linux/linux-5.4.31/drivers/infiniband/ulp/iser/iser_verbs.c

1134 lines
29 KiB
C

/*
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
* Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "iscsi_iser.h"
#define ISCSI_ISER_MAX_CONN 8
#define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
ISCSI_ISER_MAX_CONN)
static void iser_qp_event_callback(struct ib_event *cause, void *context)
{
iser_err("qp event %s (%d)\n",
ib_event_msg(cause->event), cause->event);
}
static void iser_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
iser_err("async event %s (%d) on device %s port %d\n",
ib_event_msg(event->event), event->event,
dev_name(&event->device->dev), event->element.port_num);
}
/**
* iser_create_device_ib_res - creates Protection Domain (PD), Completion
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
* the adapator.
*
* returns 0 on success, -1 on failure
*/
static int iser_create_device_ib_res(struct iser_device *device)
{
struct ib_device *ib_dev = device->ib_device;
int ret, i, max_cqe;
ret = iser_assign_reg_ops(device);
if (ret)
return ret;
device->comps_used = min_t(int, num_online_cpus(),
ib_dev->num_comp_vectors);
device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
GFP_KERNEL);
if (!device->comps)
goto comps_err;
max_cqe = min(ISER_MAX_CQ_LEN, ib_dev->attrs.max_cqe);
iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
device->comps_used, dev_name(&ib_dev->dev),
ib_dev->num_comp_vectors, max_cqe);
device->pd = ib_alloc_pd(ib_dev,
iser_always_reg ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
if (IS_ERR(device->pd))
goto pd_err;
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
comp->cq = ib_alloc_cq(ib_dev, comp, max_cqe, i,
IB_POLL_SOFTIRQ);
if (IS_ERR(comp->cq)) {
comp->cq = NULL;
goto cq_err;
}
}
INIT_IB_EVENT_HANDLER(&device->event_handler, ib_dev,
iser_event_handler);
ib_register_event_handler(&device->event_handler);
return 0;
cq_err:
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
if (comp->cq)
ib_free_cq(comp->cq);
}
ib_dealloc_pd(device->pd);
pd_err:
kfree(device->comps);
comps_err:
iser_err("failed to allocate an IB resource\n");
return -1;
}
/**
* iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
* CQ and PD created with the device associated with the adapator.
*/
static void iser_free_device_ib_res(struct iser_device *device)
{
int i;
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
ib_free_cq(comp->cq);
comp->cq = NULL;
}
ib_unregister_event_handler(&device->event_handler);
ib_dealloc_pd(device->pd);
kfree(device->comps);
device->comps = NULL;
device->pd = NULL;
}
/**
* iser_alloc_fmr_pool - Creates FMR pool and page_vector
*
* returns 0 on success, or errno code on failure
*/
int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
unsigned cmds_max,
unsigned int size)
{
struct iser_device *device = ib_conn->device;
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_page_vec *page_vec;
struct iser_fr_desc *desc;
struct ib_fmr_pool *fmr_pool;
struct ib_fmr_pool_param params;
int ret;
INIT_LIST_HEAD(&fr_pool->list);
spin_lock_init(&fr_pool->lock);
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
GFP_KERNEL);
if (!page_vec) {
ret = -ENOMEM;
goto err_frpl;
}
page_vec->pages = (u64 *)(page_vec + 1);
params.page_shift = SHIFT_4K;
params.max_pages_per_fmr = size;
/* make the pool size twice the max number of SCSI commands *
* the ML is expected to queue, watermark for unmap at 50% */
params.pool_size = cmds_max * 2;
params.dirty_watermark = cmds_max;
params.cache = 0;
params.flush_function = NULL;
params.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
fmr_pool = ib_create_fmr_pool(device->pd, &params);
if (IS_ERR(fmr_pool)) {
ret = PTR_ERR(fmr_pool);
