1350 lines
36 KiB
C
1350 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NAND Flash Controller Device Driver
|
|
* Copyright © 2009-2010, Intel Corporation and its suppliers.
|
|
*
|
|
* Copyright (c) 2017-2019 Socionext Inc.
|
|
* Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include "denali.h"
|
|
|
|
#define DENALI_NAND_NAME "denali-nand"
|
|
#define DENALI_DEFAULT_OOB_SKIP_BYTES 8
|
|
|
|
/* for Indexed Addressing */
|
|
#define DENALI_INDEXED_CTRL 0x00
|
|
#define DENALI_INDEXED_DATA 0x10
|
|
|
|
#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
|
|
#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
|
|
#define DENALI_MAP10 (2 << 26) /* high-level control plane */
|
|
#define DENALI_MAP11 (3 << 26) /* direct controller access */
|
|
|
|
/* MAP11 access cycle type */
|
|
#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
|
|
#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
|
|
#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
|
|
|
|
#define DENALI_BANK(denali) ((denali)->active_bank << 24)
|
|
|
|
#define DENALI_INVALID_BANK -1
|
|
|
|
static struct denali_chip *to_denali_chip(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct denali_chip, chip);
|
|
}
|
|
|
|
static struct denali_controller *to_denali_controller(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip->controller, struct denali_controller,
|
|
controller);
|
|
}
|
|
|
|
/*
|
|
* Direct Addressing - the slave address forms the control information (command
|
|
* type, bank, block, and page address). The slave data is the actual data to
|
|
* be transferred. This mode requires 28 bits of address region allocated.
|
|
*/
|
|
static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
|
|
{
|
|
return ioread32(denali->host + addr);
|
|
}
|
|
|
|
static void denali_direct_write(struct denali_controller *denali, u32 addr,
|
|
u32 data)
|
|
{
|
|
iowrite32(data, denali->host + addr);
|
|
}
|
|
|
|
/*
|
|
* Indexed Addressing - address translation module intervenes in passing the
|
|
* control information. This mode reduces the required address range. The
|
|
* control information and transferred data are latched by the registers in
|
|
* the translation module.
|
|
*/
|
|
static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
|
|
{
|
|
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
|
|
return ioread32(denali->host + DENALI_INDEXED_DATA);
|
|
}
|
|
|
|
static void denali_indexed_write(struct denali_controller *denali, u32 addr,
|
|
u32 data)
|
|
{
|
|
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
|
|
iowrite32(data, denali->host + DENALI_INDEXED_DATA);
|
|
}
|
|
|
|
static void denali_enable_irq(struct denali_controller *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < denali->nbanks; i++)
|
|
iowrite32(U32_MAX, denali->reg + INTR_EN(i));
|
|
iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
static void denali_disable_irq(struct denali_controller *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < denali->nbanks; i++)
|
|
iowrite32(0, denali->reg + INTR_EN(i));
|
|
iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
static void denali_clear_irq(struct denali_controller *denali,
|
|
int bank, u32 irq_status)
|
|
{
|
|
/* write one to clear bits */
|
|
iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
|
|
}
|
|
|
|
static void denali_clear_irq_all(struct denali_controller *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < denali->nbanks; i++)
|
|
denali_clear_irq(denali, i, U32_MAX);
|
|
}
|
|
|
|
static irqreturn_t denali_isr(int irq, void *dev_id)
|
|
{
|
|
struct denali_controller *denali = dev_id;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u32 irq_status;
|
|
int i;
|
|
|
|
spin_lock(&denali->irq_lock);
|
|
|
|
for (i = 0; i < denali->nbanks; i++) {
|
|
irq_status = ioread32(denali->reg + INTR_STATUS(i));
|
|
if (irq_status)
|
|
ret = IRQ_HANDLED;
|
|
|
|
denali_clear_irq(denali, i, irq_status);
|
|
|
|
if (i != denali->active_bank)
|
|
continue;
|
|
|
|
denali->irq_status |= irq_status;
|
|
|
|
if (denali->irq_status & denali->irq_mask)
|
|
complete(&denali->complete);
|
|
}
|
|
|
|
spin_unlock(&denali->irq_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void denali_reset_irq(struct denali_controller *denali)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&denali->irq_lock, flags);
|
|
denali->irq_status = 0;
|
|
denali->irq_mask = 0;
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
}
|
|
|
|
static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
|
|
{
|
|
unsigned long time_left, flags;
|
|
u32 irq_status;
|
|
|
|
spin_lock_irqsave(&denali->irq_lock, flags);
|
|
|
|
irq_status = denali->irq_status;
|
|
|
|
if (irq_mask & irq_status) {
|
|
/* return immediately if the IRQ has already happened. */
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
return irq_status;
|
|
}
|
|
|
|
denali->irq_mask = irq_mask;
|
|
reinit_completion(&denali->complete);
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
|
|
time_left = wait_for_completion_timeout(&denali->complete,
|
|
msecs_to_jiffies(1000));
|
|
if (!time_left) {
|
|
dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
|
|
irq_mask);
|
|
return 0;
|
|
}
|
|
|
|
return denali->irq_status;
|
|
}
|
|
|
|
static void denali_select_target(struct nand_chip *chip, int cs)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
denali->active_bank = sel->bank;
|
|
|
|
iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
|
|
denali->reg + PAGES_PER_BLOCK);
|
|
iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
|
|
denali->reg + DEVICE_WIDTH);
|
|
iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
|
|
iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
|
|
iowrite32(chip->options & NAND_ROW_ADDR_3 ?
