSLATE 0x4
#define DAX_OP_SELECT 0x5
#define DAX_OP_INVERT 0x10 /* OR with translate, scan opcodes */
struct dax_header {
u32 ccb_version:4; /* 31:28 CCB Version */
/* 27:24 Sync Flags */
u32 pipe:1; /* Pipeline */
u32 longccb:1; /* Longccb. Set for scan with lu2, lu3, lu4. */
u32 cond:1; /* Conditional */
u32 serial:1; /* Serial */
u32 opcode:8; /* 23:16 Opcode */
/* 15:0 Address Type. */
u32 reserved:3; /* 15:13 reserved */
u32 table_addr_type:2; /* 12:11 Huffman Table Address Type */
u32 out_addr_type:3; /* 10:8 Destination Address Type */
u32 sec_addr_type:3; /* 7:5 Secondary Source Address Type */
u32 pri_addr_type:3; /* 4:2 Primary Source Address Type */
u32 cca_addr_type:2; /* 1:0 Completion Address Type */
};
struct dax_control {
u32 pri_fmt:4; /* 31:28 Primary Input Format */
u32 pri_elem_size:5; /* 27:23 Primary Input Element Size(less1) */
u32 pri_offset:3; /* 22:20 Primary Input Starting Offset */
u32 sec_encoding:1; /* 19 Secondary Input Encoding */
/* (must be 0 for Select) */
u32 sec_offset:3; /* 18:16 Secondary Input Starting Offset */
u32 sec_elem_size:2; /* 15:14 Secondary Input Element Size */
/* (must be 0 for Select) */
u32 out_fmt:2; /* 13:12 Output Format */
u32 out_elem_size:2; /* 11:10 Output Element Size */
u32 misc:10; /* 9:0 Opcode specific info */
};
struct dax_data_access {
u64 flow_ctrl:2; /* 63:62 Flow Control Type */
u64 pipe_target:2; /* 61:60 Pipeline Target */
u64 out_buf_size:20; /* 59:40 Output Buffer Size */
/* (cachelines less 1) */
u64 unused1:8; /* 39:32 Reserved, Set to 0 */
u64 out_alloc:5; /* 31:27 Output Allocation */
u64 unused2:1; /* 26 Reserved */
u64 pri_len_fmt:2; /* 25:24 Input Length Format */
u64 pri_len:24; /* 23:0 Input Element/Byte/Bit Count */
/* (less 1) */
};
struct dax_ccb {
struct dax_header hdr; /* CCB Header */
struct dax_control ctrl;/* Control Word */
void *ca; /* Completion Address */
void *pri; /* Primary Input Address */
struct dax_data_access dac; /* Data Access Control */
void *sec; /* Secondary Input Address */
u64 dword5; /* depends on opcode */
void *out; /* Output Address */
void *tbl; /* Table Address or bitmap */
};
struct dax_cca {
u8 status; /* user may mwait on this address */
u8 err; /* user visible error notification */
u8 rsvd[2]; /* reserved */
u32 n_remaining; /* for QP partial symbol warning */
u32 output_sz; /* output in bytes */
u32 rsvd2; /* reserved */
u64 run_cycles; /* run time in OCND2 cycles */
u64 run_stats; /* nothing reported in version 1.0 */
u32 n_processed; /* number input elements */
u32 rsvd3[5]; /* reserved */
u64 retval; /* command return value */
u64 rsvd4[8]; /* reserved */
};
/* per thread CCB context */
struct dax_ctx {
struct dax_ccb *ccb_buf;
u64 ccb_buf_ra; /* cached RA of ccb_buf */
struct dax_cca *ca_buf;
u64 ca_buf_ra; /* cached RA of ca_buf */
struct page *pages[DAX_CA_ELEMS][NUM_STREAM_TYPES];
/* array of locked pages */
struct task_struct *owner; /* thread that owns ctx */