iser_err("FMR allocation failed, err %d\n", ret);
goto err_fmr;
}
desc->rsc.page_vec = page_vec;
desc->rsc.fmr_pool = fmr_pool;
list_add(&desc->list, &fr_pool->list);
return 0;
err_fmr:
kfree(page_vec);
err_frpl:
kfree(desc);
return ret;
}
/**
* iser_free_fmr_pool - releases the FMR pool and page vec
*/
void iser_free_fmr_pool(struct ib_conn *ib_conn)
{
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc;
desc = list_first_entry(&fr_pool->list,
struct iser_fr_desc, list);
list_del(&desc->list);
iser_info("freeing conn %p fmr pool %p\n",
ib_conn, desc->rsc.fmr_pool);
ib_destroy_fmr_pool(desc->rsc.fmr_pool);
kfree(desc->rsc.page_vec);
kfree(desc);
}
static struct iser_fr_desc *
iser_create_fastreg_desc(struct iser_device *device,
struct ib_pd *pd,
bool pi_enable,
unsigned int size)
{
struct iser_fr_desc *desc;
struct ib_device *ib_dev = device->ib_device;
enum ib_mr_type mr_type;
int ret;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
if (ib_dev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
mr_type = IB_MR_TYPE_SG_GAPS;
else
mr_type = IB_MR_TYPE_MEM_REG;
desc->rsc.mr = ib_alloc_mr(pd, mr_type, size);
if (IS_ERR(desc->rsc.mr)) {
ret = PTR_ERR(desc->rsc.mr);
iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
goto err_alloc_mr;
}
if (pi_enable) {
desc->rsc.sig_mr = ib_alloc_mr_integrity(pd, size, size);
if (IS_ERR(desc->rsc.sig_mr)) {
ret = PTR_ERR(desc->rsc.sig_mr);
iser_err("Failed to allocate sig_mr err=%d\n", ret);
goto err_alloc_mr_integrity;
}
}
desc->rsc.mr_valid = 0;
return desc;
err_alloc_mr_integrity:
ib_dereg_mr(desc->rsc.mr);
err_alloc_mr:
kfree(desc);
return ERR_PTR(ret);
}
static void iser_destroy_fastreg_desc(struct iser_fr_desc *desc)
{
struct iser_reg_resources *res = &desc->rsc;
ib_dereg_mr(res->mr);
if (res->sig_mr) {
ib_dereg_mr(res->sig_mr);
res->sig_mr = NULL;
}
kfree(desc);
}
/**
* iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
* for fast registration work requests.
* returns 0 on success, or errno code on failure
*/
int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
unsigned cmds_max,
unsigned int size)
{
struct iser_device *device = ib_conn->device;
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc;
int i, ret;
INIT_LIST_HEAD(&fr_pool->list);
INIT_LIST_HEAD(&fr_pool->all_list);
spin_lock_init(&fr_pool->lock);
fr_pool->size = 0;
for (i = 0; i < cmds_max; i++) {
desc = iser_create_fastreg_desc(device, device->pd,
ib_conn->pi_support, size);
if (IS_ERR(desc)) {
ret = PTR_ERR(desc);
goto err;
}
list_add_tail(&desc->list, &fr_pool->list);
list_add_tail(&desc->all_list, &fr_pool->all_list);
fr_pool->size++;
}
return 0;
err:
iser_free_fastreg_pool(ib_conn);
return ret;
}
/**
* iser_free_fastreg_pool - releases the pool of fast_reg descriptors
*/
void iser_free_fastreg_pool(struct ib_conn *ib_conn)
{
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc, *tmp;
int i = 0;
if (list_empty(&fr_pool->all_list))
return;
iser_info("freeing conn %p fr pool\n", ib_conn);
list_for_each_entry_safe(desc, tmp, &fr_pool->all_list, all_list) {
list_del(&desc->all_list);
iser_destroy_fastreg_desc(desc);
++i;
}
if (i < fr_pool->size)
iser_warn("pool still has %d regions registered\n",
fr_pool->size - i);
}
/**
* iser_create_ib_conn_res - Queue-Pair (QP)
*
* returns 0 on success, -1 on failure
*/
static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
{
struct iser_conn *iser_conn = to_iser_conn(ib_conn);
struct iser_device *device;
struct ib_device *ib_dev;
struct ib_qp_init_attr init_attr;
int ret = -ENOMEM;
int index, min_index = 0;
BUG_ON(ib_conn->device == NULL);
device = ib_conn->device;
ib_dev = device->ib_device;
memset(&init_attr, 0, sizeof init_attr);
mutex_lock(&ig.connlist_mutex);