|
|
0 : TWO_ROW_ADDR_CYCLES__FLAG,
|
|
denali->reg + TWO_ROW_ADDR_CYCLES);
|
|
iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
|
|
FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
|
|
denali->reg + ECC_CORRECTION);
|
|
iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
|
|
iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
|
|
iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
|
|
|
|
if (chip->options & NAND_KEEP_TIMINGS)
|
|
return;
|
|
|
|
/* update timing registers unless NAND_KEEP_TIMINGS is set */
|
|
iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
|
|
iowrite32(sel->tcwaw_and_addr_2_data,
|
|
denali->reg + TCWAW_AND_ADDR_2_DATA);
|
|
iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
|
|
iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
|
|
iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
|
|
iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
|
|
iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
|
|
iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
|
|
}
|
|
|
|
static int denali_change_column(struct nand_chip *chip, unsigned int offset,
|
|
void *buf, unsigned int len, bool write)
|
|
{
|
|
if (write)
|
|
return nand_change_write_column_op(chip, offset, buf, len,
|
|
false);
|
|
else
|
|
return nand_change_read_column_op(chip, offset, buf, len,
|
|
false);
|
|
}
|
|
|
|
static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int writesize = mtd->writesize;
|
|
int oob_skip = denali->oob_skip_bytes;
|
|
int ret, i, pos, len;
|
|
|
|
for (i = 0; i < ecc->steps; i++) {
|
|
pos = i * (ecc->size + ecc->bytes);
|
|
len = ecc->size;
|
|
|
|
if (pos >= writesize) {
|
|
pos += oob_skip;
|
|
} else if (pos + len > writesize) {
|
|
/* This chunk overwraps the BBM area. Must be split */
|
|
ret = denali_change_column(chip, pos, buf,
|
|
writesize - pos, write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += writesize - pos;
|
|
len -= writesize - pos;
|
|
pos = writesize + oob_skip;
|
|
}
|
|
|
|
ret = denali_change_column(chip, pos, buf, len, write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
int oob_skip = denali->oob_skip_bytes;
|
|
int ret, i, pos, len;
|
|
|
|
/* BBM at the beginning of the OOB area */
|
|
ret = denali_change_column(chip, writesize, buf, oob_skip, write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += oob_skip;
|
|
|
|
for (i = 0; i < ecc->steps; i++) {
|
|
pos = ecc->size + i * (ecc->size + ecc->bytes);
|
|
|
|
if (i == ecc->steps - 1)
|
|
/* The last chunk includes OOB free */
|
|
len = writesize + oobsize - pos - oob_skip;
|
|
else
|
|
len = ecc->bytes;
|
|
|
|
if (pos >= writesize) {
|
|
pos += oob_skip;
|
|
} else if (pos + len > writesize) {
|
|
/* This chunk overwraps the BBM area. Must be split */
|
|
ret = denali_change_column(chip, pos, buf,
|
|
writesize - pos, write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += writesize - pos;
|
|
len -= writesize - pos;
|
|
pos = writesize + oob_skip;
|
|
}
|
|
|
|
ret = denali_change_column(chip, pos, buf, len, write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
|
|
int page)
|
|
{
|
|
int ret;
|
|
|
|
if (!buf && !oob_buf)
|
|
return -EINVAL;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (buf) {
|
|
ret = denali_payload_xfer(chip, buf, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (oob_buf) {
|
|
ret = denali_oob_xfer(chip, oob_buf, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_write_raw(struct nand_chip *chip, const void *buf,
|
|
const void *oob_buf, int page)
|
|
{
|
|
int ret;
|
|
|
|
if (!buf && !oob_buf)
|
|
return -EINVAL;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (buf) {
|
|
ret = denali_payload_xfer(chip, (void *)buf, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (oob_buf) {
|
|
ret = denali_oob_xfer(chip, (void *)oob_buf, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
|
|
page);
|
|
}
|
|
|
|
static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
|
|
page);
|
|
}
|
|
|
|
static int denali_read_oob(struct nand_chip *chip, int page)
|
|
{
|
|
return denali_read_raw(chip, NULL, chip->oob_poi, page);
