linux/linux-5.4.31/drivers/gpu/drm/amd/amdgpu/amdgpu_debugfs.c

1132 lines
28 KiB
C

/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/kthread.h>
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <drm/drm_debugfs.h>
#include "amdgpu.h"
/**
* amdgpu_debugfs_add_files - Add simple debugfs entries
*
* @adev: Device to attach debugfs entries to
* @files: Array of function callbacks that respond to reads
* @nfiles: Number of callbacks to register
*
*/
int amdgpu_debugfs_add_files(struct amdgpu_device *adev,
const struct drm_info_list *files,
unsigned nfiles)
{
unsigned i;
for (i = 0; i < adev->debugfs_count; i++) {
if (adev->debugfs[i].files == files) {
/* Already registered */
return 0;
}
}
i = adev->debugfs_count + 1;
if (i > AMDGPU_DEBUGFS_MAX_COMPONENTS) {
DRM_ERROR("Reached maximum number of debugfs components.\n");
DRM_ERROR("Report so we increase "
"AMDGPU_DEBUGFS_MAX_COMPONENTS.\n");
return -EINVAL;
}
adev->debugfs[adev->debugfs_count].files = files;
adev->debugfs[adev->debugfs_count].num_files = nfiles;
adev->debugfs_count = i;
#if defined(CONFIG_DEBUG_FS)
drm_debugfs_create_files(files, nfiles,
adev->ddev->primary->debugfs_root,
adev->ddev->primary);
#endif
return 0;
}
#if defined(CONFIG_DEBUG_FS)
/**
* amdgpu_debugfs_process_reg_op - Handle MMIO register reads/writes
*
* @read: True if reading
* @f: open file handle
* @buf: User buffer to write/read to
* @size: Number of bytes to write/read
* @pos: Offset to seek to
*
* This debugfs entry has special meaning on the offset being sought.
* Various bits have different meanings:
*
* Bit 62: Indicates a GRBM bank switch is needed
* Bit 61: Indicates a SRBM bank switch is needed (implies bit 62 is
* zero)
* Bits 24..33: The SE or ME selector if needed
* Bits 34..43: The SH (or SA) or PIPE selector if needed
* Bits 44..53: The INSTANCE (or CU/WGP) or QUEUE selector if needed
*
* Bit 23: Indicates that the PM power gating lock should be held
* This is necessary to read registers that might be
* unreliable during a power gating transistion.
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static int amdgpu_debugfs_process_reg_op(bool read, struct file *f,
char __user *buf, size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
bool pm_pg_lock, use_bank, use_ring;
unsigned instance_bank, sh_bank, se_bank, me, pipe, queue, vmid;
pm_pg_lock = use_bank = use_ring = false;
instance_bank = sh_bank = se_bank = me = pipe = queue = vmid = 0;
if (size & 0x3 || *pos & 0x3 ||
((*pos & (1ULL << 62)) && (*pos & (1ULL << 61))))
return -EINVAL;
/* are we reading registers for which a PG lock is necessary? */
pm_pg_lock = (*pos >> 23) & 1;
if (*pos & (1ULL << 62)) {
se_bank = (*pos & GENMASK_ULL(33, 24)) >> 24;
sh_bank = (*pos & GENMASK_ULL(43, 34)) >> 34;
instance_bank = (*pos & GENMASK_ULL(53, 44)) >> 44;
if (se_bank == 0x3FF)
se_bank = 0xFFFFFFFF;
if (sh_bank == 0x3FF)
sh_bank = 0xFFFFFFFF;
if (instance_bank == 0x3FF)
instance_bank = 0xFFFFFFFF;
use_bank = 1;
} else if (*pos & (1ULL << 61)) {
me = (*pos & GENMASK_ULL(33, 24)) >> 24;
pipe = (*pos & GENMASK_ULL(43, 34)) >> 34;
queue = (*pos & GENMASK_ULL(53, 44)) >> 44;
vmid = (*pos & GENMASK_ULL(58, 54)) >> 54;
use_ring = 1;
} else {
use_bank = use_ring = 0;
}
*pos &= (1UL << 22) - 1;
if (use_bank) {
if ((sh_bank != 0xFFFFFFFF && sh_bank >= adev->gfx.config.max_sh_per_se) ||
(se_bank != 0xFFFFFFFF && se_bank >= adev->gfx.config.max_shader_engines))
return -EINVAL;
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se_bank,
sh_bank, instance_bank);
} else if (use_ring) {
mutex_lock(&adev->srbm_mutex);
amdgpu_gfx_select_me_pipe_q(adev, me, pipe, queue, vmid);
}
if (pm_pg_lock)
mutex_lock(&adev->pm.mutex);
while (size) {
uint32_t value;
if (read) {
value = RREG32(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
} else {
r = get_user(value, (uint32_t *)buf);
if (!r)
WREG32(*pos >> 2, value);
}
if (r) {
result = r;
goto end;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
end:
if (use_bank) {
amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
