6087 lines
186 KiB
C
6087 lines
186 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/frame.h>
|
|
#include <linux/percpu.h>
|
|
|
|
#include <asm/debugreg.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
#include "cpuid.h"
|
|
#include "hyperv.h"
|
|
#include "mmu.h"
|
|
#include "nested.h"
|
|
#include "trace.h"
|
|
#include "x86.h"
|
|
|
|
static bool __read_mostly enable_shadow_vmcs = 1;
|
|
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
|
|
|
|
static bool __read_mostly nested_early_check = 0;
|
|
module_param(nested_early_check, bool, S_IRUGO);
|
|
|
|
#define CC(consistency_check) \
|
|
({ \
|
|
bool failed = (consistency_check); \
|
|
if (failed) \
|
|
trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
|
|
failed; \
|
|
})
|
|
|
|
/*
|
|
* Hyper-V requires all of these, so mark them as supported even though
|
|
* they are just treated the same as all-context.
|
|
*/
|
|
#define VMX_VPID_EXTENT_SUPPORTED_MASK \
|
|
(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
|
|
VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
|
|
VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
|
|
VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
|
|
|
|
#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
|
|
|
|
enum {
|
|
VMX_VMREAD_BITMAP,
|
|
VMX_VMWRITE_BITMAP,
|
|
VMX_BITMAP_NR
|
|
};
|
|
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
|
|
|
|
#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
|
|
#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
|
|
|
|
struct shadow_vmcs_field {
|
|
u16 encoding;
|
|
u16 offset;
|
|
};
|
|
static struct shadow_vmcs_field shadow_read_only_fields[] = {
|
|
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
|
|
#include "vmcs_shadow_fields.h"
|
|
};
|
|
static int max_shadow_read_only_fields =
|
|
ARRAY_SIZE(shadow_read_only_fields);
|
|
|
|
static struct shadow_vmcs_field shadow_read_write_fields[] = {
|
|
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
|
|
#include "vmcs_shadow_fields.h"
|
|
};
|
|
static int max_shadow_read_write_fields =
|
|
ARRAY_SIZE(shadow_read_write_fields);
|
|
|
|
static void init_vmcs_shadow_fields(void)
|
|
{
|
|
int i, j;
|
|
|
|
memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
|
|
memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
|
|
|
|
for (i = j = 0; i < max_shadow_read_only_fields; i++) {
|
|
struct shadow_vmcs_field entry = shadow_read_only_fields[i];
|
|
u16 field = entry.encoding;
|
|
|
|
if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
|
|
(i + 1 == max_shadow_read_only_fields ||
|
|
shadow_read_only_fields[i + 1].encoding != field + 1))
|
|
pr_err("Missing field from shadow_read_only_field %x\n",
|
|
field + 1);
|
|
|
|
clear_bit(field, vmx_vmread_bitmap);
|
|
if (field & 1)
|
|
#ifdef CONFIG_X86_64
|
|
continue;
|
|
#else
|
|
entry.offset += sizeof(u32);
|
|
#endif
|
|
shadow_read_only_fields[j++] = entry;
|
|
}
|
|
max_shadow_read_only_fields = j;
|
|
|
|
for (i = j = 0; i < max_shadow_read_write_fields; i++) {
|
|
struct shadow_vmcs_field entry = shadow_read_write_fields[i];
|
|
u16 field = entry.encoding;
|
|
|
|
if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
|
|
(i + 1 == max_shadow_read_write_fields ||
|
|
shadow_read_write_fields[i + 1].encoding != field + 1))
|
|
pr_err("Missing field from shadow_read_write_field %x\n",
|
|
field + 1);
|
|
|
|
WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
|
|
field <= GUEST_TR_AR_BYTES,
|
|
"Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
|
|
|
|
/*
|
|
* PML and the preemption timer can be emulated, but the
|
|
* processor cannot vmwrite to fields that don't exist
|
|
* on bare metal.
|
|
*/
|
|
switch (field) {
|
|
case GUEST_PML_INDEX:
|
|
if (!cpu_has_vmx_pml())
|
|
continue;
|
|
break;
|
|
case VMX_PREEMPTION_TIMER_VALUE:
|
|
if (!cpu_has_vmx_preemption_timer())
|
|
continue;
|
|
break;
|
|
case GUEST_INTR_STATUS:
|
|
if (!cpu_has_vmx_apicv())
|
|
continue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
clear_bit(field, vmx_vmwrite_bitmap);
|
|
clear_bit(field, vmx_vmread_bitmap);
|
|
if (field & 1)
|
|
#ifdef CONFIG_X86_64
|
|
continue;
|
|
#else
|
|
entry.offset += sizeof(u32);
|
|
#endif
|
|
shadow_read_write_fields[j++] = entry;
|
|
}
|
|
max_shadow_read_write_fields = j;
|
|
}
|
|
|
|
/*
|
|
* The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
|
|
* set the success or error code of an emulated VMX instruction (as specified
|
|
* by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
|
|
* instruction.
|
|
*/
|
|
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
|
|
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
|
|
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
|
|
& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
|
|
X86_EFLAGS_SF | X86_EFLAGS_OF))
|
|
| X86_EFLAGS_CF);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
|
|
u32 vm_instruction_error)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* failValid writes the error number to the current VMCS, which
|
|
* can't be done if there isn't a current VMCS.
