1039 lines
26 KiB
C
1039 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* x86_64 specific EFI support functions
|
|
* Based on Extensible Firmware Interface Specification version 1.0
|
|
*
|
|
* Copyright (C) 2005-2008 Intel Co.
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Bibo Mao <bibo.mao@intel.com>
|
|
* Chandramouli Narayanan <mouli@linux.intel.com>
|
|
* Huang Ying <ying.huang@intel.com>
|
|
*
|
|
* Code to convert EFI to E820 map has been implemented in elilo bootloader
|
|
* based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
|
|
* is setup appropriately for EFI runtime code.
|
|
* - mouli 06/14/2007.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "efi: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/export.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ucs2_string.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <linux/sched/task.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/page.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/realmode.h>
|
|
#include <asm/time.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* We allocate runtime services regions top-down, starting from -4G, i.e.
|
|
* 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
|
|
*/
|
|
static u64 efi_va = EFI_VA_START;
|
|
|
|
struct efi_scratch efi_scratch;
|
|
|
|
static void __init early_code_mapping_set_exec(int executable)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!(__supported_pte_mask & _PAGE_NX))
|
|
return;
|
|
|
|
/* Make EFI service code area executable */
|
|
for_each_efi_memory_desc(md) {
|
|
if (md->type == EFI_RUNTIME_SERVICES_CODE ||
|
|
md->type == EFI_BOOT_SERVICES_CODE)
|
|
efi_set_executable(md, executable);
|
|
}
|
|
}
|
|
|
|
pgd_t * __init efi_call_phys_prolog(void)
|
|
{
|
|
unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
|
|
pgd_t *save_pgd, *pgd_k, *pgd_efi;
|
|
p4d_t *p4d, *p4d_k, *p4d_efi;
|
|
pud_t *pud;
|
|
|
|
int pgd;
|
|
int n_pgds, i, j;
|
|
|
|
if (!efi_enabled(EFI_OLD_MEMMAP)) {
|
|
efi_switch_mm(&efi_mm);
|
|
return efi_mm.pgd;
|
|
}
|
|
|
|
early_code_mapping_set_exec(1);
|
|
|
|
n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
|
|
save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
|
|
if (!save_pgd)
|
|
return NULL;
|
|
|
|
/*
|
|
* Build 1:1 identity mapping for efi=old_map usage. Note that
|
|
* PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
|
|
* it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
|
|
* address X, the pud_index(X) != pud_index(__va(X)), we can only copy
|
|
* PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
|
|
* This means here we can only reuse the PMD tables of the direct mapping.
|
|
*/
|
|
for (pgd = 0; pgd < n_pgds; pgd++) {
|
|
addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
|
|
vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
|
|
pgd_efi = pgd_offset_k(addr_pgd);
|
|
save_pgd[pgd] = *pgd_efi;
|
|
|
|
p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
|
|
if (!p4d) {
|
|
pr_err("Failed to allocate p4d table!\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < PTRS_PER_P4D; i++) {
|
|
addr_p4d = addr_pgd + i * P4D_SIZE;
|
|
p4d_efi = p4d + p4d_index(addr_p4d);
|
|
|
|
pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
|
|
if (!pud) {
|
|
pr_err("Failed to allocate pud table!\n");
|
|
goto out;
|
|
}
|
|
|
|
for (j = 0; j < PTRS_PER_PUD; j++) {
|
|
addr_pud = addr_p4d + j * PUD_SIZE;
|
|
|
|
if (addr_pud > (max_pfn << PAGE_SHIFT))
|
|
break;
|
|
|
|
vaddr = (unsigned long)__va(addr_pud);
|
|
|
|
pgd_k = pgd_offset_k(vaddr);
|
|
p4d_k = p4d_offset(pgd_k, vaddr);
|
|
pud[j] = *pud_offset(p4d_k, vaddr);
|
|
}
|
|
}
|
|
pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
|
|
}
|
|
|
|
__flush_tlb_all();
|
|
return save_pgd;
|
|
out:
|
|
efi_call_phys_epilog(save_pgd);
|
|
return NULL;
|
|
}
|
|
|
|
void __init efi_call_phys_epilog(pgd_t *save_pgd)
|
|
{
|
|
/*
|
|
* After the lock is released, the original page table is restored.
