linux/linux-5.4.31/drivers/gpu/drm/ttm/ttm_bo.c

2000 lines
48 KiB
C

/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#define pr_fmt(fmt) "[TTM] " fmt
#include <drm/ttm/ttm_module.h>
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/atomic.h>
#include <linux/dma-resv.h>
static void ttm_bo_global_kobj_release(struct kobject *kobj);
/**
* ttm_global_mutex - protecting the global BO state
*/
DEFINE_MUTEX(ttm_global_mutex);
unsigned ttm_bo_glob_use_count;
struct ttm_bo_global ttm_bo_glob;
static struct attribute ttm_bo_count = {
.name = "bo_count",
.mode = S_IRUGO
};
/* default destructor */
static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
{
kfree(bo);
}
static inline int ttm_mem_type_from_place(const struct ttm_place *place,
uint32_t *mem_type)
{
int pos;
pos = ffs(place->flags & TTM_PL_MASK_MEM);
if (unlikely(!pos))
return -EINVAL;
*mem_type = pos - 1;
return 0;
}
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
int mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
drm_printf(p, " has_type: %d\n", man->has_type);
drm_printf(p, " use_type: %d\n", man->use_type);
drm_printf(p, " flags: 0x%08X\n", man->flags);
drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset);
drm_printf(p, " size: %llu\n", man->size);
drm_printf(p, " available_caching: 0x%08X\n", man->available_caching);
drm_printf(p, " default_caching: 0x%08X\n", man->default_caching);
if (mem_type != TTM_PL_SYSTEM)
(*man->func->debug)(man, p);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct drm_printer p = drm_debug_printer(TTM_PFX);
int i, ret, mem_type;
drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
bo, bo->mem.num_pages, bo->mem.size >> 10,
bo->mem.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
ret = ttm_mem_type_from_place(&placement->placement[i],
&mem_type);
if (ret)
return;
drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
i, placement->placement[i].flags, mem_type);
ttm_mem_type_debug(bo->bdev, &p, mem_type);
}
}
static ssize_t ttm_bo_global_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
return snprintf(buffer, PAGE_SIZE, "%d\n",
atomic_read(&glob->bo_count));
}
static struct attribute *ttm_bo_global_attrs[] = {
&ttm_bo_count,
NULL
};
static const struct sysfs_ops ttm_bo_global_ops = {
.show = &ttm_bo_global_show
};
static struct kobj_type ttm_bo_glob_kobj_type = {
.release = &ttm_bo_global_kobj_release,
.sysfs_ops = &ttm_bo_global_ops,
.default_attrs = ttm_bo_global_attrs
};
static inline uint32_t ttm_bo_type_flags(unsigned type)
{
return 1 << (type);
}
static void ttm_bo_release_list(struct kref *list_kref)
{
struct ttm_buffer_object *bo =
container_of(list_kref, struct ttm_buffer_object, list_kref);
struct ttm_bo_device *bdev = bo->bdev;
size_t acc_size = bo->acc_size;
BUG_ON(kref_read(&bo->list_kref));
BUG_ON(kref_read(&bo->kref));
BUG_ON(atomic_read(&bo->cpu_writers));
BUG_ON(bo->mem.mm_node != NULL);
BUG_ON(!list_empty(&bo->lru));
BUG_ON(!list_empty(&bo->ddestroy));
ttm_tt_destroy(bo->ttm);
atomic_dec(&bo->bdev->glob->bo_count);
dma_fence_put(bo->moving);
if (!ttm_bo_uses_embedded_gem_object(bo))
dma_resv_fini(&bo->base._resv);
mutex_destroy(&bo->wu_mutex);
bo->destroy(bo);
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
}
static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
dma_resv_assert_held(bo->base.resv);
if (!list_empty(&bo->lru))
return;
if (mem->placement & TTM_PL_FLAG_NO_EVICT)
return;
man = &bdev->man[mem->mem_type];
list_add_tail(&bo->lru, &man->lru[bo->priority]);
kref_get(&bo->list_kref);
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
!(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
TTM_PAGE_FLAG_SWAPPED))) {
list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
kref_get(&bo->list_kref);
}
}
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
ttm_bo_add_mem_to_lru(bo, &bo->mem);
}
EXPORT_SYMBOL(ttm_bo_add_to_lru);
static void ttm_bo_ref_bug(struct kref *list_kref)
{
BUG();
}
void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
bool notify = false;
if (!list_empty(&bo->swap)) {
list_del_init(&bo->swap);
kref_put(&bo->list_kref, ttm_bo_ref_bug);
notify = true;
}
if (!list_empty(&bo->lru)) {
list_del_init(&bo->lru);
kref_put(&bo->list_kref, ttm_bo_ref_bug);
notify = true;
}
if (notify && bdev->driver->del_from_lru_notify)
bdev->driver->del_from_lru_notify(bo);
}
void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_global *glob = bo->bdev->glob;
spin_lock(&glob->lru_lock);
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
struct ttm_buffer_object *bo)
{
if (!pos->first)
pos->first = bo;
pos->last = bo;
}
void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
struct ttm_lru_bulk_move *bulk)
{
dma_resv_assert_held(bo->base.resv);
ttm_bo_del_from_lru(bo);
ttm_bo_add_to_lru(bo);