|
|
}
|
|
|
|
static int denali_write_oob(struct nand_chip *chip, int page)
|
|
{
|
|
return denali_write_raw(chip, NULL, chip->oob_poi, page);
|
|
}
|
|
|
|
static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
|
|
unsigned long uncor_ecc_flags,
|
|
unsigned int max_bitflips)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
|
|
int i, stat;
|
|
|
|
for (i = 0; i < ecc->steps; i++) {
|
|
if (!(uncor_ecc_flags & BIT(i)))
|
|
continue;
|
|
|
|
stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code,
|
|
ecc->bytes, NULL, 0,
|
|
ecc->strength);
|
|
if (stat < 0) {
|
|
ecc_stats->failed++;
|
|
} else {
|
|
ecc_stats->corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
|
|
buf += ecc->size;
|
|
ecc_code += ecc->bytes;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int denali_hw_ecc_fixup(struct nand_chip *chip,
|
|
unsigned long *uncor_ecc_flags)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
|
|
int bank = denali->active_bank;
|
|
u32 ecc_cor;
|
|
unsigned int max_bitflips;
|
|
|
|
ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
|
|
ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
|
|
|
|
if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
|
|
/*
|
|
* This flag is set when uncorrectable error occurs at least in
|
|
* one ECC sector. We can not know "how many sectors", or
|
|
* "which sector(s)". We need erase-page check for all sectors.
|
|
*/
|
|
*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
|
|
return 0;
|
|
}
|
|
|
|
max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
|
|
|
|
/*
|
|
* The register holds the maximum of per-sector corrected bitflips.
|
|
* This is suitable for the return value of the ->read_page() callback.
|
|
* Unfortunately, we can not know the total number of corrected bits in
|
|
* the page. Increase the stats by max_bitflips. (compromised solution)
|
|
*/
|
|
ecc_stats->corrected += max_bitflips;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int denali_sw_ecc_fixup(struct nand_chip *chip,
|
|
unsigned long *uncor_ecc_flags, u8 *buf)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
|
|
unsigned int ecc_size = chip->ecc.size;
|
|
unsigned int bitflips = 0;
|
|
unsigned int max_bitflips = 0;
|
|
u32 err_addr, err_cor_info;
|
|
unsigned int err_byte, err_sector, err_device;
|
|
u8 err_cor_value;
|
|
unsigned int prev_sector = 0;
|
|
u32 irq_status;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
do {
|
|
err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
|
|
err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
|
|
err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
|
|
|
|
err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
|
|
err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
|
|
err_cor_info);
|
|
err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
|
|
err_cor_info);
|
|
|
|
/* reset the bitflip counter when crossing ECC sector */
|
|
if (err_sector != prev_sector)
|
|
bitflips = 0;
|
|
|
|
if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
|
|
/*
|
|
* Check later if this is a real ECC error, or
|
|
* an erased sector.
|
|
*/
|
|
*uncor_ecc_flags |= BIT(err_sector);
|
|
} else if (err_byte < ecc_size) {
|
|
/*
|
|
* If err_byte is larger than ecc_size, means error
|
|
* happened in OOB, so we ignore it. It's no need for
|
|
* us to correct it err_device is represented the NAND
|
|
* error bits are happened in if there are more than
|
|
* one NAND connected.
|
|
*/
|
|
int offset;
|
|
unsigned int flips_in_byte;
|
|
|
|
offset = (err_sector * ecc_size + err_byte) *
|
|
denali->devs_per_cs + err_device;
|
|
|
|
/* correct the ECC error */
|
|
flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
|
|
buf[offset] ^= err_cor_value;
|
|
ecc_stats->corrected += flips_in_byte;
|
|
bitflips += flips_in_byte;
|
|
|
|
max_bitflips = max(max_bitflips, bitflips);
|
|
}
|
|
|
|
prev_sector = err_sector;
|
|
} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
|
|
|
|
/*
|
|
* Once handle all ECC errors, controller will trigger an
|
|
* ECC_TRANSACTION_DONE interrupt.