/* select the CQ with the minimal number of usages */
for (index = 0; index < device->comps_used; index++) {
if (device->comps[index].active_qps <
device->comps[min_index].active_qps)
min_index = index;
}
ib_conn->comp = &device->comps[min_index];
ib_conn->comp->active_qps++;
mutex_unlock(&ig.connlist_mutex);
iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
init_attr.event_handler = iser_qp_event_callback;
init_attr.qp_context = (void *)ib_conn;
init_attr.send_cq = ib_conn->comp->cq;
init_attr.recv_cq = ib_conn->comp->cq;
init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
init_attr.cap.max_send_sge = 2;
init_attr.cap.max_recv_sge = 1;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
if (ib_conn->pi_support) {
init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
} else {
if (ib_dev->attrs.max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
} else {
init_attr.cap.max_send_wr = ib_dev->attrs.max_qp_wr;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ib_dev->attrs.max_qp_wr);
iser_dbg("device %s supports max_send_wr %d\n",
dev_name(&device->ib_device->dev),
ib_dev->attrs.max_qp_wr);
}
}
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
if (ret)
goto out_err;
ib_conn->qp = ib_conn->cma_id->qp;
iser_info("setting conn %p cma_id %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->cma_id->qp);
return ret;
out_err:
mutex_lock(&ig.connlist_mutex);
ib_conn->comp->active_qps--;
mutex_unlock(&ig.connlist_mutex);
iser_err("unable to alloc mem or create resource, err %d\n", ret);
return ret;
}
/**
* based on the resolved device node GUID see if there already allocated
* device for this device. If there's no such, create one.
*/
static
struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
mutex_lock(&ig.device_list_mutex);
list_for_each_entry(device, &ig.device_list, ig_list)
/* find if there's a match using the node GUID */
if (device->ib_device->node_guid == cma_id->device->node_guid)
goto inc_refcnt;
device = kzalloc(sizeof *device, GFP_KERNEL);
if (device == NULL)
goto out;
/* assign this device to the device */
device->ib_device = cma_id->device;
/* init the device and link it into ig device list */
if (iser_create_device_ib_res(device)) {
kfree(device);
device = NULL;
goto out;
}
list_add(&device->ig_list, &ig.device_list);
inc_refcnt:
device->refcount++;
out:
mutex_unlock(&ig.device_list_mutex);
return device;
}
/* if there's no demand for this device, release it */
static void iser_device_try_release(struct iser_device *device)
{
mutex_lock(&ig.device_list_mutex);
device->refcount--;
iser_info("device %p refcount %d\n", device, device->refcount);
if (!device->refcount) {
iser_free_device_ib_res(device);
list_del(&device->ig_list);
kfree(device);
}
mutex_unlock(&ig.device_list_mutex);
}
/**
* Called with state mutex held
**/
static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
enum iser_conn_state comp,
enum iser_conn_state exch)
{
int ret;
ret = (iser_conn->state == comp);
if (ret)
iser_conn->state = exch;
return ret;
}
void iser_release_work(struct work_struct *work)
{
struct iser_conn *iser_conn;
iser_conn = container_of(work, struct iser_conn, release_work);
/* Wait for conn_stop to complete */
wait_for_completion(&iser_conn->stop_completion);
/* Wait for IB resouces cleanup to complete */
wait_for_completion(&iser_conn->ib_completion);
mutex_lock(&iser_conn->state_mutex);
iser_conn->state = ISER_CONN_DOWN;
mutex_unlock(&iser_conn->state_mutex);
iser_conn_release(iser_conn);
}
/**
* iser_free_ib_conn_res - release IB related resources
* @iser_conn: iser connection struct
* @destroy: indicator if we need to try to release the
* iser device and memory regoins pool (only iscsi
* shutdown and DEVICE_REMOVAL will use this).