if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
switch (bo->mem.mem_type) {
case TTM_PL_TT:
ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
break;
case TTM_PL_VRAM:
ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
break;
}
if (bo->ttm && !(bo->ttm->page_flags &
(TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
}
}
EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
{
unsigned i;
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
struct ttm_mem_type_manager *man;
if (!pos->first)
continue;
dma_resv_assert_held(pos->first->base.resv);
dma_resv_assert_held(pos->last->base.resv);
man = &pos->first->bdev->man[TTM_PL_TT];
list_bulk_move_tail(&man->lru[i], &pos->first->lru,
&pos->last->lru);
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
struct ttm_mem_type_manager *man;
if (!pos->first)
continue;
dma_resv_assert_held(pos->first->base.resv);
dma_resv_assert_held(pos->last->base.resv);
man = &pos->first->bdev->man[TTM_PL_VRAM];
list_bulk_move_tail(&man->lru[i], &pos->first->lru,
&pos->last->lru);
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
struct list_head *lru;
if (!pos->first)
continue;
dma_resv_assert_held(pos->first->base.resv);
dma_resv_assert_held(pos->last->base.resv);
lru = &pos->first->bdev->glob->swap_lru[i];
list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
}
}
EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem, bool evict,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
int ret = 0;
if (old_is_pci || new_is_pci ||
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
ret = ttm_mem_io_lock(old_man, true);
if (unlikely(ret != 0))
goto out_err;
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(old_man);
}
/*
* Create and bind a ttm if required.
*/
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (bo->ttm == NULL) {
bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
ret = ttm_tt_create(bo, zero);
if (ret)
goto out_err;
}
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->ttm, mem, ctx);
if (ret)
goto out_err;
}
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, evict, mem);
bo->mem = *mem;
mem->mm_node = NULL;
goto moved;
}
}
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, evict, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, ctx, mem);
else if (bdev->driver->move)
ret = bdev->driver->move(bo, evict, ctx, mem);
else
ret = ttm_bo_move_memcpy(bo, ctx, mem);
if (ret) {
if (bdev->driver->move_notify) {
swap(*mem, bo->mem);
bdev->driver->move_notify(bo, false, mem);
swap(*mem, bo->mem);
}
goto out_err;
}
moved:
if (bo->evicted) {
if (bdev->driver->invalidate_caches) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
if (ret)
pr_err("Can not flush read caches\n");
}
bo->evicted = false;
}
if (bo->mem.mm_node)
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bdev->man[bo->mem.mem_type].gpu_offset;
else
bo->offset = 0;
ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
return 0;
out_err:
new_man = &bdev->man[bo->mem.mem_type];
if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
return ret;
}
/**
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->driver->move_notify)
bo->bdev->driver->move_notify(bo, false, NULL);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
ttm_bo_mem_put(bo, &bo->mem);
}
static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
{
int r;
if (bo->base.resv == &bo->base._resv)
return 0;
BUG_ON(!dma_resv_trylock(&bo->base._resv));
r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
if (r)
dma_resv_unlock(&bo->base._resv);
return r;
}
static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
{
struct dma_resv_list *fobj;
struct dma_fence *fence;
int i;
fobj = dma_resv_get_list(&bo->base._resv);
fence = dma_resv_get_excl(&bo->base._resv);
if (fence && !fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
for (i = 0; fobj && i < fobj->shared_count; ++i) {
fence = rcu_dereference_protected(fobj->shared[i],
dma_resv_held(bo->base.resv));
if (!fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
}
}
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bdev->glob;
int ret;
ret = ttm_bo_individualize_resv(bo);
if (ret) {
/* Last resort, if we fail to allocate memory for the
* fences block for the BO to become idle
*/
dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
30 * HZ);
spin_lock(&glob->lru_lock);
goto error;
}
spin_lock(&glob->lru_lock);
ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
if (!ret) {
if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
if (bo->base.resv != &bo->base._resv)
dma_resv_unlock(&bo->base._resv);
ttm_bo_cleanup_memtype_use(bo);
dma_resv_unlock(bo->base.resv);
return;
}
ttm_bo_flush_all_fences(bo);
/*
* Make NO_EVICT bos immediately available to
* shrinkers, now that they are queued for
* destruction.
