161 lines
5.3 KiB
C
161 lines
5.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Aptina Sensor PLL Configuration
|
|
*
|
|
* Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/gcd.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "aptina-pll.h"
|
|
|
|
int aptina_pll_calculate(struct device *dev,
|
|
const struct aptina_pll_limits *limits,
|
|
struct aptina_pll *pll)
|
|
{
|
|
unsigned int mf_min;
|
|
unsigned int mf_max;
|
|
unsigned int p1_min;
|
|
unsigned int p1_max;
|
|
unsigned int p1;
|
|
unsigned int div;
|
|
|
|
dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
|
|
pll->ext_clock, pll->pix_clock);
|
|
|
|
if (pll->ext_clock < limits->ext_clock_min ||
|
|
pll->ext_clock > limits->ext_clock_max) {
|
|
dev_err(dev, "pll: invalid external clock frequency.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
|
|
dev_err(dev, "pll: invalid pixel clock frequency.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Compute the multiplier M and combined N*P1 divisor. */
|
|
div = gcd(pll->pix_clock, pll->ext_clock);
|
|
pll->m = pll->pix_clock / div;
|
|
div = pll->ext_clock / div;
|
|
|
|
/* We now have the smallest M and N*P1 values that will result in the
|
|
* desired pixel clock frequency, but they might be out of the valid
|
|
* range. Compute the factor by which we should multiply them given the
|
|
* following constraints:
|
|
*
|
|
* - minimum/maximum multiplier
|
|
* - minimum/maximum multiplier output clock frequency assuming the
|
|
* minimum/maximum N value
|
|
* - minimum/maximum combined N*P1 divisor
|
|
*/
|
|
mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
|
|
mf_min = max(mf_min, limits->out_clock_min /
|
|
(pll->ext_clock / limits->n_min * pll->m));
|
|
mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
|
|
mf_max = limits->m_max / pll->m;
|
|
mf_max = min(mf_max, limits->out_clock_max /
|
|
(pll->ext_clock / limits->n_max * pll->m));
|
|
mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
|
|
|
|
dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
|
|
if (mf_min > mf_max) {
|
|
dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* We're looking for the highest acceptable P1 value for which a
|
|
* multiplier factor MF exists that fulfills the following conditions:
|
|
*
|
|
* 1. p1 is in the [p1_min, p1_max] range given by the limits and is
|
|
* even
|
|
* 2. mf is in the [mf_min, mf_max] range computed above
|
|
* 3. div * mf is a multiple of p1, in order to compute
|
|
* n = div * mf / p1
|
|
* m = pll->m * mf
|
|
* 4. the internal clock frequency, given by ext_clock / n, is in the
|
|
* [int_clock_min, int_clock_max] range given by the limits
|
|
* 5. the output clock frequency, given by ext_clock / n * m, is in the
|
|
* [out_clock_min, out_clock_max] range given by the limits
|
|
*
|
|
* The first naive approach is to iterate over all p1 values acceptable
|
|
* according to (1) and all mf values acceptable according to (2), and
|
|
* stop at the first combination that fulfills (3), (4) and (5). This
|
|
* has a O(n^2) complexity.
|
|
*
|
|
* Instead of iterating over all mf values in the [mf_min, mf_max] range
|
|
* we can compute the mf increment between two acceptable values
|
|
* according to (3) with
|
|
*
|
|
* mf_inc = p1 / gcd(div, p1) (6)
|
|
*
|
|
* and round the minimum up to the nearest multiple of mf_inc. This will
|
|
* restrict the number of mf values to be checked.
|
|
*
|
|
* Furthermore, conditions (4) and (5) only restrict the range of
|
|
* acceptable p1 and mf values by modifying the minimum and maximum
|
|
* limits. (5) can be expressed as
|
|
*
|
|
* ext_clock / (div * mf / p1) * m * mf >= out_clock_min
|
|
* ext_clock / (div * mf / p1) * m * mf <= out_clock_max
|
|
*
|
|
* or
|
|
*
|
|
* p1 >= out_clock_min * div / (ext_clock * m) (7)
|
|
* p1 <= out_clock_max * div / (ext_clock * m)
|
|
*
|
|
* Similarly, (4) can be expressed as
|
|
*
|
|
* mf >= ext_clock * p1 / (int_clock_max * div) (8)
|
|
* mf <= ext_clock * p1 / (int_clock_min * div)
|
|
*
|
|
* We can thus iterate over the restricted p1 range defined by the
|
|
* combination of (1) and (7), and then compute the restricted mf range
|
|
* defined by the combination of (2), (6) and (8). If the resulting mf
|
|
* range is not empty, any value in the mf range is acceptable. We thus
|
|
* select the mf lwoer bound and the corresponding p1 value.
|
|
*/
|
|
if (limits->p1_min == 0) {
|
|
dev_err(dev, "pll: P1 minimum value must be >0.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
|
|
pll->ext_clock * pll->m));
|
|
p1_max = min(limits->p1_max, limits->out_clock_max * div /
|
|
(pll->ext_clock * pll->m));
|
|
|
|
for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
|
|
unsigned int mf_inc = p1 / gcd(div, p1);
|
|
unsigned int mf_high;
|
|
unsigned int mf_low;
|
|
|
|
mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
|
|
limits->int_clock_max * div)), mf_inc);
|
|
mf_high = min(mf_max, pll->ext_clock * p1 /
|
|
(limits->int_clock_min * div));
|
|
|
|
if (mf_low > mf_high)
|
|
continue;
|
|
|
|
pll->n = div * mf_low / p1;
|
|
pll->m *= mf_low;
|
|
pll->p1 = p1;
|
|
dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
|
|
return 0;
|
|
}
|
|
|
|
dev_err(dev, "pll: no valid N and P1 divisors found.\n");
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(aptina_pll_calculate);
|
|
|
|
MODULE_DESCRIPTION("Aptina PLL Helpers");
|
|
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
|
|
MODULE_LICENSE("GPL v2");
|