*
* This routine is called with the iser state mutex held
* so the cm_id removal is out of here. It is Safe to
* be invoked multiple times.
*/
static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
bool destroy)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
iser_info("freeing conn %p cma_id %p qp %p\n",
iser_conn, ib_conn->cma_id, ib_conn->qp);
if (ib_conn->qp != NULL) {
mutex_lock(&ig.connlist_mutex);
ib_conn->comp->active_qps--;
mutex_unlock(&ig.connlist_mutex);
rdma_destroy_qp(ib_conn->cma_id);
ib_conn->qp = NULL;
}
if (destroy) {
if (iser_conn->rx_descs)
iser_free_rx_descriptors(iser_conn);
if (device != NULL) {
iser_device_try_release(device);
ib_conn->device = NULL;
}
}
}
/**
* Frees all conn objects and deallocs conn descriptor
*/
void iser_conn_release(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
mutex_lock(&ig.connlist_mutex);
list_del(&iser_conn->conn_list);
mutex_unlock(&ig.connlist_mutex);
mutex_lock(&iser_conn->state_mutex);
/* In case we endup here without ep_disconnect being invoked. */
if (iser_conn->state != ISER_CONN_DOWN) {
iser_warn("iser conn %p state %d, expected state down.\n",
iser_conn, iser_conn->state);
iscsi_destroy_endpoint(iser_conn->ep);
iser_conn->state = ISER_CONN_DOWN;
}
/*
* In case we never got to bind stage, we still need to
* release IB resources (which is safe to call more than once).
*/
iser_free_ib_conn_res(iser_conn, true);
mutex_unlock(&iser_conn->state_mutex);
if (ib_conn->cma_id != NULL) {
rdma_destroy_id(ib_conn->cma_id);
ib_conn->cma_id = NULL;
}
kfree(iser_conn);
}
/**
* triggers start of the disconnect procedures and wait for them to be done
* Called with state mutex held
*/
int iser_conn_terminate(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
int err = 0;
/* terminate the iser conn only if the conn state is UP */
if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
return 0;
iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
/* suspend queuing of new iscsi commands */
if (iser_conn->iscsi_conn)
iscsi_suspend_queue(iser_conn->iscsi_conn);
/*
* In case we didn't already clean up the cma_id (peer initiated
* a disconnection), we need to Cause the CMA to change the QP
* state to ERROR.
*/
if (ib_conn->cma_id) {
err = rdma_disconnect(ib_conn->cma_id);
if (err)
iser_err("Failed to disconnect, conn: 0x%p err %d\n",
iser_conn, err);
/* block until all flush errors are consumed */
ib_drain_sq(ib_conn->qp);
}
return 1;
}
/**
* Called with state mutex held
**/
static void iser_connect_error(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn;
iser_conn = (struct iser_conn *)cma_id->context;
iser_conn->state = ISER_CONN_TERMINATING;
}
static void
iser_calc_scsi_params(struct iser_conn *iser_conn,
unsigned int max_sectors)
{
struct iser_device *device = iser_conn->ib_conn.device;
struct ib_device_attr *attr = &device->ib_device->attrs;
unsigned short sg_tablesize, sup_sg_tablesize;
unsigned short reserved_mr_pages;
u32 max_num_sg;
/*
* FRs without SG_GAPS or FMRs can only map up to a (device) page per
* entry, but if the first entry is misaligned we'll end up using two
* entries (head and tail) for a single page worth data, so one
* additional entry is required.