*/
if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
ttm_bo_add_to_lru(bo);
}
dma_resv_unlock(bo->base.resv);
}
if (bo->base.resv != &bo->base._resv)
dma_resv_unlock(&bo->base._resv);
error:
kref_get(&bo->list_kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
spin_unlock(&glob->lru_lock);
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
/**
* function ttm_bo_cleanup_refs
* If bo idle, remove from delayed- and lru lists, and unref.
* If not idle, do nothing.
*
* Must be called with lru_lock and reservation held, this function
* will drop the lru lock and optionally the reservation lock before returning.
*
* @interruptible Any sleeps should occur interruptibly.
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
* @unlock_resv Unlock the reservation lock as well.
*/
static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait_gpu,
bool unlock_resv)
{
struct ttm_bo_global *glob = bo->bdev->glob;
struct dma_resv *resv;
int ret;
if (unlikely(list_empty(&bo->ddestroy)))
resv = bo->base.resv;
else
resv = &bo->base._resv;
if (dma_resv_test_signaled_rcu(resv, true))
ret = 0;
else
ret = -EBUSY;
if (ret && !no_wait_gpu) {
long lret;
if (unlock_resv)
dma_resv_unlock(bo->base.resv);
spin_unlock(&glob->lru_lock);
lret = dma_resv_wait_timeout_rcu(resv, true,
interruptible,
30 * HZ);
if (lret < 0)
return lret;
else if (lret == 0)
return -EBUSY;
spin_lock(&glob->lru_lock);
if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
/*
* We raced, and lost, someone else holds the reservation now,
* and is probably busy in ttm_bo_cleanup_memtype_use.
*
* Even if it's not the case, because we finished waiting any
* delayed destruction would succeed, so just return success
* here.
*/
spin_unlock(&glob->lru_lock);
return 0;
}
ret = 0;
}
if (ret || unlikely(list_empty(&bo->ddestroy))) {
if (unlock_resv)
dma_resv_unlock(bo->base.resv);
spin_unlock(&glob->lru_lock);
return ret;
}
ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
kref_put(&bo->list_kref, ttm_bo_ref_bug);
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
if (unlock_resv)
dma_resv_unlock(bo->base.resv);
return 0;
}
/**
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
struct ttm_bo_global *glob = bdev->glob;
struct list_head removed;
bool empty;
INIT_LIST_HEAD(&removed);
spin_lock(&glob->lru_lock);
while (!list_empty(&bdev->ddestroy)) {
struct ttm_buffer_object *bo;
bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
ddestroy);
kref_get(&bo->list_kref);
list_move_tail(&bo->ddestroy, &removed);
if (remove_all || bo->base.resv != &bo->base._resv) {
spin_unlock(&glob->lru_lock);
dma_resv_lock(bo->base.resv, NULL);
spin_lock(&glob->lru_lock);
ttm_bo_cleanup_refs(bo, false, !remove_all, true);
} else if (dma_resv_trylock(bo->base.resv)) {
ttm_bo_cleanup_refs(bo, false, !remove_all, true);
} else {
spin_unlock(&glob->lru_lock);
}
kref_put(&bo->list_kref, ttm_bo_release_list);
spin_lock(&glob->lru_lock);
}
list_splice_tail(&removed, &bdev->ddestroy);
empty = list_empty(&bdev->ddestroy);
spin_unlock(&glob->lru_lock);
return empty;
}
static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
struct ttm_bo_device *bdev =
container_of(work, struct ttm_bo_device, wq.work);
if (!ttm_bo_delayed_delete(bdev, false))
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
if (bo->bdev->driver->release_notify)
bo->bdev->driver->release_notify(bo);
drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node);
ttm_mem_io_lock(man, false);
ttm_mem_io_free_vm(bo);
ttm_mem_io_unlock(man);
ttm_bo_cleanup_refs_or_queue(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
}
void ttm_bo_put(struct ttm_buffer_object *bo)
{
kref_put(&bo->kref, ttm_bo_release);
}
EXPORT_SYMBOL(ttm_bo_put);
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
if (resched)
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
static int ttm_bo_evict(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_reg evict_mem;
struct ttm_placement placement;
int ret = 0;
dma_resv_assert_held(bo->base.resv);
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->driver->evict_flags(bo, &placement);
if (!placement.num_placement && !placement.num_busy_placement) {
ret = ttm_bo_pipeline_gutting(bo);
if (ret)
return ret;
return ttm_tt_create(bo, false);
}
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.bus.io_reserved_vm = false;
evict_mem.bus.io_reserved_count = 0;
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
if (ret) {
if (ret != -ERESTARTSYS) {
pr_err("Failed to find memory space for buffer 0x%p eviction\n",
bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
if (unlikely(ret)) {
if (ret != -ERESTARTSYS)
pr_err("Buffer eviction failed\n");
ttm_bo_mem_put(bo, &evict_mem);
goto out;
}
bo->evicted = true;
out:
return ret;
}
bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
/* Don't evict this BO if it's outside of the
* requested placement range
*/
if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
(place->lpfn && place->lpfn <= bo->mem.start))
return false;
return true;
}
EXPORT_SYMBOL(ttm_bo_eviction_valuable);
/**
* Check the target bo is allowable to be evicted or swapout, including cases:
*
* a. if share same reservation object with ctx->resv, have assumption
* reservation objects should already be locked, so not lock again and
* return true directly when either the opreation allow_reserved_eviction
* or the target bo already is in delayed free list;
*
* b. Otherwise, trylock it.