} else if (use_ring) {
amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
if (pm_pg_lock)
mutex_unlock(&adev->pm.mutex);
return result;
}
/**
* amdgpu_debugfs_regs_read - Callback for reading MMIO registers
*/
static ssize_t amdgpu_debugfs_regs_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
return amdgpu_debugfs_process_reg_op(true, f, buf, size, pos);
}
/**
* amdgpu_debugfs_regs_write - Callback for writing MMIO registers
*/
static ssize_t amdgpu_debugfs_regs_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
return amdgpu_debugfs_process_reg_op(false, f, (char __user *)buf, size, pos);
}
/**
* amdgpu_debugfs_regs_pcie_read - Read from a PCIE register
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_pcie_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
value = RREG32_PCIE(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_debugfs_regs_pcie_write - Write to a PCIE register
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to write. This
* allows writing multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_pcie_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32_PCIE(*pos >> 2, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_debugfs_regs_didt_read - Read from a DIDT register
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_didt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
value = RREG32_DIDT(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_debugfs_regs_didt_write - Write to a DIDT register
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to write. This
* allows writing multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_didt_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32_DIDT(*pos >> 2, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_debugfs_regs_smc_read - Read from a SMC register
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_smc_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
value = RREG32_SMC(*pos);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_debugfs_regs_smc_write - Write to a SMC register
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to write. This
* allows writing multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_smc_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32_SMC(*pos, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_debugfs_gca_config_read - Read from gfx config data
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* This file is used to access configuration data in a somewhat
* stable fashion. The format is a series of DWORDs with the first
* indicating which revision it is. New content is appended to the
* end so that older software can still read the data.
*/
static ssize_t amdgpu_debugfs_gca_config_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
uint32_t *config, no_regs = 0;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
config = kmalloc_array(256, sizeof(*config), GFP_KERNEL);
if (!config)
return -ENOMEM;
/* version, increment each time something is added */
config[no_regs++] = 3;
config[no_regs++] = adev->gfx.config.max_shader_engines;
config[no_regs++] = adev->gfx.config.max_tile_pipes;
config[no_regs++] = adev->gfx.config.max_cu_per_sh;
config[no_regs++] = adev->gfx.config.max_sh_per_se;
config[no_regs++] = adev->gfx.config.max_backends_per_se;
config[no_regs++] = adev->gfx.config.max_texture_channel_caches;
config[no_regs++] = adev->gfx.config.max_gprs;
config[no_regs++] = adev->gfx.config.max_gs_threads;
config[no_regs++] = adev->gfx.config.max_hw_contexts;
config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_frontend;
config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_backend;
config[no_regs++] = adev->gfx.config.sc_hiz_tile_fifo_size;
config[no_regs++] = adev->gfx.config.sc_earlyz_tile_fifo_size;
config[no_regs++] = adev->gfx.config.num_tile_pipes;
config[no_regs++] = adev->gfx.config.backend_enable_mask;
config[no_regs++] = adev->gfx.config.mem_max_burst_length_bytes;
config[no_regs++] = adev->gfx.config.mem_row_size_in_kb;