*/
if ((attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) &&
(attr->device_cap_flags & IB_DEVICE_SG_GAPS_REG))
reserved_mr_pages = 0;
else
reserved_mr_pages = 1;
if (iser_conn->ib_conn.pi_support)
max_num_sg = attr->max_pi_fast_reg_page_list_len;
else
max_num_sg = attr->max_fast_reg_page_list_len;
sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
if (attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)
sup_sg_tablesize =
min_t(
uint, ISCSI_ISER_MAX_SG_TABLESIZE,
max_num_sg - reserved_mr_pages);
else
sup_sg_tablesize = ISCSI_ISER_MAX_SG_TABLESIZE;
iser_conn->scsi_sg_tablesize = min(sg_tablesize, sup_sg_tablesize);
iser_conn->pages_per_mr =
iser_conn->scsi_sg_tablesize + reserved_mr_pages;
}
/**
* Called with state mutex held
**/
static void iser_addr_handler(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
struct iser_conn *iser_conn;
struct ib_conn *ib_conn;
int ret;
iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
ib_conn = &iser_conn->ib_conn;
device = iser_device_find_by_ib_device(cma_id);
if (!device) {
iser_err("device lookup/creation failed\n");
iser_connect_error(cma_id);
return;
}
ib_conn->device = device;
/* connection T10-PI support */
if (iser_pi_enable) {
if (!(device->ib_device->attrs.device_cap_flags &
IB_DEVICE_INTEGRITY_HANDOVER)) {
iser_warn("T10-PI requested but not supported on %s, "
"continue without T10-PI\n",
dev_name(&ib_conn->device->ib_device->dev));
ib_conn->pi_support = false;
} else {
ib_conn->pi_support = true;
}
}
iser_calc_scsi_params(iser_conn, iser_max_sectors);
ret = rdma_resolve_route(cma_id, 1000);
if (ret) {
iser_err("resolve route failed: %d\n", ret);
iser_connect_error(cma_id);
return;
}
}
/**
* Called with state mutex held
**/
static void iser_route_handler(struct rdma_cm_id *cma_id)
{
struct rdma_conn_param conn_param;
int ret;
struct iser_cm_hdr req_hdr;
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
ret = iser_create_ib_conn_res(ib_conn);
if (ret)
goto failure;
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = device->ib_device->attrs.max_qp_rd_atom;
conn_param.initiator_depth = 1;
conn_param.retry_count = 7;
conn_param.rnr_retry_count = 6;
memset(&req_hdr, 0, sizeof(req_hdr));
req_hdr.flags = ISER_ZBVA_NOT_SUP;
if (!device->remote_inv_sup)
req_hdr.flags |= ISER_SEND_W_INV_NOT_SUP;
conn_param.private_data = (void *)&req_hdr;
conn_param.private_data_len = sizeof(struct iser_cm_hdr);
ret = rdma_connect(cma_id, &conn_param);
if (ret) {
iser_err("failure connecting: %d\n", ret);
goto failure;
}
return;
failure:
iser_connect_error(cma_id);
}
static void iser_connected_handler(struct rdma_cm_id *cma_id,
const void *private_data)
{
struct iser_conn *iser_conn;
struct ib_qp_attr attr;
struct ib_qp_init_attr init_attr;
iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
(void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
if (private_data) {
u8 flags = *(u8 *)private_data;
iser_conn->snd_w_inv = !(flags & ISER_SEND_W_INV_NOT_SUP);
}
iser_info("conn %p: negotiated %s invalidation\n",
iser_conn, iser_conn->snd_w_inv ? "remote" : "local");
iser_conn->state = ISER_CONN_UP;
complete(&iser_conn->up_completion);
}
static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn_terminate(iser_conn)) {
if (iser_conn->iscsi_conn)
iscsi_conn_failure(iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
else
iser_err("iscsi_iser connection isn't bound\n");
}
}
static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
bool destroy)
{
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
/*
* We are not guaranteed that we visited disconnected_handler
* by now, call it here to be safe that we handle CM drep
* and flush errors.