*/
static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
{
bool ret = false;
if (bo->base.resv == ctx->resv) {
dma_resv_assert_held(bo->base.resv);
if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
|| !list_empty(&bo->ddestroy))
ret = true;
*locked = false;
if (busy)
*busy = false;
} else {
ret = dma_resv_trylock(bo->base.resv);
*locked = ret;
if (busy)
*busy = !ret;
}
return ret;
}
/**
* ttm_mem_evict_wait_busy - wait for a busy BO to become available
*
* @busy_bo: BO which couldn't be locked with trylock
* @ctx: operation context
* @ticket: acquire ticket
*
* Try to lock a busy buffer object to avoid failing eviction.
*/
static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
struct ttm_operation_ctx *ctx,
struct ww_acquire_ctx *ticket)
{
int r;
if (!busy_bo || !ticket)
return -EBUSY;
if (ctx->interruptible)
r = dma_resv_lock_interruptible(busy_bo->base.resv,
ticket);
else
r = dma_resv_lock(busy_bo->base.resv, ticket);
/*
* TODO: It would be better to keep the BO locked until allocation is at
* least tried one more time, but that would mean a much larger rework
* of TTM.
*/
if (!r)
dma_resv_unlock(busy_bo->base.resv);
return r == -EDEADLK ? -EBUSY : r;
}
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
uint32_t mem_type,
const struct ttm_place *place,
struct ttm_operation_ctx *ctx,
struct ww_acquire_ctx *ticket)
{
struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
struct ttm_bo_global *glob = bdev->glob;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
bool locked = false;
unsigned i;
int ret;
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
list_for_each_entry(bo, &man->lru[i], lru) {
bool busy;
if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
&busy)) {
if (busy && !busy_bo && ticket !=
dma_resv_locking_ctx(bo->base.resv))
busy_bo = bo;
continue;
}
if (place && !bdev->driver->eviction_valuable(bo,
place)) {
if (locked)
dma_resv_unlock(bo->base.resv);
continue;
}
break;
}
/* If the inner loop terminated early, we have our candidate */
if (&bo->lru != &man->lru[i])
break;
bo = NULL;
}
if (!bo) {
if (busy_bo)
kref_get(&busy_bo->list_kref);
spin_unlock(&glob->lru_lock);
ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
if (busy_bo)
kref_put(&busy_bo->list_kref, ttm_bo_release_list);
return ret;
}
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
ctx->no_wait_gpu, locked);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ret = ttm_bo_evict(bo, ctx);
if (locked) {
ttm_bo_unreserve(bo);
} else {
spin_lock(&glob->lru_lock);
ttm_bo_add_to_lru(bo);
spin_unlock(&glob->lru_lock);
}
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
if (mem->mm_node)
(*man->func->put_node)(man, mem);
}
EXPORT_SYMBOL(ttm_bo_mem_put);
/**
* Add the last move fence to the BO and reserve a new shared slot.