|
|
*/
|
|
if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
|
|
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
|
|
X86_EFLAGS_SF | X86_EFLAGS_OF))
|
|
| X86_EFLAGS_ZF);
|
|
get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
|
|
/*
|
|
* We don't need to force a shadow sync because
|
|
* VM_INSTRUCTION_ERROR is not shadowed
|
|
*/
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
|
|
{
|
|
/* TODO: not to reset guest simply here. */
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
|
|
}
|
|
|
|
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
|
|
{
|
|
return fixed_bits_valid(control, low, high);
|
|
}
|
|
|
|
static inline u64 vmx_control_msr(u32 low, u32 high)
|
|
{
|
|
return low | ((u64)high << 32);
|
|
}
|
|
|
|
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
|
|
{
|
|
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
|
|
vmcs_write64(VMCS_LINK_POINTER, -1ull);
|
|
vmx->nested.need_vmcs12_to_shadow_sync = false;
|
|
}
|
|
|
|
static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!vmx->nested.hv_evmcs)
|
|
return;
|
|
|
|
kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
|
|
vmx->nested.hv_evmcs_vmptr = 0;
|
|
vmx->nested.hv_evmcs = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free whatever needs to be freed from vmx->nested when L1 goes down, or
|
|
* just stops using VMX.
|
|
*/
|
|
static void free_nested(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
|
|
return;
|
|
|
|
kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
|
|
|
|
vmx->nested.vmxon = false;
|
|
vmx->nested.smm.vmxon = false;
|
|
free_vpid(vmx->nested.vpid02);
|
|
vmx->nested.posted_intr_nv = -1;
|
|
vmx->nested.current_vmptr = -1ull;
|
|
if (enable_shadow_vmcs) {
|
|
vmx_disable_shadow_vmcs(vmx);
|
|
vmcs_clear(vmx->vmcs01.shadow_vmcs);
|
|
free_vmcs(vmx->vmcs01.shadow_vmcs);
|
|
vmx->vmcs01.shadow_vmcs = NULL;
|
|
}
|
|
kfree(vmx->nested.cached_vmcs12);
|
|
vmx->nested.cached_vmcs12 = NULL;
|
|
kfree(vmx->nested.cached_shadow_vmcs12);
|
|
vmx->nested.cached_shadow_vmcs12 = NULL;
|
|
/* Unpin physical memory we referred to in the vmcs02 */
|
|
if (vmx->nested.apic_access_page) {
|
|
kvm_release_page_dirty(vmx->nested.apic_access_page);
|
|
vmx->nested.apic_access_page = NULL;
|
|
}
|
|
kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
|
|
kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
|
|
vmx->nested.pi_desc = NULL;
|
|
|
|
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
|
|
|
|
nested_release_evmcs(vcpu);
|
|
|
|
free_loaded_vmcs(&vmx->nested.vmcs02);
|
|
}
|
|
|
|
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
|
|
struct loaded_vmcs *prev)
|
|
{
|
|
struct vmcs_host_state *dest, *src;
|
|
|
|
if (unlikely(!vmx->guest_state_loaded))
|
|
return;
|
|
|
|
src = &prev->host_state;
|
|
dest = &vmx->loaded_vmcs->host_state;
|
|
|
|
vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
|
|
dest->ldt_sel = src->ldt_sel;
|
|
#ifdef CONFIG_X86_64
|
|
dest->ds_sel = src->ds_sel;
|
|
dest->es_sel = src->es_sel;
|
|
#endif
|
|
}
|
|
|
|
static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct loaded_vmcs *prev;
|
|
int cpu;
|
|
|
|
if (vmx->loaded_vmcs == vmcs)
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
prev = vmx->loaded_vmcs;
|
|
vmx->loaded_vmcs = vmcs;
|
|
vmx_vcpu_load_vmcs(vcpu, cpu);
|
|
vmx_sync_vmcs_host_state(vmx, prev);
|
|
put_cpu();
|
|
|
|
vmx_segment_cache_clear(vmx);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the current vmcs of the logical processor is the
|
|
* vmcs01 of the vcpu before calling free_nested().
|
|
*/
|
|
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu_load(vcpu);
|
|
vmx_leave_nested(vcpu);
|
|
vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
|
|
free_nested(vcpu);
|
|
vcpu_put(vcpu);
|
|
}
|
|
|
|
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 exit_reason;
|
|
unsigned long exit_qualification = vcpu->arch.exit_qualification;
|
|
|
|
if (vmx->nested.pml_full) {
|
|
exit_reason = EXIT_REASON_PML_FULL;
|
|
vmx->nested.pml_full = false;
|
|
exit_qualification &= INTR_INFO_UNBLOCK_NMI;
|
|
} else if (fault->error_code & PFERR_RSVD_MASK)
|
|
exit_reason = EXIT_REASON_EPT_MISCONFIG;
|
|
else
|
|
exit_reason = EXIT_REASON_EPT_VIOLATION;
|
|
|
|
nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
|
|
vmcs12->guest_physical_address = fault->address;
|
|
}
|
|
|
|
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
WARN_ON(mmu_is_nested(vcpu));
|
|
|
|
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
|
|
kvm_init_shadow_ept_mmu(vcpu,
|
|
to_vmx(vcpu)->nested.msrs.ept_caps &
|
|
VMX_EPT_EXECUTE_ONLY_BIT,
|
|
nested_ept_ad_enabled(vcpu),
|
|
nested_ept_get_cr3(vcpu));
|
|
vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
|
|
vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
|
|
vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
|
|
vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
|
|
|
|
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
|
|
}
|
|
|
|
static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.mmu = &vcpu->arch.root_mmu;
|
|
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
|
|
}
|
|
|
|
static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
|
|
u16 error_code)
|
|
{
|
|
bool inequality, bit;
|
|
|
|
bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
|
|
inequality =
|
|
(error_code & vmcs12->page_fault_error_code_mask) !=
|
|
vmcs12->page_fault_error_code_match;
|
|
return inequality ^ bit;
|
|
}
|
|
|
|
|
|
/*
|
|
* KVM wants to inject page-faults which it got to the guest. This function
|
|
* checks whether in a nested guest, we need to inject them to L1 or L2.