config[no_regs++] = adev->gfx.config.shader_engine_tile_size;
config[no_regs++] = adev->gfx.config.num_gpus;
config[no_regs++] = adev->gfx.config.multi_gpu_tile_size;
config[no_regs++] = adev->gfx.config.mc_arb_ramcfg;
config[no_regs++] = adev->gfx.config.gb_addr_config;
config[no_regs++] = adev->gfx.config.num_rbs;
/* rev==1 */
config[no_regs++] = adev->rev_id;
config[no_regs++] = adev->pg_flags;
config[no_regs++] = adev->cg_flags;
/* rev==2 */
config[no_regs++] = adev->family;
config[no_regs++] = adev->external_rev_id;
/* rev==3 */
config[no_regs++] = adev->pdev->device;
config[no_regs++] = adev->pdev->revision;
config[no_regs++] = adev->pdev->subsystem_device;
config[no_regs++] = adev->pdev->subsystem_vendor;
while (size && (*pos < no_regs * 4)) {
uint32_t value;
value = config[*pos >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
kfree(config);
return r;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
kfree(config);
return result;
}
/**
* amdgpu_debugfs_sensor_read - Read from the powerplay sensors
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The offset is treated as the BYTE address of one of the sensors
* enumerated in amd/include/kgd_pp_interface.h under the
* 'amd_pp_sensors' enumeration. For instance to read the UVD VCLK
* you would use the offset 3 * 4 = 12.
*/
static ssize_t amdgpu_debugfs_sensor_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
int idx, x, outsize, r, valuesize;
uint32_t values[16];
if (size & 3 || *pos & 0x3)
return -EINVAL;
if (!adev->pm.dpm_enabled)
return -EINVAL;
/* convert offset to sensor number */
idx = *pos >> 2;
valuesize = sizeof(values);
r = amdgpu_dpm_read_sensor(adev, idx, &values[0], &valuesize);
if (r)
return r;
if (size > valuesize)
return -EINVAL;
outsize = 0;
x = 0;
if (!r) {
while (size) {
r = put_user(values[x++], (int32_t *)buf);
buf += 4;
size -= 4;
outsize += 4;
}
}
return !r ? outsize : r;
}
/** amdgpu_debugfs_wave_read - Read WAVE STATUS data
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The offset being sought changes which wave that the status data
* will be returned for. The bits are used as follows:
*
* Bits 0..6: Byte offset into data
* Bits 7..14: SE selector
* Bits 15..22: SH/SA selector
* Bits 23..30: CU/{WGP+SIMD} selector
* Bits 31..36: WAVE ID selector
* Bits 37..44: SIMD ID selector
*
* The returned data begins with one DWORD of version information
* Followed by WAVE STATUS registers relevant to the GFX IP version
* being used. See gfx_v8_0_read_wave_data() for an example output.
*/
static ssize_t amdgpu_debugfs_wave_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
int r, x;
ssize_t result=0;
uint32_t offset, se, sh, cu, wave, simd, data[32];
if (size & 3 || *pos & 3)
return -EINVAL;
/* decode offset */
offset = (*pos & GENMASK_ULL(6, 0));
se = (*pos & GENMASK_ULL(14, 7)) >> 7;
sh = (*pos & GENMASK_ULL(22, 15)) >> 15;
cu = (*pos & GENMASK_ULL(30, 23)) >> 23;
wave = (*pos & GENMASK_ULL(36, 31)) >> 31;
simd = (*pos & GENMASK_ULL(44, 37)) >> 37;
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se, sh, cu);
x = 0;
if (adev->gfx.funcs->read_wave_data)
adev->gfx.funcs->read_wave_data(adev, simd, wave, data, &x);
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
mutex_unlock(&adev->grbm_idx_mutex);
if (!x)
return -EINVAL;
while (size && (offset < x * 4)) {
uint32_t value;
value = data[offset >> 2];
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
offset += 4;
size -= 4;
}
return result;
}
/** amdgpu_debugfs_gpr_read - Read wave gprs
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The offset being sought changes which wave that the status data
* will be returned for. The bits are used as follows:
*
* Bits 0..11: Byte offset into data
* Bits 12..19: SE selector
* Bits 20..27: SH/SA selector
* Bits 28..35: CU/{WGP+SIMD} selector
* Bits 36..43: WAVE ID selector
* Bits 37..44: SIMD ID selector
* Bits 52..59: Thread selector
* Bits 60..61: Bank selector (VGPR=0,SGPR=1)
*
* The return data comes from the SGPR or VGPR register bank for
* the selected operational unit.