struct task_struct *client; /* requesting thread */
union ccb_result result;
u32 ccb_count;
u32 fail_count;
};
/* driver public entry points */
static int dax_open(struct inode *inode, struct file *file);
static ssize_t dax_read(struct file *filp, char __user *buf,
size_t count, loff_t *ppos);
static ssize_t dax_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos);
static int dax_devmap(struct file *f, struct vm_area_struct *vma);
static int dax_close(struct inode *i, struct file *f);
static const struct file_operations dax_fops = {
.owner = THIS_MODULE,
.open = dax_open,
.read = dax_read,
.write = dax_write,
.mmap = dax_devmap,
.release = dax_close,
};
static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf,
size_t count, loff_t *ppos);
static int dax_ccb_info(u64 ca, struct ccb_info_result *info);
static int dax_ccb_kill(u64 ca, u16 *kill_res);
static struct cdev c_dev;
static struct class *cl;
static dev_t first;
static int max_ccb_version;
static int dax_debug;
module_param(dax_debug, int, 0644);
MODULE_PARM_DESC(dax_debug, "Debug flags");
static int __init dax_attach(void)
{
unsigned long dummy, hv_rv, major, minor, minor_requested, max_ccbs;
struct mdesc_handle *hp = mdesc_grab();
char *prop, *dax_name;
bool found = false;
int len, ret = 0;
u64 pn;
if (hp == NULL) {
dax_err("Unable to grab mdesc");
return -ENODEV;
}
mdesc_for_each_node_by_name(hp, pn, "virtual-device") {
prop = (char *)mdesc_get_property(hp, pn, "name", &len);
if (prop == NULL)
continue;
if (strncmp(prop, "dax", strlen("dax")))
continue;
dax_dbg("Found node 0x%llx = %s", pn, prop);
prop = (char *)mdesc_get_property(hp, pn, "compatible", &len);
if (prop == NULL)
continue;
dax_dbg("Found node 0x%llx = %s", pn, prop);
found = true;
break;
}
if (!found) {
dax_err("No DAX device found");
ret = -ENODEV;
goto done;
}
if (strncmp(prop, DAX2_STR, strlen(DAX2_STR)) == 0) {
dax_name = DAX_NAME "2";
major = DAX2_MAJOR;
minor_requested = DAX2_MINOR;
max_ccb_version = 1;
dax_dbg("MD indicates DAX2 coprocessor");
} else if (strncmp(prop, DAX1_STR, strlen(DAX1_STR)) == 0) {
dax_name = DAX_NAME "1";
major = DAX1_MAJOR;
minor_requested = DAX1_MINOR;
max_ccb_version = 0;
dax_dbg("MD indicates DAX1 coprocessor");
} else {
dax_err("Unknown dax type: %s", prop);
ret = -ENODEV;
goto done;
}
minor = minor_requested;
dax_dbg("Registering DAX HV api with major %ld minor %ld", major,
minor);
if (sun4v_hvapi_register(HV_GRP_DAX, major, &minor)) {
dax_err("hvapi_register failed");
ret = -ENODEV;
goto done;
} else {
dax_dbg("Max minor supported by HV = %ld (major %ld)", minor,
major);
minor = min(minor, minor_requested);
dax_dbg("registered DAX major %ld minor %ld", major, minor);
}
/* submit a zero length ccb array to query coprocessor queue size */
hv_rv = sun4v_ccb_submit(0, 0, HV_CCB_QUERY_CMD, 0, &max_ccbs, &dummy);
if (hv_rv != 0) {
dax_err("get_hwqueue_size failed with status=%ld and max_ccbs=%ld",