|
|
*/
|
|
irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
|
|
if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
|
|
return -EIO;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static void denali_setup_dma64(struct denali_controller *denali,
|
|
dma_addr_t dma_addr, int page, bool write)
|
|
{
|
|
u32 mode;
|
|
const int page_count = 1;
|
|
|
|
mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
|
|
|
|
/* DMA is a three step process */
|
|
|
|
/*
|
|
* 1. setup transfer type, interrupt when complete,
|
|
* burst len = 64 bytes, the number of pages
|
|
*/
|
|
denali->host_write(denali, mode,
|
|
0x01002000 | (64 << 16) |
|
|
(write ? BIT(8) : 0) | page_count);
|
|
|
|
/* 2. set memory low address */
|
|
denali->host_write(denali, mode, lower_32_bits(dma_addr));
|
|
|
|
/* 3. set memory high address */
|
|
denali->host_write(denali, mode, upper_32_bits(dma_addr));
|
|
}
|
|
|
|
static void denali_setup_dma32(struct denali_controller *denali,
|
|
dma_addr_t dma_addr, int page, bool write)
|
|
{
|
|
u32 mode;
|
|
const int page_count = 1;
|
|
|
|
mode = DENALI_MAP10 | DENALI_BANK(denali);
|
|
|
|
/* DMA is a four step process */
|
|
|
|
/* 1. setup transfer type and # of pages */
|
|
denali->host_write(denali, mode | page,
|
|
0x2000 | (write ? BIT(8) : 0) | page_count);
|
|
|
|
/* 2. set memory high address bits 23:8 */
|
|
denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
|
|
|
|
/* 3. set memory low address bits 23:8 */
|
|
denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
|
|
|
|
/* 4. interrupt when complete, burst len = 64 bytes */
|
|
denali->host_write(denali, mode | 0x14000, 0x2400);
|
|
}
|
|
|
|
static int denali_pio_read(struct denali_controller *denali, u32 *buf,
|
|
size_t size, int page)
|
|
{
|
|
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
|
|
u32 irq_status, ecc_err_mask;
|
|
int i;
|
|
|
|
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
|
|
ecc_err_mask = INTR__ECC_UNCOR_ERR;
|
|
else
|
|
ecc_err_mask = INTR__ECC_ERR;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
for (i = 0; i < size / 4; i++)
|
|
buf[i] = denali->host_read(denali, addr);
|
|
|
|
irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
|
|
if (!(irq_status & INTR__PAGE_XFER_INC))
|
|
return -EIO;
|
|
|
|
if (irq_status & INTR__ERASED_PAGE)
|
|
memset(buf, 0xff, size);
|
|
|
|
return irq_status & ecc_err_mask ? -EBADMSG : 0;
|
|
}
|
|
|
|
static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
|
|
size_t size, int page)
|
|
{
|
|
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
|
|
u32 irq_status;
|
|
int i;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
for (i = 0; i < size / 4; i++)
|
|
denali->host_write(denali, addr, buf[i]);
|
|
|
|
irq_status = denali_wait_for_irq(denali,
|
|
INTR__PROGRAM_COMP |
|
|
INTR__PROGRAM_FAIL);
|
|
if (!(irq_status & INTR__PROGRAM_COMP))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_pio_xfer(struct denali_controller *denali, void *buf,
|
|
size_t size, int page, bool write)
|
|
{
|
|
if (write)
|
|
return denali_pio_write(denali, buf, size, page);
|
|
else
|
|
return denali_pio_read(denali, buf, size, page);
|
|
}
|
|
|
|
static int denali_dma_xfer(struct denali_controller *denali, void *buf,
|
|
size_t size, int page, bool write)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
u32 irq_mask, irq_status, ecc_err_mask;
|
|
enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
int ret = 0;
|
|
|
|
dma_addr = dma_map_single(denali->dev, buf, size, dir);
|
|
if (dma_mapping_error(denali->dev, dma_addr)) {
|
|
dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
|
|
return denali_pio_xfer(denali, buf, size, page, write);
|
|
}
|
|
|
|
if (write) {
|
|
/*
|
|
* INTR__PROGRAM_COMP is never asserted for the DMA transfer.
|
|
* We can use INTR__DMA_CMD_COMP instead. This flag is asserted
|
|
* when the page program is completed.
|
|
*/
|
|
irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
|
|
ecc_err_mask = 0;
|
|
} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
|
|
irq_mask = INTR__DMA_CMD_COMP;
|
|
ecc_err_mask = INTR__ECC_UNCOR_ERR;
|
|
} else {
|
|
irq_mask = INTR__DMA_CMD_COMP;
|
|
ecc_err_mask = INTR__ECC_ERR;
|
|
}
|
|
|
|
iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
|
|
/*
|
|
* The ->setup_dma() hook kicks DMA by using the data/command
|
|
* interface, which belongs to a different AXI port from the
|
|
* register interface. Read back the register to avoid a race.