|
|
*/
|
|
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
unsigned int nr = vcpu->arch.exception.nr;
|
|
bool has_payload = vcpu->arch.exception.has_payload;
|
|
unsigned long payload = vcpu->arch.exception.payload;
|
|
|
|
if (nr == PF_VECTOR) {
|
|
if (vcpu->arch.exception.nested_apf) {
|
|
*exit_qual = vcpu->arch.apf.nested_apf_token;
|
|
return 1;
|
|
}
|
|
if (nested_vmx_is_page_fault_vmexit(vmcs12,
|
|
vcpu->arch.exception.error_code)) {
|
|
*exit_qual = has_payload ? payload : vcpu->arch.cr2;
|
|
return 1;
|
|
}
|
|
} else if (vmcs12->exception_bitmap & (1u << nr)) {
|
|
if (nr == DB_VECTOR) {
|
|
if (!has_payload) {
|
|
payload = vcpu->arch.dr6;
|
|
payload &= ~(DR6_FIXED_1 | DR6_BT);
|
|
payload ^= DR6_RTM;
|
|
}
|
|
*exit_qual = payload;
|
|
} else
|
|
*exit_qual = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
WARN_ON(!is_guest_mode(vcpu));
|
|
|
|
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
|
|
!to_vmx(vcpu)->nested.nested_run_pending) {
|
|
vmcs12->vm_exit_intr_error_code = fault->error_code;
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
|
|
PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
|
|
INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
|
|
fault->address);
|
|
} else {
|
|
kvm_inject_page_fault(vcpu, fault);
|
|
}
|
|
}
|
|
|
|
static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
|
|
{
|
|
return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
|
|
}
|
|
|
|
static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
|
|
return 0;
|
|
|
|
if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
|
|
CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
|
|
return 0;
|
|
|
|
if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
|
|
return 0;
|
|
|
|
if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if MSR is intercepted for L01 MSR bitmap.
|
|
*/
|
|
static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
unsigned long *msr_bitmap;
|
|
int f = sizeof(unsigned long);
|
|
|
|
if (!cpu_has_vmx_msr_bitmap())
|
|
return true;
|
|
|
|
msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
|
|
|
|
if (msr <= 0x1fff) {
|
|
return !!test_bit(msr, msr_bitmap + 0x800 / f);
|
|
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
|
|
msr &= 0x1fff;
|
|
return !!test_bit(msr, msr_bitmap + 0xc00 / f);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If a msr is allowed by L0, we should check whether it is allowed by L1.
|
|
* The corresponding bit will be cleared unless both of L0 and L1 allow it.
|
|
*/
|
|
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
|
|
unsigned long *msr_bitmap_nested,
|
|
u32 msr, int type)
|
|
{
|
|
int f = sizeof(unsigned long);
|
|
|
|
/*
|
|
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
|
|
* have the write-low and read-high bitmap offsets the wrong way round.
|
|
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
|
|
*/
|
|
if (msr <= 0x1fff) {
|
|
if (type & MSR_TYPE_R &&
|
|
!test_bit(msr, msr_bitmap_l1 + 0x000 / f))
|
|
/* read-low */
|
|
__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
|
|
|
|
if (type & MSR_TYPE_W &&
|
|
!test_bit(msr, msr_bitmap_l1 + 0x800 / f))
|
|
/* write-low */
|
|
__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
|
|
|
|
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
|
|
msr &= 0x1fff;
|
|
if (type & MSR_TYPE_R &&
|
|
!test_bit(msr, msr_bitmap_l1 + 0x400 / f))
|
|
/* read-high */
|
|
__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
|
|
|
|
if (type & MSR_TYPE_W &&
|
|
!test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
|
|
/* write-high */
|
|
__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
|
|
|
|
}
|
|
}
|
|
|
|
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
|
|
int msr;
|
|
|
|
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
|
|
unsigned word = msr / BITS_PER_LONG;
|
|
|
|
msr_bitmap[word] = ~0;
|
|
msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Merge L0's and L1's MSR bitmap, return false to indicate that
|
|
* we do not use the hardware.