|
|
*/
|
|
int pgd_idx, i;
|
|
int nr_pgds;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
if (!efi_enabled(EFI_OLD_MEMMAP)) {
|
|
efi_switch_mm(efi_scratch.prev_mm);
|
|
return;
|
|
}
|
|
|
|
nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
|
|
|
|
for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
|
|
pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
|
|
set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
|
|
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
for (i = 0; i < PTRS_PER_P4D; i++) {
|
|
p4d = p4d_offset(pgd,
|
|
pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
|
|
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
pud = (pud_t *)p4d_page_vaddr(*p4d);
|
|
pud_free(&init_mm, pud);
|
|
}
|
|
|
|
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
|
|
p4d_free(&init_mm, p4d);
|
|
}
|
|
|
|
kfree(save_pgd);
|
|
|
|
__flush_tlb_all();
|
|
early_code_mapping_set_exec(0);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(efi_mm);
|
|
|
|
/*
|
|
* We need our own copy of the higher levels of the page tables
|
|
* because we want to avoid inserting EFI region mappings (EFI_VA_END
|
|
* to EFI_VA_START) into the standard kernel page tables. Everything
|
|
* else can be shared, see efi_sync_low_kernel_mappings().
|
|
*
|
|
* We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
|
|
* allocation.
|
|
*/
|
|
int __init efi_alloc_page_tables(void)
|
|
{
|
|
pgd_t *pgd, *efi_pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
gfp_t gfp_mask;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP))
|
|
return 0;
|
|
|
|
gfp_mask = GFP_KERNEL | __GFP_ZERO;
|
|
efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
|
|
if (!efi_pgd)
|
|
return -ENOMEM;
|
|
|
|
pgd = efi_pgd + pgd_index(EFI_VA_END);
|
|
p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
|
|
if (!p4d) {
|
|
free_page((unsigned long)efi_pgd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
|
|
if (!pud) {
|
|
if (pgtable_l5_enabled())
|
|
free_page((unsigned long) pgd_page_vaddr(*pgd));
|
|
free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efi_mm.pgd = efi_pgd;
|
|
mm_init_cpumask(&efi_mm);
|
|
init_new_context(NULL, &efi_mm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add low kernel mappings for passing arguments to EFI functions.
|
|
*/
|
|
void efi_sync_low_kernel_mappings(void)
|
|
{
|
|
unsigned num_entries;
|
|
pgd_t *pgd_k, *pgd_efi;
|
|
p4d_t *p4d_k, *p4d_efi;
|
|
pud_t *pud_k, *pud_efi;
|
|
pgd_t *efi_pgd = efi_mm.pgd;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP))
|
|
return;
|
|
|
|
/*
|
|
* We can share all PGD entries apart from the one entry that
|
|
* covers the EFI runtime mapping space.
|
|
*
|
|
* Make sure the EFI runtime region mappings are guaranteed to
|
|
* only span a single PGD entry and that the entry also maps
|
|
* other important kernel regions.
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
|
|
MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
|
|
(EFI_VA_END & PGDIR_MASK));
|
|
|
|
pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
|
|
pgd_k = pgd_offset_k(PAGE_OFFSET);
|
|
|
|
num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
|
|
memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
|
|
|
|
/*
|
|
* As with PGDs, we share all P4D entries apart from the one entry
|
|
* that covers the EFI runtime mapping space.
|
|
*/
|
|
BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
|
|
BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
|
|
|
|
pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
|
|
pgd_k = pgd_offset_k(EFI_VA_END);
|
|
p4d_efi = p4d_offset(pgd_efi, 0);
|
|
p4d_k = p4d_offset(pgd_k, 0);
|
|
|
|
num_entries = p4d_index(EFI_VA_END);
|
|
memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
|
|
|
|
/*
|
|
* We share all the PUD entries apart from those that map the
|
|
* EFI regions. Copy around them.