*/
static ssize_t amdgpu_debugfs_gpr_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
int r;
ssize_t result = 0;
uint32_t offset, se, sh, cu, wave, simd, thread, bank, *data;
if (size > 4096 || size & 3 || *pos & 3)
return -EINVAL;
/* decode offset */
offset = (*pos & GENMASK_ULL(11, 0)) >> 2;
se = (*pos & GENMASK_ULL(19, 12)) >> 12;
sh = (*pos & GENMASK_ULL(27, 20)) >> 20;
cu = (*pos & GENMASK_ULL(35, 28)) >> 28;
wave = (*pos & GENMASK_ULL(43, 36)) >> 36;
simd = (*pos & GENMASK_ULL(51, 44)) >> 44;
thread = (*pos & GENMASK_ULL(59, 52)) >> 52;
bank = (*pos & GENMASK_ULL(61, 60)) >> 60;
data = kcalloc(1024, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se, sh, cu);
if (bank == 0) {
if (adev->gfx.funcs->read_wave_vgprs)
adev->gfx.funcs->read_wave_vgprs(adev, simd, wave, thread, offset, size>>2, data);
} else {
if (adev->gfx.funcs->read_wave_sgprs)
adev->gfx.funcs->read_wave_sgprs(adev, simd, wave, offset, size>>2, data);
}
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
mutex_unlock(&adev->grbm_idx_mutex);
while (size) {
uint32_t value;
value = data[result >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
result = r;
goto err;
}
result += 4;
buf += 4;
size -= 4;
}
err:
kfree(data);
return result;
}
static const struct file_operations amdgpu_debugfs_regs_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_read,
.write = amdgpu_debugfs_regs_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_didt_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_didt_read,
.write = amdgpu_debugfs_regs_didt_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_pcie_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_pcie_read,
.write = amdgpu_debugfs_regs_pcie_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_smc_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_smc_read,
.write = amdgpu_debugfs_regs_smc_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gca_config_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gca_config_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_sensors_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_sensor_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_wave_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_wave_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gpr_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gpr_read,
.llseek = default_llseek
};
static const struct file_operations *debugfs_regs[] = {
&amdgpu_debugfs_regs_fops,
&amdgpu_debugfs_regs_didt_fops,
&amdgpu_debugfs_regs_pcie_fops,
&amdgpu_debugfs_regs_smc_fops,
&amdgpu_debugfs_gca_config_fops,
&amdgpu_debugfs_sensors_fops,
&amdgpu_debugfs_wave_fops,
&amdgpu_debugfs_gpr_fops,
};
static const char *debugfs_regs_names[] = {
"amdgpu_regs",
"amdgpu_regs_didt",
"amdgpu_regs_pcie",
"amdgpu_regs_smc",
"amdgpu_gca_config",
"amdgpu_sensors",
"amdgpu_wave",
"amdgpu_gpr",
};
/**
* amdgpu_debugfs_regs_init - Initialize debugfs entries that provide
* register access.