|
|
*/
|
|
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
int msr;
|
|
unsigned long *msr_bitmap_l1;
|
|
unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
|
|
struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
|
|
|
|
/* Nothing to do if the MSR bitmap is not in use. */
|
|
if (!cpu_has_vmx_msr_bitmap() ||
|
|
!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
|
|
return false;
|
|
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
|
|
return false;
|
|
|
|
msr_bitmap_l1 = (unsigned long *)map->hva;
|
|
|
|
/*
|
|
* To keep the control flow simple, pay eight 8-byte writes (sixteen
|
|
* 4-byte writes on 32-bit systems) up front to enable intercepts for
|
|
* the x2APIC MSR range and selectively disable them below.
|
|
*/
|
|
enable_x2apic_msr_intercepts(msr_bitmap_l0);
|
|
|
|
if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
|
|
if (nested_cpu_has_apic_reg_virt(vmcs12)) {
|
|
/*
|
|
* L0 need not intercept reads for MSRs between 0x800
|
|
* and 0x8ff, it just lets the processor take the value
|
|
* from the virtual-APIC page; take those 256 bits
|
|
* directly from the L1 bitmap.
|
|
*/
|
|
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
|
|
unsigned word = msr / BITS_PER_LONG;
|
|
|
|
msr_bitmap_l0[word] = msr_bitmap_l1[word];
|
|
}
|
|
}
|
|
|
|
nested_vmx_disable_intercept_for_msr(
|
|
msr_bitmap_l1, msr_bitmap_l0,
|
|
X2APIC_MSR(APIC_TASKPRI),
|
|
MSR_TYPE_R | MSR_TYPE_W);
|
|
|
|
if (nested_cpu_has_vid(vmcs12)) {
|
|
nested_vmx_disable_intercept_for_msr(
|
|
msr_bitmap_l1, msr_bitmap_l0,
|
|
X2APIC_MSR(APIC_EOI),
|
|
MSR_TYPE_W);
|
|
nested_vmx_disable_intercept_for_msr(
|
|
msr_bitmap_l1, msr_bitmap_l0,
|
|
X2APIC_MSR(APIC_SELF_IPI),
|
|
MSR_TYPE_W);
|
|
}
|
|
}
|
|
|
|
/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
|
|
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
|
|
MSR_FS_BASE, MSR_TYPE_RW);
|
|
|
|
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
|
|
MSR_GS_BASE, MSR_TYPE_RW);
|
|
|
|
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
|
|
MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
|
|
|
|
/*
|
|
* Checking the L0->L1 bitmap is trying to verify two things:
|
|
*
|
|
* 1. L0 gave a permission to L1 to actually passthrough the MSR. This
|
|
* ensures that we do not accidentally generate an L02 MSR bitmap
|
|
* from the L12 MSR bitmap that is too permissive.
|
|
* 2. That L1 or L2s have actually used the MSR. This avoids
|
|
* unnecessarily merging of the bitmap if the MSR is unused. This
|
|
* works properly because we only update the L01 MSR bitmap lazily.
|
|
* So even if L0 should pass L1 these MSRs, the L01 bitmap is only
|
|
* updated to reflect this when L1 (or its L2s) actually write to
|
|
* the MSR.
|
|
*/
|
|
if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
|
|
nested_vmx_disable_intercept_for_msr(
|
|
msr_bitmap_l1, msr_bitmap_l0,
|
|
MSR_IA32_SPEC_CTRL,
|
|
MSR_TYPE_R | MSR_TYPE_W);
|
|
|
|
if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
|
|
nested_vmx_disable_intercept_for_msr(
|
|
msr_bitmap_l1, msr_bitmap_l0,
|
|
MSR_IA32_PRED_CMD,
|
|
MSR_TYPE_W);
|
|
|
|
kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct kvm_host_map map;
|
|
struct vmcs12 *shadow;
|
|
|
|
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
|
|
vmcs12->vmcs_link_pointer == -1ull)
|
|
return;
|
|
|
|
shadow = get_shadow_vmcs12(vcpu);
|
|
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
|
|
return;
|
|
|
|
memcpy(shadow, map.hva, VMCS12_SIZE);
|
|
kvm_vcpu_unmap(vcpu, &map, false);
|
|
}
|
|
|
|
static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
|
|
vmcs12->vmcs_link_pointer == -1ull)
|
|
return;
|
|
|
|
kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
|
|
get_shadow_vmcs12(vcpu), VMCS12_SIZE);
|
|
}
|
|
|
|
/*
|
|
* In nested virtualization, check if L1 has set
|
|
* VM_EXIT_ACK_INTR_ON_EXIT
|
|
*/
|
|
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
|
|
{
|
|
return get_vmcs12(vcpu)->vm_exit_controls &
|
|
VM_EXIT_ACK_INTR_ON_EXIT;
|
|
}
|
|
|
|
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
|
|
}
|
|
|
|
static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
|
|
CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
|
|
return -EINVAL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
|
|
!nested_cpu_has_apic_reg_virt(vmcs12) &&
|
|
!nested_cpu_has_vid(vmcs12) &&
|
|
!nested_cpu_has_posted_intr(vmcs12))
|
|
return 0;
|
|
|
|
/*
|
|
* If virtualize x2apic mode is enabled,
|
|
* virtualize apic access must be disabled.
|
|
*/
|
|
if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
|
|
nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If virtual interrupt delivery is enabled,
|
|
* we must exit on external interrupts.