hv_rv, max_ccbs);
ret = -ENODEV;
goto done;
}
if (max_ccbs != DAX_MAX_CCBS) {
dax_err("HV reports unsupported max_ccbs=%ld", max_ccbs);
ret = -ENODEV;
goto done;
}
if (alloc_chrdev_region(&first, 0, 1, DAX_NAME) < 0) {
dax_err("alloc_chrdev_region failed");
ret = -ENXIO;
goto done;
}
cl = class_create(THIS_MODULE, DAX_NAME);
if (IS_ERR(cl)) {
dax_err("class_create failed");
ret = PTR_ERR(cl);
goto class_error;
}
if (device_create(cl, NULL, first, NULL, dax_name) == NULL) {
dax_err("device_create failed");
ret = -ENXIO;
goto device_error;
}
cdev_init(&c_dev, &dax_fops);
if (cdev_add(&c_dev, first, 1) == -1) {
dax_err("cdev_add failed");
ret = -ENXIO;
goto cdev_error;
}
pr_info("Attached DAX module\n");
goto done;
cdev_error:
device_destroy(cl, first);
device_error:
class_destroy(cl);
class_error:
unregister_chrdev_region(first, 1);
done:
mdesc_release(hp);
return ret;
}
module_init(dax_attach);
static void __exit dax_detach(void)
{
pr_info("Cleaning up DAX module\n");
cdev_del(&c_dev);
device_destroy(cl, first);
class_destroy(cl);
unregister_chrdev_region(first, 1);
}
module_exit(dax_detach);
/* map completion area */
static int dax_devmap(struct file *f, struct vm_area_struct *vma)
{
struct dax_ctx *ctx = (struct dax_ctx *)f->private_data;
size_t len = vma->vm_end - vma->vm_start;
dax_dbg("len=0x%lx, flags=0x%lx", len, vma->vm_flags);
if (ctx->owner != current) {
dax_dbg("devmap called from wrong thread");
return -EINVAL;
}
if (len != DAX_MMAP_LEN) {
dax_dbg("len(%lu) != DAX_MMAP_LEN(%d)", len, DAX_MMAP_LEN);
return -EINVAL;
}
/* completion area is mapped read-only for user */
if (vma->vm_flags & VM_WRITE)
return -EPERM;
vma->vm_flags &= ~VM_MAYWRITE;
if (remap_pfn_range(vma, vma->vm_start, ctx->ca_buf_ra >> PAGE_SHIFT,
len, vma->vm_page_prot))
return -EAGAIN;
dax_dbg("mmapped completion area at uva 0x%lx", vma->vm_start);
return 0;
}
/* Unlock user pages. Called during dequeue or device close */
static void dax_unlock_pages(struct dax_ctx *ctx, int ccb_index, int nelem)
{
int i, j;
for (i = ccb_index; i < ccb_index + nelem; i++) {
for (j = 0; j < NUM_STREAM_TYPES; j++) {
struct page *p = ctx->pages[i][j];
if (p) {
dax_dbg("freeing page %p", p);
if (j == OUT)
set_page_dirty(p);
put_page(p);
ctx->pages[i][j] = NULL;
}
}
}
}
static int dax_lock_page(void *va, struct page **p)
{
int ret;
dax_dbg("uva %p", va);
ret = get_user_pages_fast((unsigned long)va, 1, FOLL_WRITE, p);
if (ret == 1) {
dax_dbg("locked page %p, for VA %p", *p, va);
return 0;
}
dax_dbg("get_user_pages failed, va=%p, ret=%d", va, ret);
return -1;
}
static int dax_lock_pages(struct dax_ctx *ctx, int idx,
int nelem, u64 *err_va)
{
int i;
for (i = 0; i < nelem; i++) {
struct dax_ccb *ccbp = &ctx->ccb_buf[i];
/*
* For each address in the CCB whose type is virtual,
* lock the page and change the type to virtual alternate
* context. On error, return the offending address in
* err_va.