*
* @adev: The device to attach the debugfs entries to
*/
int amdgpu_debugfs_regs_init(struct amdgpu_device *adev)
{
struct drm_minor *minor = adev->ddev->primary;
struct dentry *ent, *root = minor->debugfs_root;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) {
ent = debugfs_create_file(debugfs_regs_names[i],
S_IFREG | S_IRUGO, root,
adev, debugfs_regs[i]);
if (!i && !IS_ERR_OR_NULL(ent))
i_size_write(ent->d_inode, adev->rmmio_size);
adev->debugfs_regs[i] = ent;
}
return 0;
}
void amdgpu_debugfs_regs_cleanup(struct amdgpu_device *adev)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) {
if (adev->debugfs_regs[i]) {
debugfs_remove(adev->debugfs_regs[i]);
adev->debugfs_regs[i] = NULL;
}
}
}
static int amdgpu_debugfs_test_ib(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
int r = 0, i;
/* Avoid accidently unparking the sched thread during GPU reset */
mutex_lock(&adev->lock_reset);
/* hold on the scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
kthread_park(ring->sched.thread);
}
seq_printf(m, "run ib test:\n");
r = amdgpu_ib_ring_tests(adev);
if (r)
seq_printf(m, "ib ring tests failed (%d).\n", r);
else
seq_printf(m, "ib ring tests passed.\n");
/* go on the scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
kthread_unpark(ring->sched.thread);
}
mutex_unlock(&adev->lock_reset);
return 0;
}
static int amdgpu_debugfs_get_vbios_dump(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
seq_write(m, adev->bios, adev->bios_size);
return 0;
}
static int amdgpu_debugfs_evict_vram(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
seq_printf(m, "(%d)\n", amdgpu_bo_evict_vram(adev));
return 0;
}
static int amdgpu_debugfs_evict_gtt(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
seq_printf(m, "(%d)\n", ttm_bo_evict_mm(&adev->mman.bdev, TTM_PL_TT));
return 0;
}
static const struct drm_info_list amdgpu_debugfs_list[] = {
{"amdgpu_vbios", amdgpu_debugfs_get_vbios_dump},
{"amdgpu_test_ib", &amdgpu_debugfs_test_ib},
{"amdgpu_evict_vram", &amdgpu_debugfs_evict_vram},
{"amdgpu_evict_gtt", &amdgpu_debugfs_evict_gtt},
};
static void amdgpu_ib_preempt_fences_swap(struct amdgpu_ring *ring,
struct dma_fence **fences)
{
struct amdgpu_fence_driver *drv = &ring->fence_drv;
uint32_t sync_seq, last_seq;
last_seq = atomic_read(&ring->fence_drv.last_seq);
sync_seq = ring->fence_drv.sync_seq;
last_seq &= drv->num_fences_mask;
sync_seq &= drv->num_fences_mask;
do {
struct dma_fence *fence, **ptr;
++last_seq;
last_seq &= drv->num_fences_mask;
ptr = &drv->fences[last_seq];
fence = rcu_dereference_protected(*ptr, 1);
RCU_INIT_POINTER(*ptr, NULL);
if (!fence)
continue;
fences[last_seq] = fence;
} while (last_seq != sync_seq);
}
static void amdgpu_ib_preempt_signal_fences(struct dma_fence **fences,
int length)
{
int i;
struct dma_fence *fence;
for (i = 0; i < length; i++) {
fence = fences[i];
if (!fence)
continue;
dma_fence_signal(fence);
dma_fence_put(fence);
}
}
static void amdgpu_ib_preempt_job_recovery(struct drm_gpu_scheduler *sched)
{
struct drm_sched_job *s_job;
struct dma_fence *fence;
spin_lock(&sched->job_list_lock);
list_for_each_entry(s_job, &sched->ring_mirror_list, node) {
fence = sched->ops->run_job(s_job);
dma_fence_put(fence);
}
spin_unlock(&sched->job_list_lock);
}
static void amdgpu_ib_preempt_mark_partial_job(struct amdgpu_ring *ring)
{
struct amdgpu_job *job;