*/
iser_disconnected_handler(cma_id);
iser_free_ib_conn_res(iser_conn, destroy);
complete(&iser_conn->ib_completion);
};
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
{
struct iser_conn *iser_conn;
int ret = 0;
iser_conn = (struct iser_conn *)cma_id->context;
iser_info("%s (%d): status %d conn %p id %p\n",
rdma_event_msg(event->event), event->event,
event->status, cma_id->context, cma_id);
mutex_lock(&iser_conn->state_mutex);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
iser_addr_handler(cma_id);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
iser_route_handler(cma_id);
break;
case RDMA_CM_EVENT_ESTABLISHED:
iser_connected_handler(cma_id, event->param.conn.private_data);
break;
case RDMA_CM_EVENT_REJECTED:
iser_info("Connection rejected: %s\n",
rdma_reject_msg(cma_id, event->status));
/* FALLTHROUGH */
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
iser_connect_error(cma_id);
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
iser_cleanup_handler(cma_id, false);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/*
* we *must* destroy the device as we cannot rely
* on iscsid to be around to initiate error handling.
* also if we are not in state DOWN implicitly destroy
* the cma_id.
*/
iser_cleanup_handler(cma_id, true);
if (iser_conn->state != ISER_CONN_DOWN) {
iser_conn->ib_conn.cma_id = NULL;
ret = 1;
}
break;
default:
iser_err("Unexpected RDMA CM event: %s (%d)\n",
rdma_event_msg(event->event), event->event);
break;
}
mutex_unlock(&iser_conn->state_mutex);
return ret;
}
void iser_conn_init(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
iser_conn->state = ISER_CONN_INIT;
init_completion(&iser_conn->stop_completion);
init_completion(&iser_conn->ib_completion);
init_completion(&iser_conn->up_completion);
INIT_LIST_HEAD(&iser_conn->conn_list);
mutex_init(&iser_conn->state_mutex);
ib_conn->post_recv_buf_count = 0;
ib_conn->reg_cqe.done = iser_reg_comp;
}
/**
* starts the process of connecting to the target
* sleeps until the connection is established or rejected
*/
int iser_connect(struct iser_conn *iser_conn,
struct sockaddr *src_addr,
struct sockaddr *dst_addr,
int non_blocking)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
int err = 0;
mutex_lock(&iser_conn->state_mutex);
sprintf(iser_conn->name, "%pISp", dst_addr);
iser_info("connecting to: %s\n", iser_conn->name);
/* the device is known only --after-- address resolution */
ib_conn->device = NULL;
iser_conn->state = ISER_CONN_PENDING;
ib_conn->cma_id = rdma_create_id(&init_net, iser_cma_handler,
(void *)iser_conn,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(ib_conn->cma_id)) {
err = PTR_ERR(ib_conn->cma_id);
iser_err("rdma_create_id failed: %d\n", err);
goto id_failure;
}
err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
if (err) {
iser_err("rdma_resolve_addr failed: %d\n", err);
goto addr_failure;
}
if (!non_blocking) {
wait_for_completion_interruptible(&iser_conn->up_completion);
if (iser_conn->state != ISER_CONN_UP) {
err = -EIO;
goto connect_failure;
}
}
mutex_unlock(&iser_conn->state_mutex);
mutex_lock(&ig.connlist_mutex);
list_add(&iser_conn->conn_list, &ig.connlist);
mutex_unlock(&ig.connlist_mutex);
return 0;
id_failure:
ib_conn->cma_id = NULL;
addr_failure:
iser_conn->state = ISER_CONN_DOWN;
connect_failure:
mutex_unlock(&iser_conn->state_mutex);
iser_conn_release(iser_conn);
return err;
}
int iser_post_recvl(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_login_desc *desc = &iser_conn->login_desc;
struct ib_recv_wr wr;
int ib_ret;
desc->sge.addr = desc->rsp_dma;
desc->sge.length = ISER_RX_LOGIN_SIZE;