|
|
*/
|
|
BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
|
|
BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
|
|
|
|
p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
|
|
p4d_k = p4d_offset(pgd_k, EFI_VA_END);
|
|
pud_efi = pud_offset(p4d_efi, 0);
|
|
pud_k = pud_offset(p4d_k, 0);
|
|
|
|
num_entries = pud_index(EFI_VA_END);
|
|
memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
|
|
|
|
pud_efi = pud_offset(p4d_efi, EFI_VA_START);
|
|
pud_k = pud_offset(p4d_k, EFI_VA_START);
|
|
|
|
num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
|
|
memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
|
|
}
|
|
|
|
/*
|
|
* Wrapper for slow_virt_to_phys() that handles NULL addresses.
|
|
*/
|
|
static inline phys_addr_t
|
|
virt_to_phys_or_null_size(void *va, unsigned long size)
|
|
{
|
|
phys_addr_t pa;
|
|
|
|
if (!va)
|
|
return 0;
|
|
|
|
if (virt_addr_valid(va))
|
|
return virt_to_phys(va);
|
|
|
|
pa = slow_virt_to_phys(va);
|
|
|
|
/* check if the object crosses a page boundary */
|
|
if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
|
|
return 0;
|
|
|
|
return pa;
|
|
}
|
|
|
|
#define virt_to_phys_or_null(addr) \
|
|
virt_to_phys_or_null_size((addr), sizeof(*(addr)))
|
|
|
|
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
|
|
{
|
|
unsigned long pfn, text, pf;
|
|
struct page *page;
|
|
unsigned npages;
|
|
pgd_t *pgd = efi_mm.pgd;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP))
|
|
return 0;
|
|
|
|
/*
|
|
* It can happen that the physical address of new_memmap lands in memory
|
|
* which is not mapped in the EFI page table. Therefore we need to go
|
|
* and ident-map those pages containing the map before calling
|
|
* phys_efi_set_virtual_address_map().
|
|
*/
|
|
pfn = pa_memmap >> PAGE_SHIFT;
|
|
pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
|
|
if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
|
|
pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Certain firmware versions are way too sentimential and still believe
|
|
* they are exclusive and unquestionable owners of the first physical page,
|
|
* even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
|
|
* (but then write-access it later during SetVirtualAddressMap()).
|
|
*
|
|
* Create a 1:1 mapping for this page, to avoid triple faults during early
|
|
* boot with such firmware. We are free to hand this page to the BIOS,
|
|
* as trim_bios_range() will reserve the first page and isolate it away
|
|
* from memory allocators anyway.
|
|
*/
|
|
pf = _PAGE_RW;
|
|
if (sev_active())
|
|
pf |= _PAGE_ENC;
|
|
|
|
if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
|
|
pr_err("Failed to create 1:1 mapping for the first page!\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* When making calls to the firmware everything needs to be 1:1
|
|
* mapped and addressable with 32-bit pointers. Map the kernel
|
|
* text and allocate a new stack because we can't rely on the
|
|
* stack pointer being < 4GB.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
|
|
return 0;
|
|
|
|
page = alloc_page(GFP_KERNEL|__GFP_DMA32);
|
|
if (!page) {
|
|
pr_err("Unable to allocate EFI runtime stack < 4GB\n");
|
|
return 1;
|
|
}
|
|
|
|
efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
|
|
|
|
npages = (_etext - _text) >> PAGE_SHIFT;
|
|
text = __pa(_text);
|
|
pfn = text >> PAGE_SHIFT;
|
|
|
|
pf = _PAGE_RW | _PAGE_ENC;
|
|
if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
|
|
pr_err("Failed to map kernel text 1:1\n");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init __map_region(efi_memory_desc_t *md, u64 va)
|
|
{
|
|
unsigned long flags = _PAGE_RW;
|
|
unsigned long pfn;
|
|
pgd_t *pgd = efi_mm.pgd;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_WB))
|
|
flags |= _PAGE_PCD;
|
|
|
|
if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
|
|
flags |= _PAGE_ENC;
|
|
|
|
pfn = md->phys_addr >> PAGE_SHIFT;
|
|
if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
|
|
pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
|
|
md->phys_addr, va);
|
|
}
|
|
|
|
void __init efi_map_region(efi_memory_desc_t *md)
|
|
{
|
|
unsigned long size = md->num_pages << PAGE_SHIFT;
|
|
u64 pa = md->phys_addr;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP))
|
|
return old_map_region(md);
|
|
|
|
/*
|
|
* Make sure the 1:1 mappings are present as a catch-all for b0rked
|
|
* firmware which doesn't update all internal pointers after switching
|
|
* to virtual mode and would otherwise crap on us.