struct drm_sched_job *s_job;
uint32_t preempt_seq;
struct dma_fence *fence, **ptr;
struct amdgpu_fence_driver *drv = &ring->fence_drv;
struct drm_gpu_scheduler *sched = &ring->sched;
if (ring->funcs->type != AMDGPU_RING_TYPE_GFX)
return;
preempt_seq = le32_to_cpu(*(drv->cpu_addr + 2));
if (preempt_seq <= atomic_read(&drv->last_seq))
return;
preempt_seq &= drv->num_fences_mask;
ptr = &drv->fences[preempt_seq];
fence = rcu_dereference_protected(*ptr, 1);
spin_lock(&sched->job_list_lock);
list_for_each_entry(s_job, &sched->ring_mirror_list, node) {
job = to_amdgpu_job(s_job);
if (job->fence == fence)
/* mark the job as preempted */
job->preemption_status |= AMDGPU_IB_PREEMPTED;
}
spin_unlock(&sched->job_list_lock);
}
static int amdgpu_debugfs_ib_preempt(void *data, u64 val)
{
int r, resched, length;
struct amdgpu_ring *ring;
struct dma_fence **fences = NULL;
struct amdgpu_device *adev = (struct amdgpu_device *)data;
if (val >= AMDGPU_MAX_RINGS)
return -EINVAL;
ring = adev->rings[val];
if (!ring || !ring->funcs->preempt_ib || !ring->sched.thread)
return -EINVAL;
/* the last preemption failed */
if (ring->trail_seq != le32_to_cpu(*ring->trail_fence_cpu_addr))
return -EBUSY;
length = ring->fence_drv.num_fences_mask + 1;
fences = kcalloc(length, sizeof(void *), GFP_KERNEL);
if (!fences)
return -ENOMEM;
/* Avoid accidently unparking the sched thread during GPU reset */
mutex_lock(&adev->lock_reset);
/* stop the scheduler */
kthread_park(ring->sched.thread);
resched = ttm_bo_lock_delayed_workqueue(&adev->mman.bdev);
/* preempt the IB */
r = amdgpu_ring_preempt_ib(ring);
if (r) {
DRM_WARN("failed to preempt ring %d\n", ring->idx);
goto failure;
}
amdgpu_fence_process(ring);
if (atomic_read(&ring->fence_drv.last_seq) !=
ring->fence_drv.sync_seq) {
DRM_INFO("ring %d was preempted\n", ring->idx);
amdgpu_ib_preempt_mark_partial_job(ring);
/* swap out the old fences */
amdgpu_ib_preempt_fences_swap(ring, fences);
amdgpu_fence_driver_force_completion(ring);
/* resubmit unfinished jobs */
amdgpu_ib_preempt_job_recovery(&ring->sched);
/* wait for jobs finished */
amdgpu_fence_wait_empty(ring);
/* signal the old fences */
amdgpu_ib_preempt_signal_fences(fences, length);
}
failure:
/* restart the scheduler */
kthread_unpark(ring->sched.thread);
mutex_unlock(&adev->lock_reset);
ttm_bo_unlock_delayed_workqueue(&adev->mman.bdev, resched);
if (fences)
kfree(fences);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_ib_preempt, NULL,
amdgpu_debugfs_ib_preempt, "%llu\n");
int amdgpu_debugfs_init(struct amdgpu_device *adev)
{
adev->debugfs_preempt =
debugfs_create_file("amdgpu_preempt_ib", 0600,
adev->ddev->primary->debugfs_root,
(void *)adev, &fops_ib_preempt);
if (!(adev->debugfs_preempt)) {
DRM_ERROR("unable to create amdgpu_preempt_ib debugsfs file\n");
return -EIO;
}
return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_list,
ARRAY_SIZE(amdgpu_debugfs_list));
}
void amdgpu_debugfs_preempt_cleanup(struct amdgpu_device *adev)
{
if (adev->debugfs_preempt)
debugfs_remove(adev->debugfs_preempt);
}
#else
int amdgpu_debugfs_init(struct amdgpu_device *adev)
{
return 0;
}
void amdgpu_debugfs_preempt_cleanup(struct amdgpu_device *adev) { }
int amdgpu_debugfs_regs_init(struct amdgpu_device *adev)
{
return 0;
}
void amdgpu_debugfs_regs_cleanup(struct amdgpu_device *adev) { }
#endif