|
|
*/
|
|
ioread32(denali->reg + DMA_ENABLE);
|
|
|
|
denali_reset_irq(denali);
|
|
denali->setup_dma(denali, dma_addr, page, write);
|
|
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
if (!(irq_status & INTR__DMA_CMD_COMP))
|
|
ret = -EIO;
|
|
else if (irq_status & ecc_err_mask)
|
|
ret = -EBADMSG;
|
|
|
|
iowrite32(0, denali->reg + DMA_ENABLE);
|
|
|
|
dma_unmap_single(denali->dev, dma_addr, size, dir);
|
|
|
|
if (irq_status & INTR__ERASED_PAGE)
|
|
memset(buf, 0xff, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
|
|
int page, bool write)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
|
|
denali_select_target(chip, chip->cur_cs);
|
|
|
|
if (denali->dma_avail)
|
|
return denali_dma_xfer(denali, buf, size, page, write);
|
|
else
|
|
return denali_pio_xfer(denali, buf, size, page, write);
|
|
}
|
|
|
|
static int denali_read_page(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned long uncor_ecc_flags = 0;
|
|
int stat = 0;
|
|
int ret;
|
|
|
|
ret = denali_page_xfer(chip, buf, mtd->writesize, page, false);
|
|
if (ret && ret != -EBADMSG)
|
|
return ret;
|
|
|
|
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
|
|
stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
|
|
else if (ret == -EBADMSG)
|
|
stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
|
|
|
|
if (stat < 0)
|
|
return stat;
|
|
|
|
if (uncor_ecc_flags) {
|
|
ret = denali_read_oob(chip, page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stat = denali_check_erased_page(chip, buf,
|
|
uncor_ecc_flags, stat);
|
|
}
|
|
|
|
return stat;
|
|
}
|
|
|
|
static int denali_write_page(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true);
|
|
}
|
|
|
|
static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct denali_chip_sel *sel;
|
|
const struct nand_sdr_timings *timings;
|
|
unsigned long t_x, mult_x;
|
|
int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
|
|
int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
|
|
int addr_2_data_mask;
|
|
u32 tmp;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return PTR_ERR(timings);
|
|
|
|
/* clk_x period in picoseconds */
|
|
t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
|
|
if (!t_x)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The bus interface clock, clk_x, is phase aligned with the core clock.
|
|
* The clk_x is an integral multiple N of the core clk. The value N is
|
|
* configured at IP delivery time, and its available value is 4, 5, 6.
|
|
*/
|
|
mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
|
|
if (mult_x < 4 || mult_x > 6)
|
|
return -EINVAL;
|
|
|
|
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
sel = &to_denali_chip(chip)->sels[chipnr];
|
|
|
|
/* tREA -> ACC_CLKS */
|
|
acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
|
|
acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + ACC_CLKS);
|
|
tmp &= ~ACC_CLKS__VALUE;
|
|
tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
|
|
sel->acc_clks = tmp;
|
|
|
|
/* tRWH -> RE_2_WE */
|
|
re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
|
|
re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RE_2_WE);
|
|
tmp &= ~RE_2_WE__VALUE;
|
|
tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
|
|
sel->re_2_we = tmp;
|
|
|
|
/* tRHZ -> RE_2_RE */
|
|
re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
|
|
re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RE_2_RE);
|
|
tmp &= ~RE_2_RE__VALUE;
|
|
tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
|
|
sel->re_2_re = tmp;
|
|
|
|
/*
|
|
* tCCS, tWHR -> WE_2_RE
|
|
*
|
|
* With WE_2_RE properly set, the Denali controller automatically takes
|
|
* care of the delay; the driver need not set NAND_WAIT_TCCS.