|
|
*/
|
|
__map_region(md, md->phys_addr);
|
|
|
|
/*
|
|
* Enforce the 1:1 mapping as the default virtual address when
|
|
* booting in EFI mixed mode, because even though we may be
|
|
* running a 64-bit kernel, the firmware may only be 32-bit.
|
|
*/
|
|
if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
|
|
md->virt_addr = md->phys_addr;
|
|
return;
|
|
}
|
|
|
|
efi_va -= size;
|
|
|
|
/* Is PA 2M-aligned? */
|
|
if (!(pa & (PMD_SIZE - 1))) {
|
|
efi_va &= PMD_MASK;
|
|
} else {
|
|
u64 pa_offset = pa & (PMD_SIZE - 1);
|
|
u64 prev_va = efi_va;
|
|
|
|
/* get us the same offset within this 2M page */
|
|
efi_va = (efi_va & PMD_MASK) + pa_offset;
|
|
|
|
if (efi_va > prev_va)
|
|
efi_va -= PMD_SIZE;
|
|
}
|
|
|
|
if (efi_va < EFI_VA_END) {
|
|
pr_warn(FW_WARN "VA address range overflow!\n");
|
|
return;
|
|
}
|
|
|
|
/* Do the VA map */
|
|
__map_region(md, efi_va);
|
|
md->virt_addr = efi_va;
|
|
}
|
|
|
|
/*
|
|
* kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
|
|
* md->virt_addr is the original virtual address which had been mapped in kexec
|
|
* 1st kernel.
|
|
*/
|
|
void __init efi_map_region_fixed(efi_memory_desc_t *md)
|
|
{
|
|
__map_region(md, md->phys_addr);
|
|
__map_region(md, md->virt_addr);
|
|
}
|
|
|
|
void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
|
|
u32 type, u64 attribute)
|
|
{
|
|
unsigned long last_map_pfn;
|
|
|
|
if (type == EFI_MEMORY_MAPPED_IO)
|
|
return ioremap(phys_addr, size);
|
|
|
|
last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
|
|
if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
|
|
unsigned long top = last_map_pfn << PAGE_SHIFT;
|
|
efi_ioremap(top, size - (top - phys_addr), type, attribute);
|
|
}
|
|
|
|
if (!(attribute & EFI_MEMORY_WB))
|
|
efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
|
|
|
|
return (void __iomem *)__va(phys_addr);
|
|
}
|
|
|
|
void __init parse_efi_setup(u64 phys_addr, u32 data_len)
|
|
{
|
|
efi_setup = phys_addr + sizeof(struct setup_data);
|
|
}
|
|
|
|
static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
|
|
{
|
|
unsigned long pfn;
|
|
pgd_t *pgd = efi_mm.pgd;
|
|
int err1, err2;
|
|
|
|
/* Update the 1:1 mapping */
|
|
pfn = md->phys_addr >> PAGE_SHIFT;
|
|
err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
|
|
if (err1) {
|
|
pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
|
|
md->phys_addr, md->virt_addr);
|
|
}
|
|
|
|
err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
|
|
if (err2) {
|
|
pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
|
|
md->phys_addr, md->virt_addr);
|
|
}
|
|
|
|
return err1 || err2;
|
|
}
|
|
|
|
static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
|
|
{
|
|
unsigned long pf = 0;
|
|
|
|
if (md->attribute & EFI_MEMORY_XP)
|
|
pf |= _PAGE_NX;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_RO))
|
|
pf |= _PAGE_RW;
|
|
|
|
if (sev_active())
|
|
pf |= _PAGE_ENC;
|
|
|
|
return efi_update_mappings(md, pf);
|
|
}
|
|
|
|
void __init efi_runtime_update_mappings(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP)) {
|
|
if (__supported_pte_mask & _PAGE_NX)
|
|
runtime_code_page_mkexec();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use the EFI Memory Attribute Table for mapping permissions if it
|
|
* exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
|
|
*/
|
|
if (efi_enabled(EFI_MEM_ATTR)) {
|
|
efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
|
|
* EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
|
|
* permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
|
|
* published by the firmware. Even if we find a buggy implementation of
|
|
* EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
|
|
* EFI_PROPERTIES_TABLE, because of the same reason.