|
|
*/
|
|
if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* bits 15:8 should be zero in posted_intr_nv,
|
|
* the descriptor address has been already checked
|
|
* in nested_get_vmcs12_pages.
|
|
*
|
|
* bits 5:0 of posted_intr_desc_addr should be zero.
|
|
*/
|
|
if (nested_cpu_has_posted_intr(vmcs12) &&
|
|
(CC(!nested_cpu_has_vid(vmcs12)) ||
|
|
CC(!nested_exit_intr_ack_set(vcpu)) ||
|
|
CC((vmcs12->posted_intr_nv & 0xff00)) ||
|
|
CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
|
|
CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
|
|
return -EINVAL;
|
|
|
|
/* tpr shadow is needed by all apicv features. */
|
|
if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
|
|
u32 count, u64 addr)
|
|
{
|
|
int maxphyaddr;
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
maxphyaddr = cpuid_maxphyaddr(vcpu);
|
|
if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
|
|
(addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (CC(nested_vmx_check_msr_switch(vcpu,
|
|
vmcs12->vm_exit_msr_load_count,
|
|
vmcs12->vm_exit_msr_load_addr)) ||
|
|
CC(nested_vmx_check_msr_switch(vcpu,
|
|
vmcs12->vm_exit_msr_store_count,
|
|
vmcs12->vm_exit_msr_store_addr)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (CC(nested_vmx_check_msr_switch(vcpu,
|
|
vmcs12->vm_entry_msr_load_count,
|
|
vmcs12->vm_entry_msr_load_addr)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (!nested_cpu_has_pml(vmcs12))
|
|
return 0;
|
|
|
|
if (CC(!nested_cpu_has_ept(vmcs12)) ||
|
|
CC(!page_address_valid(vcpu, vmcs12->pml_address)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
|
|
!nested_cpu_has_ept(vmcs12)))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
|
|
!nested_cpu_has_ept(vmcs12)))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (!nested_cpu_has_shadow_vmcs(vmcs12))
|
|
return 0;
|
|
|
|
if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
|
|
CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
|
|
struct vmx_msr_entry *e)
|
|
{
|
|
/* x2APIC MSR accesses are not allowed */
|
|
if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
|
|
return -EINVAL;
|
|
if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
|
|
CC(e->index == MSR_IA32_UCODE_REV))
|
|
return -EINVAL;
|
|
if (CC(e->reserved != 0))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
|
|
struct vmx_msr_entry *e)
|
|
{
|
|
if (CC(e->index == MSR_FS_BASE) ||
|
|
CC(e->index == MSR_GS_BASE) ||
|
|
CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
|
|
nested_vmx_msr_check_common(vcpu, e))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
|
|
struct vmx_msr_entry *e)
|
|
{
|
|
if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
|
|
nested_vmx_msr_check_common(vcpu, e))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
|
|
vmx->nested.msrs.misc_high);
|
|
|
|
return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
|
|
}
|
|
|
|
/*
|
|
* Load guest's/host's msr at nested entry/exit.
|
|
* return 0 for success, entry index for failure.
|
|
*
|
|
* One of the failure modes for MSR load/store is when a list exceeds the
|
|
* virtual hardware's capacity. To maintain compatibility with hardware inasmuch
|
|
* as possible, process all valid entries before failing rather than precheck
|
|
* for a capacity violation.
|
|
*/
|
|
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
|
|
{
|
|
u32 i;
|
|
struct vmx_msr_entry e;
|
|
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (unlikely(i >= max_msr_list_size))
|
|
goto fail;
|
|
|
|
if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
|
|
&e, sizeof(e))) {
|
|
pr_debug_ratelimited(
|
|
"%s cannot read MSR entry (%u, 0x%08llx)\n",
|
|
__func__, i, gpa + i * sizeof(e));
|
|
goto fail;
|
|
}
|
|
if (nested_vmx_load_msr_check(vcpu, &e)) {
|
|
pr_debug_ratelimited(
|
|
"%s check failed (%u, 0x%x, 0x%x)\n",
|
|
__func__, i, e.index, e.reserved);
|
|
goto fail;
|
|
}
|
|
if (kvm_set_msr(vcpu, e.index, e.value)) {
|
|
pr_debug_ratelimited(
|
|
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
|
|
__func__, i, e.index, e.value);
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
fail:
|
|
return i + 1;
|
|
}
|
|
|
|
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
|
|
{
|
|
u64 data;
|
|
u32 i;
|
|
struct vmx_msr_entry e;
|
|
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (unlikely(i >= max_msr_list_size))
|
|
return -EINVAL;
|
|
|
|
if (kvm_vcpu_read_guest(vcpu,
|
|
gpa + i * sizeof(e),
|
|
&e, 2 * sizeof(u32))) {
|
|
pr_debug_ratelimited(
|
|
"%s cannot read MSR entry (%u, 0x%08llx)\n",
|
|
__func__, i, gpa + i * sizeof(e));
|
|
return -EINVAL;
|
|
}
|
|
if (nested_vmx_store_msr_check(vcpu, &e)) {
|
|
pr_debug_ratelimited(
|
|
"%s check failed (%u, 0x%x, 0x%x)\n",
|
|
__func__, i, e.index, e.reserved);
|
|
return -EINVAL;
|
|
}
|
|
if (kvm_get_msr(vcpu, e.index, &data)) {
|
|
pr_debug_ratelimited(
|
|
"%s cannot read MSR (%u, 0x%x)\n",
|
|
__func__, i, e.index);
|
|
return -EINVAL;
|
|
}
|
|
if (kvm_vcpu_write_guest(vcpu,
|
|
gpa + i * sizeof(e) +
|
|
offsetof(struct vmx_msr_entry, value),
|
|
&data, sizeof(data))) {
|
|
pr_debug_ratelimited(
|
|
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
|
|
__func__, i, e.index, data);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
unsigned long invalid_mask;
|
|
|
|
invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
|
|
return (val & invalid_mask) == 0;
|
|
}
|
|
|
|
/*
|
|
* Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
|
|
* emulating VM entry into a guest with EPT enabled.