*/
if (ccbp->hdr.out_addr_type == DAX_ADDR_TYPE_VA) {
dax_dbg("output");
if (dax_lock_page(ccbp->out,
&ctx->pages[i + idx][OUT]) != 0) {
*err_va = (u64)ccbp->out;
goto error;
}
ccbp->hdr.out_addr_type = DAX_ADDR_TYPE_VA_ALT;
}
if (ccbp->hdr.pri_addr_type == DAX_ADDR_TYPE_VA) {
dax_dbg("input");
if (dax_lock_page(ccbp->pri,
&ctx->pages[i + idx][PRI]) != 0) {
*err_va = (u64)ccbp->pri;
goto error;
}
ccbp->hdr.pri_addr_type = DAX_ADDR_TYPE_VA_ALT;
}
if (ccbp->hdr.sec_addr_type == DAX_ADDR_TYPE_VA) {
dax_dbg("sec input");
if (dax_lock_page(ccbp->sec,
&ctx->pages[i + idx][SEC]) != 0) {
*err_va = (u64)ccbp->sec;
goto error;
}
ccbp->hdr.sec_addr_type = DAX_ADDR_TYPE_VA_ALT;
}
if (ccbp->hdr.table_addr_type == DAX_ADDR_TYPE_VA) {
dax_dbg("tbl");
if (dax_lock_page(ccbp->tbl,
&ctx->pages[i + idx][TBL]) != 0) {
*err_va = (u64)ccbp->tbl;
goto error;
}
ccbp->hdr.table_addr_type = DAX_ADDR_TYPE_VA_ALT;
}
/* skip over 2nd 64 bytes of long CCB */
if (ccbp->hdr.longccb)
i++;
}
return DAX_SUBMIT_OK;
error:
dax_unlock_pages(ctx, idx, nelem);
return DAX_SUBMIT_ERR_NOACCESS;
}
static void dax_ccb_wait(struct dax_ctx *ctx, int idx)
{
int ret, nretries;
u16 kill_res;
dax_dbg("idx=%d", idx);
for (nretries = 0; nretries < DAX_CCB_RETRIES; nretries++) {
if (ctx->ca_buf[idx].status == CCA_STAT_NOT_COMPLETED)
udelay(DAX_CCB_USEC);
else
return;
}
dax_dbg("ctx (%p): CCB[%d] timed out, wait usec=%d, retries=%d. Killing ccb",
(void *)ctx, idx, DAX_CCB_USEC, DAX_CCB_RETRIES);
ret = dax_ccb_kill(ctx->ca_buf_ra + idx * sizeof(struct dax_cca),
&kill_res);
dax_dbg("Kill CCB[%d] %s", idx, ret ? "failed" : "succeeded");
}
static int dax_close(struct inode *ino, struct file *f)
{
struct dax_ctx *ctx = (struct dax_ctx *)f->private_data;
int i;
f->private_data = NULL;
for (i = 0; i < DAX_CA_ELEMS; i++) {
if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) {
dax_dbg("CCB[%d] not completed", i);
dax_ccb_wait(ctx, i);
}
dax_unlock_pages(ctx, i, 1);
}
kfree(ctx->ccb_buf);
kfree(ctx->ca_buf);
dax_stat_dbg("CCBs: %d good, %d bad", ctx->ccb_count, ctx->fail_count);
kfree(ctx);
return 0;
}
static ssize_t dax_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct dax_ctx *ctx = f->private_data;
if (ctx->client != current)
return -EUSERS;
ctx->client = NULL;
if (count != sizeof(union ccb_result))
return -EINVAL;
if (copy_to_user(buf, &ctx->result, sizeof(union ccb_result)))
return -EFAULT;
return count;
}
static ssize_t dax_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct dax_ctx *ctx = f->private_data;
struct dax_command hdr;
unsigned long ca;
int i, idx, ret;
if (ctx->client != NULL)
return -EINVAL;
if (count == 0 || count > DAX_MAX_CCBS * sizeof(struct dax_ccb))
return -EINVAL;
if (count % sizeof(struct dax_ccb) == 0)
return dax_ccb_exec(ctx, buf, count, ppos); /* CCB EXEC */
if (count != sizeof(struct dax_command))
return -EINVAL;
/* immediate command */
if (ctx->owner != current)
return -EUSERS;
if (copy_from_user(&hdr, buf, sizeof(hdr)))
return -EFAULT;
ca = ctx->ca_buf_ra + hdr.ca_offset;
switch (hdr.command) {
case CCB_KILL:
if (hdr.ca_offset >= DAX_MMAP_LEN) {
dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)",
hdr.ca_offset, DAX_MMAP_LEN);
return -EINVAL;
}
ret = dax_ccb_kill(ca, &ctx->result.kill.action);
if (ret != 0) {
dax_dbg("dax_ccb_kill failed (ret=%d)", ret);
return ret;
}
dax_info_dbg("killed (ca_offset %d)", hdr.ca_offset);
idx = hdr.ca_offset / sizeof(struct dax_cca);
ctx->ca_buf[idx].status = CCA_STAT_KILLED;