*/
static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
struct ttm_mem_type_manager *man,
struct ttm_mem_reg *mem,
bool no_wait_gpu)
{
struct dma_fence *fence;
int ret;
spin_lock(&man->move_lock);
fence = dma_fence_get(man->move);
spin_unlock(&man->move_lock);
if (!fence)
return 0;
if (no_wait_gpu)
return -EBUSY;
dma_resv_add_shared_fence(bo->base.resv, fence);
ret = dma_resv_reserve_shared(bo->base.resv, 1);
if (unlikely(ret)) {
dma_fence_put(fence);
return ret;
}
dma_fence_put(bo->moving);
bo->moving = fence;
return 0;
}
/**
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
const struct ttm_place *place,
struct ttm_mem_reg *mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
struct ww_acquire_ctx *ticket;
int ret;
ticket = dma_resv_locking_ctx(bo->base.resv);
do {
ret = (*man->func->get_node)(man, bo, place, mem);
if (unlikely(ret != 0))
return ret;
if (mem->mm_node)
break;
ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
ticket);
if (unlikely(ret != 0))
return ret;
} while (1);
return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
}
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
uint32_t mem_type,
const struct ttm_place *place,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
return false;
if ((place->flags & man->available_caching) == 0)
return false;
cur_flags |= (place->flags & man->available_caching);
*masked_placement = cur_flags;
return true;
}
/**
* ttm_bo_mem_placement - check if placement is compatible
* @bo: BO to find memory for
* @place: where to search
* @mem: the memory object to fill in
* @ctx: operation context
*
* Check if placement is compatible and fill in mem structure.
* Returns -EBUSY if placement won't work or negative error code.
* 0 when placement can be used.
*/
static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
const struct ttm_place *place,
struct ttm_mem_reg *mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
uint32_t mem_type = TTM_PL_SYSTEM;
struct ttm_mem_type_manager *man;
uint32_t cur_flags = 0;
int ret;
ret = ttm_mem_type_from_place(place, &mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type || !man->use_type)
return -EBUSY;
if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
return -EBUSY;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
mem->mem_type = mem_type;
mem->placement = cur_flags;
if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
spin_lock(&bo->bdev->glob->lru_lock);
ttm_bo_del_from_lru(bo);
ttm_bo_add_mem_to_lru(bo, mem);
spin_unlock(&bo->bdev->glob->lru_lock);
}
return 0;
}
/**
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
bool type_found = false;
int i, ret;
ret = dma_resv_reserve_shared(bo->base.resv, 1);
if (unlikely(ret))
return ret;
mem->mm_node = NULL;
for (i = 0; i < placement->num_placement; ++i) {
const struct ttm_place *place = &placement->placement[i];
struct ttm_mem_type_manager *man;
ret = ttm_bo_mem_placement(bo, place, mem, ctx);
if (ret == -EBUSY)
continue;
if (ret)
goto error;
type_found = true;
mem->mm_node = NULL;
if (mem->mem_type == TTM_PL_SYSTEM)
return 0;
man = &bdev->man[mem->mem_type];
ret = (*man->func->get_node)(man, bo, place, mem);
if (unlikely(ret))
goto error;
if (!mem->mm_node)
continue;
ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
if (unlikely(ret)) {
(*man->func->put_node)(man, mem);
if (ret == -EBUSY)
continue;
goto error;
}
return 0;
}
for (i = 0; i < placement->num_busy_placement; ++i) {
const struct ttm_place *place = &placement->busy_placement[i];
ret = ttm_bo_mem_placement(bo, place, mem, ctx);
if (ret == -EBUSY)
continue;
if (ret)
goto error;
type_found = true;
mem->mm_node = NULL;
if (mem->mem_type == TTM_PL_SYSTEM)
return 0;
ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
if (ret == 0 && mem->mm_node)
return 0;
if (ret && ret != -EBUSY)
goto error;
}
ret = -ENOMEM;
if (!type_found) {
pr_err(TTM_PFX "No compatible memory type found\n");
ret = -EINVAL;
}
error:
if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
spin_lock(&bo->bdev->glob->lru_lock);
ttm_bo_move_to_lru_tail(bo, NULL);
spin_unlock(&bo->bdev->glob->lru_lock);
}
return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
int ret = 0;
struct ttm_mem_reg mem;
dma_resv_assert_held(bo->base.resv);
mem.num_pages = bo->num_pages;
mem.size = mem.num_pages << PAGE_SHIFT;
mem.page_alignment = bo->mem.page_alignment;
mem.bus.io_reserved_vm = false;
mem.bus.io_reserved_count = 0;
/*
* Determine where to move the buffer.
*/
ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
if (ret)
goto out_unlock;
ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
out_unlock:
if (ret && mem.mm_node)
ttm_bo_mem_put(bo, &mem);
return ret;
}
static bool ttm_bo_places_compat(const struct ttm_place *places,
unsigned num_placement,
struct ttm_mem_reg *mem,
uint32_t *new_flags)
{
unsigned i;
for (i = 0; i < num_placement; i++) {
const struct ttm_place *heap = &places[i];
if (mem->mm_node && (mem->start < heap->fpfn ||
(heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
continue;
*new_flags = heap->flags;
if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
(*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
(!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
(mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
return true;
}
return false;
}
bool ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_mem_reg *mem,
uint32_t *new_flags)
{
if (ttm_bo_places_compat(placement->placement, placement->num_placement,
mem, new_flags))
return true;
if ((placement->busy_placement != placement->placement ||
placement->num_busy_placement > placement->num_placement) &&
ttm_bo_places_compat(placement->busy_placement,
placement->num_busy_placement,
mem, new_flags))
return true;
return false;
}
EXPORT_SYMBOL(ttm_bo_mem_compat);
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
int ret;
uint32_t new_flags;
dma_resv_assert_held(bo->base.resv);
/*
* Check whether we need to move buffer.