|
|
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
|
|
* is assigned to entry_failure_code on failure.
|
|
*/
|
|
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
|
|
u32 *entry_failure_code)
|
|
{
|
|
if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
|
|
if (CC(!nested_cr3_valid(vcpu, cr3))) {
|
|
*entry_failure_code = ENTRY_FAIL_DEFAULT;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If PAE paging and EPT are both on, CR3 is not used by the CPU and
|
|
* must not be dereferenced.
|
|
*/
|
|
if (is_pae_paging(vcpu) && !nested_ept) {
|
|
if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
|
|
*entry_failure_code = ENTRY_FAIL_PDPTE;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!nested_ept)
|
|
kvm_mmu_new_cr3(vcpu, cr3, false);
|
|
|
|
vcpu->arch.cr3 = cr3;
|
|
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
|
|
|
|
kvm_init_mmu(vcpu, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns if KVM is able to config CPU to tag TLB entries
|
|
* populated by L2 differently than TLB entries populated
|
|
* by L1.
|
|
*
|
|
* If L1 uses EPT, then TLB entries are tagged with different EPTP.
|
|
*
|
|
* If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
|
|
* with different VPID (L1 entries are tagged with vmx->vpid
|
|
* while L2 entries are tagged with vmx->nested.vpid02).
|
|
*/
|
|
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
return nested_cpu_has_ept(vmcs12) ||
|
|
(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
|
|
}
|
|
|
|
static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
|
|
}
|
|
|
|
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
|
|
{
|
|
superset &= mask;
|
|
subset &= mask;
|
|
|
|
return (superset | subset) == superset;
|
|
}
|
|
|
|
static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
|
|
{
|
|
const u64 feature_and_reserved =
|
|
/* feature (except bit 48; see below) */
|
|
BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
|
|
/* reserved */
|
|
BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
|
|
u64 vmx_basic = vmx->nested.msrs.basic;
|
|
|
|
if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* KVM does not emulate a version of VMX that constrains physical
|
|
* addresses of VMX structures (e.g. VMCS) to 32-bits.
|
|
*/
|
|
if (data & BIT_ULL(48))
|
|
return -EINVAL;
|
|
|
|
if (vmx_basic_vmcs_revision_id(vmx_basic) !=
|
|
vmx_basic_vmcs_revision_id(data))
|
|
return -EINVAL;
|
|
|
|
if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
|
|
return -EINVAL;
|
|
|
|
vmx->nested.msrs.basic = data;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
|
|
{
|
|
u64 supported;
|
|
u32 *lowp, *highp;
|
|
|
|
switch (msr_index) {
|
|
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
|
|
lowp = &vmx->nested.msrs.pinbased_ctls_low;
|
|
highp = &vmx->nested.msrs.pinbased_ctls_high;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
|
|
lowp = &vmx->nested.msrs.procbased_ctls_low;
|
|
highp = &vmx->nested.msrs.procbased_ctls_high;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
|
|
lowp = &vmx->nested.msrs.exit_ctls_low;
|
|
highp = &vmx->nested.msrs.exit_ctls_high;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
|
|
lowp = &vmx->nested.msrs.entry_ctls_low;
|
|
highp = &vmx->nested.msrs.entry_ctls_high;
|
|
break;
|
|
case MSR_IA32_VMX_PROCBASED_CTLS2:
|
|
lowp = &vmx->nested.msrs.secondary_ctls_low;
|
|
highp = &vmx->nested.msrs.secondary_ctls_high;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
supported = vmx_control_msr(*lowp, *highp);
|
|
|
|
/* Check must-be-1 bits are still 1. */
|
|
if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
|
|
return -EINVAL;
|
|
|
|
/* Check must-be-0 bits are still 0. */
|
|
if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
|
|
return -EINVAL;
|
|
|
|
*lowp = data;
|
|
*highp = data >> 32;
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
|
|
{
|
|
const u64 feature_and_reserved_bits =
|
|
/* feature */
|
|
BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
|
|
BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
|
|
/* reserved */
|
|
GENMASK_ULL(13, 9) | BIT_ULL(31);
|
|
u64 vmx_misc;
|
|
|
|
vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
|
|
vmx->nested.msrs.misc_high);
|
|
|
|
if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
|
|
return -EINVAL;
|
|
|
|
if ((vmx->nested.msrs.pinbased_ctls_high &
|
|
PIN_BASED_VMX_PREEMPTION_TIMER) &&
|
|
vmx_misc_preemption_timer_rate(data) !=
|
|
vmx_misc_preemption_timer_rate(vmx_misc))
|
|
return -EINVAL;
|
|
|
|
if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
|
|
return -EINVAL;
|
|
|
|
if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
|
|
return -EINVAL;
|
|
|
|
if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
|
|
return -EINVAL;
|
|
|
|
vmx->nested.msrs.misc_low = data;
|
|
vmx->nested.msrs.misc_high = data >> 32;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
|
|
{
|
|
u64 vmx_ept_vpid_cap;
|
|
|
|
vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
|
|
vmx->nested.msrs.vpid_caps);
|
|
|
|
/* Every bit is either reserved or a feature bit. */
|
|
if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
|
|
return -EINVAL;
|
|
|
|
vmx->nested.msrs.ept_caps = data;
|
|
vmx->nested.msrs.vpid_caps = data >> 32;
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
|
|
{
|
|
u64 *msr;
|
|
|
|
switch (msr_index) {
|
|
case MSR_IA32_VMX_CR0_FIXED0:
|
|
msr = &vmx->nested.msrs.cr0_fixed0;
|
|
break;
|
|
case MSR_IA32_VMX_CR4_FIXED0:
|
|
msr = &vmx->nested.msrs.cr4_fixed0;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* 1 bits (which indicates bits which "must-be-1" during VMX operation)
|
|
* must be 1 in the restored value.