|
|
*/
|
|
we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
|
|
we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
|
|
|
|
tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
|
|
tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
|
|
tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
|
|
sel->hwhr2_and_we_2_re = tmp;
|
|
|
|
/* tADL -> ADDR_2_DATA */
|
|
|
|
/* for older versions, ADDR_2_DATA is only 6 bit wide */
|
|
addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
|
|
if (denali->revision < 0x0501)
|
|
addr_2_data_mask >>= 1;
|
|
|
|
addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
|
|
addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
|
|
|
|
tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
|
|
tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
|
|
tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
|
|
sel->tcwaw_and_addr_2_data = tmp;
|
|
|
|
/* tREH, tWH -> RDWR_EN_HI_CNT */
|
|
rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
|
|
t_x);
|
|
rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
|
|
tmp &= ~RDWR_EN_HI_CNT__VALUE;
|
|
tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
|
|
sel->rdwr_en_hi_cnt = tmp;
|
|
|
|
/* tRP, tWP -> RDWR_EN_LO_CNT */
|
|
rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
|
|
rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
|
|
t_x);
|
|
rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
|
|
rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
|
|
rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
|
|
tmp &= ~RDWR_EN_LO_CNT__VALUE;
|
|
tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
|
|
sel->rdwr_en_lo_cnt = tmp;
|
|
|
|
/* tCS, tCEA -> CS_SETUP_CNT */
|
|
cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
|
|
(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
|
|
0);
|
|
cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + CS_SETUP_CNT);
|
|
tmp &= ~CS_SETUP_CNT__VALUE;
|
|
tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
|
|
sel->cs_setup_cnt = tmp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int denali_calc_ecc_bytes(int step_size, int strength)
|
|
{
|
|
/* BCH code. Denali requires ecc.bytes to be multiple of 2 */
|
|
return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
|
|
}
|
|
EXPORT_SYMBOL(denali_calc_ecc_bytes);
|
|
|
|
static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
|
|
if (section > 0)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = denali->oob_skip_bytes;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
|
|
if (section > 0)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
|
|
.ecc = denali_ooblayout_ecc,
|
|
.free = denali_ooblayout_free,
|
|
};
|
|
|
|
static int denali_multidev_fixup(struct nand_chip *chip)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_memory_organization *memorg;
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
/*
|
|
* Support for multi device:
|
|
* When the IP configuration is x16 capable and two x8 chips are
|
|
* connected in parallel, DEVICES_CONNECTED should be set to 2.
|
|
* In this case, the core framework knows nothing about this fact,
|
|
* so we should tell it the _logical_ pagesize and anything necessary.
|
|
*/
|
|
denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
|
|
|
|
/*
|
|
* On some SoCs, DEVICES_CONNECTED is not auto-detected.
|
|
* For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
|
|
*/
|
|
if (denali->devs_per_cs == 0) {
|
|
denali->devs_per_cs = 1;
|
|
iowrite32(1, denali->reg + DEVICES_CONNECTED);
|
|
}
|
|
|
|
if (denali->devs_per_cs == 1)
|
|
return 0;
|
|
|
|
if (denali->devs_per_cs != 2) {
|
|
dev_err(denali->dev, "unsupported number of devices %d\n",
|
|
denali->devs_per_cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 2 chips in parallel */
|
|
memorg->pagesize <<= 1;
|
|
memorg->oobsize <<= 1;
|
|
mtd->size <<= 1;
|
|
mtd->erasesize <<= 1;
|
|
mtd->writesize <<= 1;
|
|
mtd->oobsize <<= 1;
|
|
chip->page_shift += 1;
|
|
chip->phys_erase_shift += 1;
|
|
chip->bbt_erase_shift += 1;
|
|
chip->chip_shift += 1;
|
|
chip->pagemask <<= 1;
|
|
chip->ecc.size <<= 1;
|
|
chip->ecc.bytes <<= 1;
|
|
chip->ecc.strength <<= 1;
|
|
denali->oob_skip_bytes <<= 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
|
|
mtd->oobsize - denali->oob_skip_bytes);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Failed to setup ECC settings.\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(denali->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
ret = denali_multidev_fixup(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void denali_exec_in8(struct denali_controller *denali, u32 type,
|
|
u8 *buf, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