*/
if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
ret = ttm_bo_move_buffer(bo, placement, ctx);
if (ret)
return ret;
} else {
/*
* Use the access and other non-mapping-related flag bits from
* the compatible memory placement flags to the active flags
*/
ttm_flag_masked(&bo->mem.placement, new_flags,
~TTM_PL_MASK_MEMTYPE);
}
/*
* We might need to add a TTM.
*/
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
ret = ttm_tt_create(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
struct ttm_operation_ctx *ctx,
size_t acc_size,
struct sg_table *sg,
struct dma_resv *resv,
void (*destroy) (struct ttm_buffer_object *))
{
int ret = 0;
unsigned long num_pages;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
bool locked;
ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
if (ret) {
pr_err("Out of kernel memory\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -ENOMEM;
}
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
pr_err("Illegal buffer object size\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
ttm_mem_global_free(mem_glob, acc_size);
return -EINVAL;
}
bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
kref_init(&bo->kref);
kref_init(&bo->list_kref);
atomic_set(&bo->cpu_writers, 0);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
INIT_LIST_HEAD(&bo->swap);
INIT_LIST_HEAD(&bo->io_reserve_lru);
mutex_init(&bo->wu_mutex);
bo->bdev = bdev;
bo->type = type;
bo->num_pages = num_pages;
bo->mem.size = num_pages << PAGE_SHIFT;
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->mem.num_pages = bo->num_pages;
bo->mem.mm_node = NULL;
bo->mem.page_alignment = page_alignment;
bo->mem.bus.io_reserved_vm = false;
bo->mem.bus.io_reserved_count = 0;
bo->moving = NULL;
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
bo->acc_size = acc_size;
bo->sg = sg;
if (resv) {
bo->base.resv = resv;
dma_resv_assert_held(bo->base.resv);
} else {
bo->base.resv = &bo->base._resv;
}
if (!ttm_bo_uses_embedded_gem_object(bo)) {
/*
* bo.gem is not initialized, so we have to setup the
* struct elements we want use regardless.
*/
dma_resv_init(&bo->base._resv);
drm_vma_node_reset(&bo->base.vma_node);
}
atomic_inc(&bo->bdev->glob->bo_count);
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device ||
bo->type == ttm_bo_type_sg)
ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node,
bo->mem.num_pages);
/* passed reservation objects should already be locked,
* since otherwise lockdep will be angered in radeon.
*/
if (!resv) {
locked = dma_resv_trylock(bo->base.resv);
WARN_ON(!locked);
}
if (likely(!ret))
ret = ttm_bo_validate(bo, placement, ctx);
if (unlikely(ret)) {
if (!resv)
ttm_bo_unreserve(bo);
ttm_bo_put(bo);
return ret;
}
if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
spin_lock(&bdev->glob->lru_lock);
ttm_bo_add_to_lru(bo);
spin_unlock(&bdev->glob->lru_lock);
}
return ret;
}
EXPORT_SYMBOL(ttm_bo_init_reserved);
int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
size_t acc_size,
struct sg_table *sg,
struct dma_resv *resv,
void (*destroy) (struct ttm_buffer_object *))
{
struct ttm_operation_ctx ctx = { interruptible, false };
int ret;
ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
page_alignment, &ctx, acc_size,
sg, resv, destroy);
if (ret)
return ret;
if (!resv)
ttm_bo_unreserve(bo);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init);
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += ttm_round_pot(npages * sizeof(void *));
size += ttm_round_pot(sizeof(struct ttm_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_acc_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_dma_acc_size);
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo;
size_t acc_size;
int ret;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (unlikely(bo == NULL))
return -ENOMEM;
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
interruptible, acc_size,
NULL, NULL, NULL);
if (likely(ret == 0))
*p_bo = bo;
return ret;
}
EXPORT_SYMBOL(ttm_bo_create);
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
unsigned mem_type)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.no_wait_gpu = false,
.flags = TTM_OPT_FLAG_FORCE_ALLOC
};
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_bo_global *glob = bdev->glob;
struct dma_fence *fence;
int ret;
unsigned i;
/*
* Can't use standard list traversal since we're unlocking.