desc->sge.lkey = ib_conn->device->pd->local_dma_lkey;
desc->cqe.done = iser_login_rsp;
wr.wr_cqe = &desc->cqe;
wr.sg_list = &desc->sge;
wr.num_sge = 1;
wr.next = NULL;
ib_conn->post_recv_buf_count++;
ib_ret = ib_post_recv(ib_conn->qp, &wr, NULL);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count--;
}
return ib_ret;
}
int iser_post_recvm(struct iser_conn *iser_conn, int count)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
unsigned int my_rx_head = iser_conn->rx_desc_head;
struct iser_rx_desc *rx_desc;
struct ib_recv_wr *wr;
int i, ib_ret;
for (wr = ib_conn->rx_wr, i = 0; i < count; i++, wr++) {
rx_desc = &iser_conn->rx_descs[my_rx_head];
rx_desc->cqe.done = iser_task_rsp;
wr->wr_cqe = &rx_desc->cqe;
wr->sg_list = &rx_desc->rx_sg;
wr->num_sge = 1;
wr->next = wr + 1;
my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
}
wr--;
wr->next = NULL; /* mark end of work requests list */
ib_conn->post_recv_buf_count += count;
ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, NULL);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count -= count;
} else
iser_conn->rx_desc_head = my_rx_head;
return ib_ret;
}
/**
* iser_start_send - Initiate a Send DTO operation
*
* returns 0 on success, -1 on failure
*/
int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
bool signal)
{
struct ib_send_wr *wr = &tx_desc->send_wr;
struct ib_send_wr *first_wr;
int ib_ret;
ib_dma_sync_single_for_device(ib_conn->device->ib_device,
tx_desc->dma_addr, ISER_HEADERS_LEN,
DMA_TO_DEVICE);
wr->next = NULL;
wr->wr_cqe = &tx_desc->cqe;
wr->sg_list = tx_desc->tx_sg;
wr->num_sge = tx_desc->num_sge;
wr->opcode = IB_WR_SEND;
wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
if (tx_desc->inv_wr.next)
first_wr = &tx_desc->inv_wr;
else if (tx_desc->reg_wr.wr.next)
first_wr = &tx_desc->reg_wr.wr;
else
first_wr = wr;
ib_ret = ib_post_send(ib_conn->qp, first_wr, NULL);
if (ib_ret)
iser_err("ib_post_send failed, ret:%d opcode:%d\n",
ib_ret, wr->opcode);
return ib_ret;
}
u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir, sector_t *sector)
{
struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
struct iser_fr_desc *desc = reg->mem_h;
unsigned long sector_size = iser_task->sc->device->sector_size;
struct ib_mr_status mr_status;
int ret;
if (desc && desc->sig_protected) {
desc->sig_protected = 0;
ret = ib_check_mr_status(desc->rsc.sig_mr,
IB_MR_CHECK_SIG_STATUS, &mr_status);
if (ret) {
pr_err("ib_check_mr_status failed, ret %d\n", ret);
/* Not a lot we can do, return ambiguous guard error */
*sector = 0;
return 0x1;
}
if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
sector_t sector_off = mr_status.sig_err.sig_err_offset;
sector_div(sector_off, sector_size + 8);
*sector = scsi_get_lba(iser_task->sc) + sector_off;
pr_err("PI error found type %d at sector %llx "
"expected %x vs actual %x\n",
mr_status.sig_err.err_type,
(unsigned long long)*sector,
mr_status.sig_err.expected,
mr_status.sig_err.actual);
switch (mr_status.sig_err.err_type) {
case IB_SIG_BAD_GUARD:
return 0x1;
case IB_SIG_BAD_REFTAG:
return 0x3;
case IB_SIG_BAD_APPTAG:
return 0x2;
}
}
}
return 0;
}
void iser_err_comp(struct ib_wc *wc, const char *type)
{
if (wc->status != IB_WC_WR_FLUSH_ERR) {
struct iser_conn *iser_conn = to_iser_conn(wc->qp->qp_context);
iser_err("%s failure: %s (%d) vend_err %#x\n", type,
ib_wc_status_msg(wc->status), wc->status,
wc->vendor_err);
if (iser_conn->iscsi_conn)
iscsi_conn_failure(iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
} else {
iser_dbg("%s failure: %s (%d)\n", type,
ib_wc_status_msg(wc->status), wc->status);
}
}