|
|
}
|
|
|
|
static void denali_exec_in16(struct denali_controller *denali, u32 type,
|
|
u8 *buf, unsigned int len)
|
|
{
|
|
u32 data;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i += 2) {
|
|
data = denali->host_read(denali, type | DENALI_BANK(denali));
|
|
/* bit 31:24 and 15:8 are used for DDR */
|
|
buf[i] = data;
|
|
buf[i + 1] = data >> 16;
|
|
}
|
|
}
|
|
|
|
static void denali_exec_in(struct denali_controller *denali, u32 type,
|
|
u8 *buf, unsigned int len, bool width16)
|
|
{
|
|
if (width16)
|
|
denali_exec_in16(denali, type, buf, len);
|
|
else
|
|
denali_exec_in8(denali, type, buf, len);
|
|
}
|
|
|
|
static void denali_exec_out8(struct denali_controller *denali, u32 type,
|
|
const u8 *buf, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
|
|
}
|
|
|
|
static void denali_exec_out16(struct denali_controller *denali, u32 type,
|
|
const u8 *buf, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i += 2)
|
|
denali->host_write(denali, type | DENALI_BANK(denali),
|
|
buf[i + 1] << 16 | buf[i]);
|
|
}
|
|
|
|
static void denali_exec_out(struct denali_controller *denali, u32 type,
|
|
const u8 *buf, unsigned int len, bool width16)
|
|
{
|
|
if (width16)
|
|
denali_exec_out16(denali, type, buf, len);
|
|
else
|
|
denali_exec_out8(denali, type, buf, len);
|
|
}
|
|
|
|
static int denali_exec_waitrdy(struct denali_controller *denali)
|
|
{
|
|
u32 irq_stat;
|
|
|
|
/* R/B# pin transitioned from low to high? */
|
|
irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
|
|
|
|
/* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
|
|
denali_reset_irq(denali);
|
|
|
|
return irq_stat & INTR__INT_ACT ? 0 : -EIO;
|
|
}
|
|
|
|
static int denali_exec_instr(struct nand_chip *chip,
|
|
const struct nand_op_instr *instr)
|
|
{
|
|
struct denali_controller *denali = to_denali_controller(chip);
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
denali_exec_out8(denali, DENALI_MAP11_CMD,
|
|
&instr->ctx.cmd.opcode, 1);
|
|
return 0;
|
|
case NAND_OP_ADDR_INSTR:
|
|
denali_exec_out8(denali, DENALI_MAP11_ADDR,
|
|
instr->ctx.addr.addrs,
|
|
instr->ctx.addr.naddrs);
|
|
return 0;
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
denali_exec_in(denali, DENALI_MAP11_DATA,
|
|
instr->ctx.data.buf.in,
|
|
instr->ctx.data.len,
|
|
!instr->ctx.data.force_8bit &&
|
|
chip->options & NAND_BUSWIDTH_16);
|
|
return 0;
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
denali_exec_out(denali, DENALI_MAP11_DATA,
|
|
instr->ctx.data.buf.out,
|
|
instr->ctx.data.len,
|
|
!instr->ctx.data.force_8bit &&
|
|
chip->options & NAND_BUSWIDTH_16);
|
|
return 0;
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
return denali_exec_waitrdy(denali);
|
|
default:
|
|
WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
|
|
instr->type);
|
|
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int denali_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op, bool check_only)
|
|
{
|
|
int i, ret;
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
denali_select_target(chip, op->cs);
|
|
|
|
/*
|
|
* Some commands contain NAND_OP_WAITRDY_INSTR.
|
|
* irq must be cleared here to catch the R/B# interrupt there.
|
|
*/
|
|
denali_reset_irq(to_denali_controller(chip));
|
|
|
|
for (i = 0; i < op->ninstrs; i++) {
|
|
ret = denali_exec_instr(chip, &op->instrs[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops denali_controller_ops = {
|
|
.attach_chip = denali_attach_chip,
|
|
.exec_op = denali_exec_op,
|
|
.setup_data_interface = denali_setup_data_interface,
|
|
};
|
|
|
|
int denali_chip_init(struct denali_controller *denali,
|
|
struct denali_chip *dchip)
|
|
{
|
|
struct nand_chip *chip = &dchip->chip;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct denali_chip *dchip2;
|
|
int i, j, ret;
|
|
|
|
chip->controller = &denali->controller;
|
|
|
|
/* sanity checks for bank numbers */
|
|
for (i = 0; i < dchip->nsels; i++) {
|
|
unsigned int bank = dchip->sels[i].bank;
|
|
|
|
if (bank >= denali->nbanks) {
|
|
dev_err(denali->dev, "unsupported bank %d\n", bank);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (j = 0; j < i; j++) {
|
|
if (bank == dchip->sels[j].bank) {
|
|
dev_err(denali->dev,
|
|
"bank %d is assigned twice in the same chip\n",
|
|
bank);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(dchip2, &denali->chips, node) {
|
|
for (j = 0; j < dchip2->nsels; j++) {
|
|
if (bank == dchip2->sels[j].bank) {
|
|
dev_err(denali->dev,
|
|
"bank %d is already used\n",
|
|
bank);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mtd->dev.parent = denali->dev;
|
|
|
|
/*
|
|
* Fallback to the default name if DT did not give "label" property.
|
|
* Use "label" property if multiple chips are connected.