*/
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
while (!list_empty(&man->lru[i])) {
spin_unlock(&glob->lru_lock);
ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
NULL);
if (ret)
return ret;
spin_lock(&glob->lru_lock);
}
}
spin_unlock(&glob->lru_lock);
spin_lock(&man->move_lock);
fence = dma_fence_get(man->move);
spin_unlock(&man->move_lock);
if (fence) {
ret = dma_fence_wait(fence, false);
dma_fence_put(fence);
if (ret)
return ret;
}
return 0;
}
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man;
int ret = -EINVAL;
if (mem_type >= TTM_NUM_MEM_TYPES) {
pr_err("Illegal memory type %d\n", mem_type);
return ret;
}
man = &bdev->man[mem_type];
if (!man->has_type) {
pr_err("Trying to take down uninitialized memory manager type %u\n",
mem_type);
return ret;
}
man->use_type = false;
man->has_type = false;
ret = 0;
if (mem_type > 0) {
ret = ttm_bo_force_list_clean(bdev, mem_type);
if (ret) {
pr_err("Cleanup eviction failed\n");
return ret;
}
ret = (*man->func->takedown)(man);
}
dma_fence_put(man->move);
man->move = NULL;
return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
pr_err("Illegal memory manager memory type %u\n", mem_type);
return -EINVAL;
}
if (!man->has_type) {
pr_err("Memory type %u has not been initialized\n", mem_type);
return 0;
}
return ttm_bo_force_list_clean(bdev, mem_type);
}
EXPORT_SYMBOL(ttm_bo_evict_mm);
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size)
{
int ret;
struct ttm_mem_type_manager *man;
unsigned i;
BUG_ON(type >= TTM_NUM_MEM_TYPES);
man = &bdev->man[type];
BUG_ON(man->has_type);
man->io_reserve_fastpath = true;
man->use_io_reserve_lru = false;
mutex_init(&man->io_reserve_mutex);
spin_lock_init(&man->move_lock);
INIT_LIST_HEAD(&man->io_reserve_lru);
ret = bdev->driver->init_mem_type(bdev, type, man);
if (ret)
return ret;
man->bdev = bdev;
if (type != TTM_PL_SYSTEM) {
ret = (*man->func->init)(man, p_size);
if (ret)
return ret;
}
man->has_type = true;
man->use_type = true;
man->size = p_size;
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
INIT_LIST_HEAD(&man->lru[i]);
man->move = NULL;
return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
__free_page(glob->dummy_read_page);
}
static void ttm_bo_global_release(void)
{
struct ttm_bo_global *glob = &ttm_bo_glob;
mutex_lock(&ttm_global_mutex);
if (--ttm_bo_glob_use_count > 0)
goto out;
kobject_del(&glob->kobj);
kobject_put(&glob->kobj);
ttm_mem_global_release(&ttm_mem_glob);
memset(glob, 0, sizeof(*glob));
out:
mutex_unlock(&ttm_global_mutex);
}
static int ttm_bo_global_init(void)
{
struct ttm_bo_global *glob = &ttm_bo_glob;
int ret = 0;
unsigned i;
mutex_lock(&ttm_global_mutex);
if (++ttm_bo_glob_use_count > 1)
goto out;
ret = ttm_mem_global_init(&ttm_mem_glob);
if (ret)
goto out;
spin_lock_init(&glob->lru_lock);
glob->mem_glob = &ttm_mem_glob;
glob->mem_glob->bo_glob = glob;
glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
if (unlikely(glob->dummy_read_page == NULL)) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
INIT_LIST_HEAD(&glob->swap_lru[i]);
INIT_LIST_HEAD(&glob->device_list);
atomic_set(&glob->bo_count, 0);
ret = kobject_init_and_add(
&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
if (unlikely(ret != 0))
kobject_put(&glob->kobj);
out:
mutex_unlock(&ttm_global_mutex);
return ret;
}
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
int ret = 0;
unsigned i = TTM_NUM_MEM_TYPES;
struct ttm_mem_type_manager *man;
struct ttm_bo_global *glob = bdev->glob;
while (i--) {
man = &bdev->man[i];
if (man->has_type) {
man->use_type = false;
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
ret = -EBUSY;
pr_err("DRM memory manager type %d is not clean\n",
i);
}
man->has_type = false;
}
}
mutex_lock(&ttm_global_mutex);
list_del(&bdev->device_list);
mutex_unlock(&ttm_global_mutex);
cancel_delayed_work_sync(&bdev->wq);
if (ttm_bo_delayed_delete(bdev, true))
pr_debug("Delayed destroy list was clean\n");
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
if (list_empty(&bdev->man[0].lru[0]))
pr_debug("Swap list %d was clean\n", i);
spin_unlock(&glob->lru_lock);
drm_vma_offset_manager_destroy(&bdev->vma_manager);
if (!ret)
ttm_bo_global_release();
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);
int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_bo_driver *driver,
struct address_space *mapping,
bool need_dma32)
{
struct ttm_bo_global *glob = &ttm_bo_glob;
int ret;
ret = ttm_bo_global_init();
if (ret)
return ret;
bdev->driver = driver;
memset(bdev->man, 0, sizeof(bdev->man));
/*
* Initialize the system memory buffer type.