|
|
*/
|
|
if (!is_bitwise_subset(data, *msr, -1ULL))
|
|
return -EINVAL;
|
|
|
|
*msr = data;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called when userspace is restoring VMX MSRs.
|
|
*
|
|
* Returns 0 on success, non-0 otherwise.
|
|
*/
|
|
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* Don't allow changes to the VMX capability MSRs while the vCPU
|
|
* is in VMX operation.
|
|
*/
|
|
if (vmx->nested.vmxon)
|
|
return -EBUSY;
|
|
|
|
switch (msr_index) {
|
|
case MSR_IA32_VMX_BASIC:
|
|
return vmx_restore_vmx_basic(vmx, data);
|
|
case MSR_IA32_VMX_PINBASED_CTLS:
|
|
case MSR_IA32_VMX_PROCBASED_CTLS:
|
|
case MSR_IA32_VMX_EXIT_CTLS:
|
|
case MSR_IA32_VMX_ENTRY_CTLS:
|
|
/*
|
|
* The "non-true" VMX capability MSRs are generated from the
|
|
* "true" MSRs, so we do not support restoring them directly.
|
|
*
|
|
* If userspace wants to emulate VMX_BASIC[55]=0, userspace
|
|
* should restore the "true" MSRs with the must-be-1 bits
|
|
* set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
|
|
* DEFAULT SETTINGS".
|
|
*/
|
|
return -EINVAL;
|
|
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
|
|
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
|
|
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
|
|
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
|
|
case MSR_IA32_VMX_PROCBASED_CTLS2:
|
|
return vmx_restore_control_msr(vmx, msr_index, data);
|
|
case MSR_IA32_VMX_MISC:
|
|
return vmx_restore_vmx_misc(vmx, data);
|
|
case MSR_IA32_VMX_CR0_FIXED0:
|
|
case MSR_IA32_VMX_CR4_FIXED0:
|
|
return vmx_restore_fixed0_msr(vmx, msr_index, data);
|
|
case MSR_IA32_VMX_CR0_FIXED1:
|
|
case MSR_IA32_VMX_CR4_FIXED1:
|
|
/*
|
|
* These MSRs are generated based on the vCPU's CPUID, so we
|
|
* do not support restoring them directly.
|
|
*/
|
|
return -EINVAL;
|
|
case MSR_IA32_VMX_EPT_VPID_CAP:
|
|
return vmx_restore_vmx_ept_vpid_cap(vmx, data);
|
|
case MSR_IA32_VMX_VMCS_ENUM:
|
|
vmx->nested.msrs.vmcs_enum = data;
|
|
return 0;
|
|
case MSR_IA32_VMX_VMFUNC:
|
|
if (data & ~vmx->nested.msrs.vmfunc_controls)
|
|
return -EINVAL;
|
|
vmx->nested.msrs.vmfunc_controls = data;
|
|
return 0;
|
|
default:
|
|
/*
|
|
* The rest of the VMX capability MSRs do not support restore.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Returns 0 on success, non-0 otherwise. */
|
|
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
|
|
{
|
|
switch (msr_index) {
|
|
case MSR_IA32_VMX_BASIC:
|
|
*pdata = msrs->basic;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
|
|
case MSR_IA32_VMX_PINBASED_CTLS:
|
|
*pdata = vmx_control_msr(
|
|
msrs->pinbased_ctls_low,
|
|
msrs->pinbased_ctls_high);
|
|
if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
|
|
*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
|
|
case MSR_IA32_VMX_PROCBASED_CTLS:
|
|
*pdata = vmx_control_msr(
|
|
msrs->procbased_ctls_low,
|
|
msrs->procbased_ctls_high);
|
|
if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
|
|
*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
|
|
case MSR_IA32_VMX_EXIT_CTLS:
|
|
*pdata = vmx_control_msr(
|
|
msrs->exit_ctls_low,
|
|
msrs->exit_ctls_high);
|
|
if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
|
|
*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
|
|
case MSR_IA32_VMX_ENTRY_CTLS:
|
|
*pdata = vmx_control_msr(
|
|
msrs->entry_ctls_low,
|
|
msrs->entry_ctls_high);
|
|
if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
|
|
*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
break;
|
|
case MSR_IA32_VMX_MISC:
|
|
*pdata = vmx_control_msr(
|
|
msrs->misc_low,
|
|
msrs->misc_high);
|
|
break;
|
|
case MSR_IA32_VMX_CR0_FIXED0:
|
|
*pdata = msrs->cr0_fixed0;
|
|
break;
|
|
case MSR_IA32_VMX_CR0_FIXED1:
|
|
*pdata = msrs->cr0_fixed1;
|
|
break;
|
|
case MSR_IA32_VMX_CR4_FIXED0:
|
|
*pdata = msrs->cr4_fixed0;
|
|
break;
|
|