ctx->ca_buf[idx].err = CCA_ERR_KILLED;
ctx->client = current;
return count;
case CCB_INFO:
if (hdr.ca_offset >= DAX_MMAP_LEN) {
dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)",
hdr.ca_offset, DAX_MMAP_LEN);
return -EINVAL;
}
ret = dax_ccb_info(ca, &ctx->result.info);
if (ret != 0) {
dax_dbg("dax_ccb_info failed (ret=%d)", ret);
return ret;
}
dax_info_dbg("info succeeded on ca_offset %d", hdr.ca_offset);
ctx->client = current;
return count;
case CCB_DEQUEUE:
for (i = 0; i < DAX_CA_ELEMS; i++) {
if (ctx->ca_buf[i].status !=
CCA_STAT_NOT_COMPLETED)
dax_unlock_pages(ctx, i, 1);
}
return count;
default:
return -EINVAL;
}
}
static int dax_open(struct inode *inode, struct file *f)
{
struct dax_ctx *ctx = NULL;
int i;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (ctx == NULL)
goto done;
ctx->ccb_buf = kcalloc(DAX_MAX_CCBS, sizeof(struct dax_ccb),
GFP_KERNEL);
if (ctx->ccb_buf == NULL)
goto done;
ctx->ccb_buf_ra = virt_to_phys(ctx->ccb_buf);
dax_dbg("ctx->ccb_buf=0x%p, ccb_buf_ra=0x%llx",
(void *)ctx->ccb_buf, ctx->ccb_buf_ra);
/* allocate CCB completion area buffer */
ctx->ca_buf = kzalloc(DAX_MMAP_LEN, GFP_KERNEL);
if (ctx->ca_buf == NULL)
goto alloc_error;
for (i = 0; i < DAX_CA_ELEMS; i++)
ctx->ca_buf[i].status = CCA_STAT_COMPLETED;
ctx->ca_buf_ra = virt_to_phys(ctx->ca_buf);
dax_dbg("ctx=0x%p, ctx->ca_buf=0x%p, ca_buf_ra=0x%llx",
(void *)ctx, (void *)ctx->ca_buf, ctx->ca_buf_ra);
ctx->owner = current;
f->private_data = ctx;
return 0;
alloc_error:
kfree(ctx->ccb_buf);
done:
kfree(ctx);
return -ENOMEM;
}
static char *dax_hv_errno(unsigned long hv_ret, int *ret)
{
switch (hv_ret) {
case HV_EBADALIGN:
*ret = -EFAULT;
return "HV_EBADALIGN";
case HV_ENORADDR:
*ret = -EFAULT;
return "HV_ENORADDR";
case HV_EINVAL:
*ret = -EINVAL;
return "HV_EINVAL";
case HV_EWOULDBLOCK:
*ret = -EAGAIN;
return "HV_EWOULDBLOCK";
case HV_ENOACCESS:
*ret = -EPERM;
return "HV_ENOACCESS";
default:
break;
}
*ret = -EIO;
return "UNKNOWN";
}
static int dax_ccb_kill(u64 ca, u16 *kill_res)
{
unsigned long hv_ret;
int count, ret = 0;
char *err_str;
for (count = 0; count < DAX_CCB_RETRIES; count++) {
dax_dbg("attempting kill on ca_ra 0x%llx", ca);
hv_ret = sun4v_ccb_kill(ca, kill_res);
if (hv_ret == HV_EOK) {
dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca,
*kill_res);
} else {
err_str = dax_hv_errno(hv_ret, &ret);
dax_dbg("%s (ca_ra 0x%llx)", err_str, ca);
}
if (ret != -EAGAIN)
return ret;
dax_info_dbg("ccb_kill count = %d", count);
udelay(DAX_CCB_USEC);
}
return -EAGAIN;
}
static int dax_ccb_info(u64 ca, struct ccb_info_result *info)
{
unsigned long hv_ret;
char *err_str;
int ret = 0;
dax_dbg("attempting info on ca_ra 0x%llx", ca);
hv_ret = sun4v_ccb_info(ca, info);
if (hv_ret == HV_EOK) {
dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, info->state);
if (info->state == DAX_CCB_ENQUEUED) {
dax_info_dbg("dax_unit %d, queue_num %d, queue_pos %d",
info->inst_num, info->q_num, info->q_pos);
}
} else {
err_str = dax_hv_errno(hv_ret, &ret);
dax_dbg("%s (ca_ra 0x%llx)", err_str, ca);
}
return ret;
}
static void dax_prt_ccbs(struct dax_ccb *ccb, int nelem)
{
int i, j;
u64 *ccbp;
dax_dbg("ccb buffer:");
for (i = 0; i < nelem; i++) {
ccbp = (u64 *)&ccb[i];
dax_dbg(" %sccb[%d]", ccb[i].hdr.longccb ? "long " : "", i);
for (j = 0; j < 8; j++)
dax_dbg("\tccb[%d].dwords[%d]=0x%llx",
i, j, *(ccbp + j));
}
}
/*
* Validates user CCB content. Also sets completion address and address types
* for all addresses contained in CCB.