* Other types need to be driver / IOCTL initialized.
*/
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
if (unlikely(ret != 0))
goto out_no_sys;
drm_vma_offset_manager_init(&bdev->vma_manager,
DRM_FILE_PAGE_OFFSET_START,
DRM_FILE_PAGE_OFFSET_SIZE);
INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
INIT_LIST_HEAD(&bdev->ddestroy);
bdev->dev_mapping = mapping;
bdev->glob = glob;
bdev->need_dma32 = need_dma32;
mutex_lock(&ttm_global_mutex);
list_add_tail(&bdev->device_list, &glob->device_list);
mutex_unlock(&ttm_global_mutex);
return 0;
out_no_sys:
ttm_bo_global_release();
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);
/*
* buffer object vm functions.
*/
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (mem->mem_type == TTM_PL_SYSTEM)
return false;
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
return false;
if (mem->placement & TTM_PL_FLAG_CACHED)
return false;
}
return true;
}
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
ttm_mem_io_free_vm(bo);
}
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
ttm_mem_io_lock(man, false);
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(man);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait)
{
long timeout = 15 * HZ;
if (no_wait) {
if (dma_resv_test_signaled_rcu(bo->base.resv, true))
return 0;
else
return -EBUSY;
}
timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
interruptible, timeout);
if (timeout < 0)
return timeout;
if (timeout == 0)
return -EBUSY;
dma_resv_add_excl_fence(bo->base.resv, NULL);
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
int ret = 0;
/*
* Using ttm_bo_reserve makes sure the lru lists are updated.
*/
ret = ttm_bo_reserve(bo, true, no_wait, NULL);
if (unlikely(ret != 0))
return ret;
ret = ttm_bo_wait(bo, true, no_wait);
if (likely(ret == 0))
atomic_inc(&bo->cpu_writers);
ttm_bo_unreserve(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
atomic_dec(&bo->cpu_writers);
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
/**
* A buffer object shrink method that tries to swap out the first
* buffer object on the bo_global::swap_lru list.
*/
int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
{
struct ttm_buffer_object *bo;
int ret = -EBUSY;
bool locked;
unsigned i;
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
list_for_each_entry(bo, &glob->swap_lru[i], swap) {
if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
NULL)) {
ret = 0;
break;
}
}
if (!ret)
break;
}
if (ret) {
spin_unlock(&glob->lru_lock);
return ret;
}
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs(bo, false, false, locked);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
/**
* Move to system cached
*/
if (bo->mem.mem_type != TTM_PL_SYSTEM ||
bo->ttm->caching_state != tt_cached) {
struct ttm_operation_ctx ctx = { false, false };
struct ttm_mem_reg evict_mem;
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
evict_mem.mem_type = TTM_PL_SYSTEM;
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
if (unlikely(ret != 0))
goto out;
}
/**
* Make sure BO is idle.
*/
ret = ttm_bo_wait(bo, false, false);
if (unlikely(ret != 0))
goto out;
ttm_bo_unmap_virtual(bo);
/**
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->driver->swap_notify)
bo->bdev->driver->swap_notify(bo);
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
out:
/**
*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
if (locked)
dma_resv_unlock(bo->base.resv);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
EXPORT_SYMBOL(ttm_bo_swapout);
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.no_wait_gpu = false
};
while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
;
}
EXPORT_SYMBOL(ttm_bo_swapout_all);
/**
* ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
* unreserved
*
* @bo: Pointer to buffer
*/
int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
{
int ret;
/*
* In the absense of a wait_unlocked API,
* Use the bo::wu_mutex to avoid triggering livelocks due to
* concurrent use of this function. Note that this use of
* bo::wu_mutex can go away if we change locking order to
* mmap_sem -> bo::reserve.
*/
ret = mutex_lock_interruptible(&bo->wu_mutex);
if (unlikely(ret != 0))
return -ERESTARTSYS;
if (!dma_resv_is_locked(bo->base.resv))
goto out_unlock;
ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
if (ret == -EINTR)
ret = -ERESTARTSYS;
if (unlikely(ret != 0))
goto out_unlock;
dma_resv_unlock(bo->base.resv);
out_unlock:
mutex_unlock(&bo->wu_mutex);
return ret;
}