|
|
*/
|
|
|
|
if (!efi_enabled(EFI_NX_PE_DATA))
|
|
return;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
unsigned long pf = 0;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_WB))
|
|
pf |= _PAGE_PCD;
|
|
|
|
if ((md->attribute & EFI_MEMORY_XP) ||
|
|
(md->type == EFI_RUNTIME_SERVICES_DATA))
|
|
pf |= _PAGE_NX;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_RO) &&
|
|
(md->type != EFI_RUNTIME_SERVICES_CODE))
|
|
pf |= _PAGE_RW;
|
|
|
|
if (sev_active())
|
|
pf |= _PAGE_ENC;
|
|
|
|
efi_update_mappings(md, pf);
|
|
}
|
|
}
|
|
|
|
void __init efi_dump_pagetable(void)
|
|
{
|
|
#ifdef CONFIG_EFI_PGT_DUMP
|
|
if (efi_enabled(EFI_OLD_MEMMAP))
|
|
ptdump_walk_pgd_level(NULL, swapper_pg_dir);
|
|
else
|
|
ptdump_walk_pgd_level(NULL, efi_mm.pgd);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Makes the calling thread switch to/from efi_mm context. Can be used
|
|
* in a kernel thread and user context. Preemption needs to remain disabled
|
|
* while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
|
|
* can not change under us.
|
|
* It should be ensured that there are no concurent calls to this function.
|
|
*/
|
|
void efi_switch_mm(struct mm_struct *mm)
|
|
{
|
|
efi_scratch.prev_mm = current->active_mm;
|
|
current->active_mm = mm;
|
|
switch_mm(efi_scratch.prev_mm, mm, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_MIXED
|
|
extern efi_status_t efi64_thunk(u32, ...);
|
|
|
|
static DEFINE_SPINLOCK(efi_runtime_lock);
|
|
|
|
#define runtime_service32(func) \
|
|
({ \
|
|
u32 table = (u32)(unsigned long)efi.systab; \
|
|
u32 *rt, *___f; \
|
|
\
|
|
rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
|
|
___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
|
|
*___f; \
|
|
})
|
|
|
|
/*
|
|
* Switch to the EFI page tables early so that we can access the 1:1
|
|
* runtime services mappings which are not mapped in any other page
|
|
* tables. This function must be called before runtime_service32().
|
|
*
|
|
* Also, disable interrupts because the IDT points to 64-bit handlers,
|
|
* which aren't going to function correctly when we switch to 32-bit.