*/
static int dax_preprocess_usr_ccbs(struct dax_ctx *ctx, int idx, int nelem)
{
int i;
/*
* The user is not allowed to specify real address types in
* the CCB header. This must be enforced by the kernel before
* submitting the CCBs to HV. The only allowed values for all
* address fields are VA or IMM
*/
for (i = 0; i < nelem; i++) {
struct dax_ccb *ccbp = &ctx->ccb_buf[i];
unsigned long ca_offset;
if (ccbp->hdr.ccb_version > max_ccb_version)
return DAX_SUBMIT_ERR_CCB_INVAL;
switch (ccbp->hdr.opcode) {
case DAX_OP_SYNC_NOP:
case DAX_OP_EXTRACT:
case DAX_OP_SCAN_VALUE:
case DAX_OP_SCAN_RANGE:
case DAX_OP_TRANSLATE:
case DAX_OP_SCAN_VALUE | DAX_OP_INVERT:
case DAX_OP_SCAN_RANGE | DAX_OP_INVERT:
case DAX_OP_TRANSLATE | DAX_OP_INVERT:
case DAX_OP_SELECT:
break;
default:
return DAX_SUBMIT_ERR_CCB_INVAL;
}
if (ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_VA &&
ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_NONE) {
dax_dbg("invalid out_addr_type in user CCB[%d]", i);
return DAX_SUBMIT_ERR_CCB_INVAL;
}
if (ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_VA &&
ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_NONE) {
dax_dbg("invalid pri_addr_type in user CCB[%d]", i);
return DAX_SUBMIT_ERR_CCB_INVAL;
}
if (ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_VA &&
ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_NONE) {
dax_dbg("invalid sec_addr_type in user CCB[%d]", i);
return DAX_SUBMIT_ERR_CCB_INVAL;
}
if (ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_VA &&
ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_NONE) {
dax_dbg("invalid table_addr_type in user CCB[%d]", i);
return DAX_SUBMIT_ERR_CCB_INVAL;
}
/* set completion (real) address and address type */
ccbp->hdr.cca_addr_type = DAX_ADDR_TYPE_RA;
ca_offset = (idx + i) * sizeof(struct dax_cca);
ccbp->ca = (void *)ctx->ca_buf_ra + ca_offset;
memset(&ctx->ca_buf[idx + i], 0, sizeof(struct dax_cca));
dax_dbg("ccb[%d]=%p, ca_offset=0x%lx, compl RA=0x%llx",
i, ccbp, ca_offset, ctx->ca_buf_ra + ca_offset);
/* skip over 2nd 64 bytes of long CCB */
if (ccbp->hdr.longccb)
i++;
}
return DAX_SUBMIT_OK;
}
static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long accepted_len, hv_rv;
int i, idx, nccbs, naccepted;
ctx->client = current;
idx = *ppos;
nccbs = count / sizeof(struct dax_ccb);
if (ctx->owner != current) {
dax_dbg("wrong thread");
ctx->result.exec.status = DAX_SUBMIT_ERR_THR_INIT;
return 0;
}
dax_dbg("args: ccb_buf_len=%ld, idx=%d", count, idx);
/* for given index and length, verify ca_buf range exists */
if (idx < 0 || idx > (DAX_CA_ELEMS - nccbs)) {
ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL;
return 0;
}
/*
* Copy CCBs into kernel buffer to prevent modification by the
* user in between validation and submission.