|
|
*/
|
|
if (!mtd->name && list_empty(&denali->chips))
|
|
mtd->name = "denali-nand";
|
|
|
|
if (denali->dma_avail) {
|
|
chip->options |= NAND_USE_BOUNCE_BUFFER;
|
|
chip->buf_align = 16;
|
|
}
|
|
|
|
/* clk rate info is needed for setup_data_interface */
|
|
if (!denali->clk_rate || !denali->clk_x_rate)
|
|
chip->options |= NAND_KEEP_TIMINGS;
|
|
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
chip->ecc.read_page = denali_read_page;
|
|
chip->ecc.write_page = denali_write_page;
|
|
chip->ecc.read_page_raw = denali_read_page_raw;
|
|
chip->ecc.write_page_raw = denali_write_page_raw;
|
|
chip->ecc.read_oob = denali_read_oob;
|
|
chip->ecc.write_oob = denali_write_oob;
|
|
|
|
mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
|
|
|
|
ret = nand_scan(chip, dchip->nsels);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
|
|
goto cleanup_nand;
|
|
}
|
|
|
|
list_add_tail(&dchip->node, &denali->chips);
|
|
|
|
return 0;
|
|
|
|
cleanup_nand:
|
|
nand_cleanup(chip);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(denali_chip_init);
|
|
|
|
int denali_init(struct denali_controller *denali)
|
|
{
|
|
u32 features = ioread32(denali->reg + FEATURES);
|
|
int ret;
|
|
|
|
nand_controller_init(&denali->controller);
|
|
denali->controller.ops = &denali_controller_ops;
|
|
init_completion(&denali->complete);
|
|
spin_lock_init(&denali->irq_lock);
|
|
INIT_LIST_HEAD(&denali->chips);
|
|
denali->active_bank = DENALI_INVALID_BANK;
|
|
|
|
/*
|
|
* The REVISION register may not be reliable. Platforms are allowed to
|
|
* override it.
|
|
*/
|
|
if (!denali->revision)
|
|
denali->revision = swab16(ioread32(denali->reg + REVISION));
|
|
|
|
denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
|
|
|
|
/* the encoding changed from rev 5.0 to 5.1 */
|
|
if (denali->revision < 0x0501)
|
|
denali->nbanks <<= 1;
|
|
|
|
if (features & FEATURES__DMA)
|
|
denali->dma_avail = true;
|
|
|
|
if (denali->dma_avail) {
|
|
int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
|
|
|
|
ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
|
|
if (ret) {
|
|
dev_info(denali->dev,
|
|
"Failed to set DMA mask. Disabling DMA.\n");
|
|
denali->dma_avail = false;
|
|
}
|
|
}
|
|
|
|
if (denali->dma_avail) {
|
|
if (denali->caps & DENALI_CAP_DMA_64BIT)
|
|
denali->setup_dma = denali_setup_dma64;
|
|
else
|
|
denali->setup_dma = denali_setup_dma32;
|
|
}
|
|
|
|
if (features & FEATURES__INDEX_ADDR) {
|
|
denali->host_read = denali_indexed_read;
|
|
denali->host_write = denali_indexed_write;
|
|
} else {
|
|
denali->host_read = denali_direct_read;
|
|
denali->host_write = denali_direct_write;
|
|
}
|
|
|
|
/*
|
|
* Set how many bytes should be skipped before writing data in OOB.
|
|
* If a non-zero value has already been set (by firmware or something),
|
|
* just use it. Otherwise, set the driver's default.
|
|
*/
|
|
denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
|
|
if (!denali->oob_skip_bytes) {
|
|
denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
|
|
iowrite32(denali->oob_skip_bytes,
|
|
denali->reg + SPARE_AREA_SKIP_BYTES);
|
|
}
|
|
|
|
iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
|
|
iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
|
|
iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
|
|
iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
|
|
iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
|
|
|
|
denali_clear_irq_all(denali);
|
|
|
|
ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
|
|
IRQF_SHARED, DENALI_NAND_NAME, denali);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Unable to request IRQ\n");
|
|
return ret;
|
|
}
|
|
|
|
denali_enable_irq(denali);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(denali_init);
|
|
|
|
void denali_remove(struct denali_controller *denali)
|
|
{
|
|
struct denali_chip *dchip;
|
|
|
|
list_for_each_entry(dchip, &denali->chips, node)
|
|
nand_release(&dchip->chip);
|
|
|
|
denali_disable_irq(denali);
|
|
}
|
|
EXPORT_SYMBOL(denali_remove);
|
|
|
|
MODULE_DESCRIPTION("Driver core for Denali NAND controller");
|
|
MODULE_AUTHOR("Intel Corporation and its suppliers");
|
|
MODULE_LICENSE("GPL v2");
|