|
|
*/
|
|
#define efi_thunk(f, ...) \
|
|
({ \
|
|
efi_status_t __s; \
|
|
u32 __func; \
|
|
\
|
|
arch_efi_call_virt_setup(); \
|
|
\
|
|
__func = runtime_service32(f); \
|
|
__s = efi64_thunk(__func, __VA_ARGS__); \
|
|
\
|
|
arch_efi_call_virt_teardown(); \
|
|
\
|
|
__s; \
|
|
})
|
|
|
|
efi_status_t efi_thunk_set_virtual_address_map(
|
|
void *phys_set_virtual_address_map,
|
|
unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map)
|
|
{
|
|
efi_status_t status;
|
|
unsigned long flags;
|
|
u32 func;
|
|
|
|
efi_sync_low_kernel_mappings();
|
|
local_irq_save(flags);
|
|
|
|
efi_switch_mm(&efi_mm);
|
|
|
|
func = (u32)(unsigned long)phys_set_virtual_address_map;
|
|
status = efi64_thunk(func, memory_map_size, descriptor_size,
|
|
descriptor_version, virtual_map);
|
|
|
|
efi_switch_mm(efi_scratch.prev_mm);
|
|
local_irq_restore(flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_tm, phys_tc;
|
|
unsigned long flags;
|
|
|
|
spin_lock(&rtc_lock);
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_tm = virt_to_phys_or_null(tm);
|
|
phys_tc = virt_to_phys_or_null(tc);
|
|
|
|
status = efi_thunk(get_time, phys_tm, phys_tc);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t efi_thunk_set_time(efi_time_t *tm)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_tm;
|
|
unsigned long flags;
|
|
|
|
spin_lock(&rtc_lock);
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_tm = virt_to_phys_or_null(tm);
|
|
|
|
status = efi_thunk(set_time, phys_tm);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
|
|
efi_time_t *tm)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_enabled, phys_pending, phys_tm;
|
|
unsigned long flags;
|
|
|
|
spin_lock(&rtc_lock);
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_enabled = virt_to_phys_or_null(enabled);
|
|
phys_pending = virt_to_phys_or_null(pending);
|
|
phys_tm = virt_to_phys_or_null(tm);
|
|
|
|
status = efi_thunk(get_wakeup_time, phys_enabled,
|
|
phys_pending, phys_tm);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_tm;
|
|
unsigned long flags;
|
|
|
|
spin_lock(&rtc_lock);
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_tm = virt_to_phys_or_null(tm);
|
|
|
|
status = efi_thunk(set_wakeup_time, enabled, phys_tm);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
static unsigned long efi_name_size(efi_char16_t *name)
|
|
{
|
|
return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
|
|
u32 *attr, unsigned long *data_size, void *data)
|
|
{
|
|
u8 buf[24] __aligned(8);
|
|
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
|
|
efi_status_t status;
|
|
u32 phys_name, phys_vendor, phys_attr;
|
|
u32 phys_data_size, phys_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
*vnd = *vendor;
|
|
|
|
phys_data_size = virt_to_phys_or_null(data_size);
|
|
phys_vendor = virt_to_phys_or_null(vnd);
|
|
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
|
|
phys_attr = virt_to_phys_or_null(attr);
|
|
phys_data = virt_to_phys_or_null_size(data, *data_size);
|
|
|
|
if (!phys_name || (data && !phys_data))
|
|
status = EFI_INVALID_PARAMETER;
|
|
else
|
|
status = efi_thunk(get_variable, phys_name, phys_vendor,
|
|
phys_attr, phys_data_size, phys_data);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
|
|
u32 attr, unsigned long data_size, void *data)
|
|
{
|
|
u8 buf[24] __aligned(8);
|
|
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
|
|
u32 phys_name, phys_vendor, phys_data;
|
|
efi_status_t status;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
*vnd = *vendor;
|
|
|
|
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
|
|
phys_vendor = virt_to_phys_or_null(vnd);
|
|
phys_data = virt_to_phys_or_null_size(data, data_size);
|
|
|
|
if (!phys_name || !phys_data)
|
|
status = EFI_INVALID_PARAMETER;
|
|
else
|
|
status = efi_thunk(set_variable, phys_name, phys_vendor,
|
|
attr, data_size, phys_data);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
|
|
u32 attr, unsigned long data_size,
|
|
void *data)
|
|
{
|
|
u8 buf[24] __aligned(8);
|
|
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
|
|
u32 phys_name, phys_vendor, phys_data;
|
|
efi_status_t status;
|
|
unsigned long flags;
|
|
|
|
if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
|
|
return EFI_NOT_READY;
|
|
|
|
*vnd = *vendor;
|
|
|
|
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
|
|
phys_vendor = virt_to_phys_or_null(vnd);
|
|
phys_data = virt_to_phys_or_null_size(data, data_size);