*/
if (copy_from_user(ctx->ccb_buf, buf, count)) {
dax_dbg("copyin of user CCB buffer failed");
ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_ARR_MMU_MISS;
return 0;
}
/* check to see if ca_buf[idx] .. ca_buf[idx + nccbs] are available */
for (i = idx; i < idx + nccbs; i++) {
if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) {
dax_dbg("CA range not available, dequeue needed");
ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL;
return 0;
}
}
dax_unlock_pages(ctx, idx, nccbs);
ctx->result.exec.status = dax_preprocess_usr_ccbs(ctx, idx, nccbs);
if (ctx->result.exec.status != DAX_SUBMIT_OK)
return 0;
ctx->result.exec.status = dax_lock_pages(ctx, idx, nccbs,
&ctx->result.exec.status_data);
if (ctx->result.exec.status != DAX_SUBMIT_OK)
return 0;
if (dax_debug & DAX_DBG_FLG_BASIC)
dax_prt_ccbs(ctx->ccb_buf, nccbs);
hv_rv = sun4v_ccb_submit(ctx->ccb_buf_ra, count,
HV_CCB_QUERY_CMD | HV_CCB_VA_SECONDARY, 0,
&accepted_len, &ctx->result.exec.status_data);
switch (hv_rv) {
case HV_EOK:
/*
* Hcall succeeded with no errors but the accepted
* length may be less than the requested length. The
* only way the driver can resubmit the remainder is
* to wait for completion of the submitted CCBs since
* there is no way to guarantee the ordering semantics
* required by the client applications. Therefore we
* let the user library deal with resubmissions.
*/
ctx->result.exec.status = DAX_SUBMIT_OK;
break;
case HV_EWOULDBLOCK:
/*
* This is a transient HV API error. The user library
* can retry.
*/
dax_dbg("hcall returned HV_EWOULDBLOCK");
ctx->result.exec.status = DAX_SUBMIT_ERR_WOULDBLOCK;
break;
case HV_ENOMAP:
/*
* HV was unable to translate a VA. The VA it could
* not translate is returned in the status_data param.
*/
dax_dbg("hcall returned HV_ENOMAP");
ctx->result.exec.status = DAX_SUBMIT_ERR_NOMAP;
break;
case HV_EINVAL:
/*
* This is the result of an invalid user CCB as HV is
* validating some of the user CCB fields. Pass this
* error back to the user. There is no supporting info
* to isolate the invalid field.
*/
dax_dbg("hcall returned HV_EINVAL");
ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_INVAL;
break;
case HV_ENOACCESS:
/*
* HV found a VA that did not have the appropriate
* permissions (such as the w bit). The VA in question
* is returned in status_data param.
*/
dax_dbg("hcall returned HV_ENOACCESS");
ctx->result.exec.status = DAX_SUBMIT_ERR_NOACCESS;
break;
case HV_EUNAVAILABLE:
/*
* The requested CCB operation could not be performed
* at this time. Return the specific unavailable code
* in the status_data field.
*/
dax_dbg("hcall returned HV_EUNAVAILABLE");
ctx->result.exec.status = DAX_SUBMIT_ERR_UNAVAIL;
break;
default:
ctx->result.exec.status = DAX_SUBMIT_ERR_INTERNAL;
dax_dbg("unknown hcall return value (%ld)", hv_rv);
break;
}
/* unlock pages associated with the unaccepted CCBs */
naccepted = accepted_len / sizeof(struct dax_ccb);
dax_unlock_pages(ctx, idx + naccepted, nccbs - naccepted);
/* mark unaccepted CCBs as not completed */
for (i = idx + naccepted; i < idx + nccbs; i++)
ctx->ca_buf[i].status = CCA_STAT_COMPLETED;
ctx->ccb_count += naccepted;
ctx->fail_count += nccbs - naccepted;
dax_dbg("hcall rv=%ld, accepted_len=%ld, status_data=0x%llx, ret status=%d",
hv_rv, accepted_len, ctx->result.exec.status_data,
ctx->result.exec.status);
if (count == accepted_len)
ctx->client = NULL; /* no read needed to complete protocol */
return accepted_len;
}