|
|
|
|
if (!phys_name || !phys_data)
|
|
status = EFI_INVALID_PARAMETER;
|
|
else
|
|
status = efi_thunk(set_variable, phys_name, phys_vendor,
|
|
attr, data_size, phys_data);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_get_next_variable(unsigned long *name_size,
|
|
efi_char16_t *name,
|
|
efi_guid_t *vendor)
|
|
{
|
|
u8 buf[24] __aligned(8);
|
|
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
|
|
efi_status_t status;
|
|
u32 phys_name_size, phys_name, phys_vendor;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
*vnd = *vendor;
|
|
|
|
phys_name_size = virt_to_phys_or_null(name_size);
|
|
phys_vendor = virt_to_phys_or_null(vnd);
|
|
phys_name = virt_to_phys_or_null_size(name, *name_size);
|
|
|
|
if (!phys_name)
|
|
status = EFI_INVALID_PARAMETER;
|
|
else
|
|
status = efi_thunk(get_next_variable, phys_name_size,
|
|
phys_name, phys_vendor);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
*vendor = *vnd;
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_get_next_high_mono_count(u32 *count)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_count;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_count = virt_to_phys_or_null(count);
|
|
status = efi_thunk(get_next_high_mono_count, phys_count);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
efi_thunk_reset_system(int reset_type, efi_status_t status,
|
|
unsigned long data_size, efi_char16_t *data)
|
|
{
|
|
u32 phys_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_data = virt_to_phys_or_null_size(data, data_size);
|
|
|
|
efi_thunk(reset_system, reset_type, status, data_size, phys_data);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_update_capsule(efi_capsule_header_t **capsules,
|
|
unsigned long count, unsigned long sg_list)
|
|
{
|
|
/*
|
|
* To properly support this function we would need to repackage
|
|
* 'capsules' because the firmware doesn't understand 64-bit
|
|
* pointers.
|
|
*/
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
|
|
u64 *remaining_space,
|
|
u64 *max_variable_size)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_storage, phys_remaining, phys_max;
|
|
unsigned long flags;
|
|
|
|
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
|
|
return EFI_UNSUPPORTED;
|
|
|
|
spin_lock_irqsave(&efi_runtime_lock, flags);
|
|
|
|
phys_storage = virt_to_phys_or_null(storage_space);
|
|
phys_remaining = virt_to_phys_or_null(remaining_space);
|
|
phys_max = virt_to_phys_or_null(max_variable_size);
|
|
|
|
status = efi_thunk(query_variable_info, attr, phys_storage,
|
|
phys_remaining, phys_max);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
|
|
u64 *remaining_space,
|
|
u64 *max_variable_size)
|
|
{
|
|
efi_status_t status;
|
|
u32 phys_storage, phys_remaining, phys_max;
|
|
unsigned long flags;
|
|
|
|
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
|
|
return EFI_UNSUPPORTED;
|
|
|
|
if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
|
|
return EFI_NOT_READY;
|
|
|
|
phys_storage = virt_to_phys_or_null(storage_space);
|
|
phys_remaining = virt_to_phys_or_null(remaining_space);
|
|
phys_max = virt_to_phys_or_null(max_variable_size);
|
|
|
|
status = efi_thunk(query_variable_info, attr, phys_storage,
|
|
phys_remaining, phys_max);
|
|
|
|
spin_unlock_irqrestore(&efi_runtime_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
|
|
unsigned long count, u64 *max_size,
|
|
int *reset_type)
|
|
{
|
|
/*
|
|
* To properly support this function we would need to repackage
|
|
* 'capsules' because the firmware doesn't understand 64-bit
|
|
* pointers.
|
|
*/
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
void efi_thunk_runtime_setup(void)
|
|
{
|
|
efi.get_time = efi_thunk_get_time;
|
|
efi.set_time = efi_thunk_set_time;
|
|
efi.get_wakeup_time = efi_thunk_get_wakeup_time;
|
|
efi.set_wakeup_time = efi_thunk_set_wakeup_time;
|
|
efi.get_variable = efi_thunk_get_variable;
|
|
efi.get_next_variable = efi_thunk_get_next_variable;
|
|
efi.set_variable = efi_thunk_set_variable;
|
|
efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
|
|
efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
|
|
efi.reset_system = efi_thunk_reset_system;
|
|
efi.query_variable_info = efi_thunk_query_variable_info;
|
|
efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
|
|
efi.update_capsule = efi_thunk_update_capsule;
|
|
efi.query_capsule_caps = efi_thunk_query_capsule_caps;
|
|
}
|
|
#endif /* CONFIG_EFI_MIXED */
|