case MSR_IA32_VMX_CR4_FIXED1:
|
|
*pdata = msrs->cr4_fixed1;
|
|
break;
|
|
case MSR_IA32_VMX_VMCS_ENUM:
|
|
*pdata = msrs->vmcs_enum;
|
|
break;
|
|
case MSR_IA32_VMX_PROCBASED_CTLS2:
|
|
*pdata = vmx_control_msr(
|
|
msrs->secondary_ctls_low,
|
|
msrs->secondary_ctls_high);
|
|
break;
|
|
case MSR_IA32_VMX_EPT_VPID_CAP:
|
|
*pdata = msrs->ept_caps |
|
|
((u64)msrs->vpid_caps << 32);
|
|
break;
|
|
case MSR_IA32_VMX_VMFUNC:
|
|
*pdata = msrs->vmfunc_controls;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the writable VMCS shadow fields back to the VMCS12, in case they have
|
|
* been modified by the L1 guest. Note, "writable" in this context means
|
|
* "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
|
|
* fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
|
|
* VM-exit information fields (which are actually writable if the vCPU is
|
|
* configured to support "VMWRITE to any supported field in the VMCS").
|
|
*/
|
|
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
|
|
{
|
|
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
|
|
struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
|
|
struct shadow_vmcs_field field;
|
|
unsigned long val;
|
|
int i;
|
|
|
|
if (WARN_ON(!shadow_vmcs))
|
|
return;
|
|
|
|
preempt_disable();
|
|
|
|
vmcs_load(shadow_vmcs);
|
|
|
|
for (i = 0; i < max_shadow_read_write_fields; i++) {
|
|
field = shadow_read_write_fields[i];
|
|
val = __vmcs_readl(field.encoding);
|
|
vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
|
|
}
|
|
|
|
vmcs_clear(shadow_vmcs);
|
|
vmcs_load(vmx->loaded_vmcs->vmcs);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
|
|
{
|
|
const struct shadow_vmcs_field *fields[] = {
|
|
shadow_read_write_fields,
|
|
shadow_read_only_fields
|
|
};
|
|
const int max_fields[] = {
|
|
max_shadow_read_write_fields,
|
|
max_shadow_read_only_fields
|
|
};
|
|
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
|
|
struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
|
|
struct shadow_vmcs_field field;
|
|
unsigned long val;
|
|
int i, q;
|
|
|
|
if (WARN_ON(!shadow_vmcs))
|
|
return;
|
|
|
|
vmcs_load(shadow_vmcs);
|
|
|
|
for (q = 0; q < ARRAY_SIZE(fields); q++) {
|
|
for (i = 0; i < max_fields[q]; i++) {
|
|
field = fields[q][i];
|
|
val = vmcs12_read_any(vmcs12, field.encoding,
|
|
field.offset);
|
|
__vmcs_writel(field.encoding, val);
|
|
}
|
|
}
|
|
|
|
vmcs_clear(shadow_vmcs);
|
|
vmcs_load(vmx->loaded_vmcs->vmcs);
|
|
}
|
|
|
|
static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
|
|
{
|
|
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
|
|
struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
|
|
|
|
/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
|
|
vmcs12->tpr_threshold = evmcs->tpr_threshold;
|
|
vmcs12->guest_rip = evmcs->guest_rip;
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
|
|
vmcs12->guest_rsp = evmcs->guest_rsp;
|
|
vmcs12->guest_rflags = evmcs->guest_rflags;
|
|
vmcs12->guest_interruptibility_info =
|
|
evmcs->guest_interruptibility_info;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
|
|
vmcs12->cpu_based_vm_exec_control =
|
|
evmcs->cpu_based_vm_exec_control;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
|
|
vmcs12->exception_bitmap = evmcs->exception_bitmap;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
|
|
vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
|
|
vmcs12->vm_entry_intr_info_field =
|
|
evmcs->vm_entry_intr_info_field;
|
|
vmcs12->vm_entry_exception_error_code =
|
|
evmcs->vm_entry_exception_error_code;
|
|
vmcs12->vm_entry_instruction_len =
|
|
evmcs->vm_entry_instruction_len;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
|
|
vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
|
|
vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
|
|
vmcs12->host_cr0 = evmcs->host_cr0;
|
|
vmcs12->host_cr3 = evmcs->host_cr3;
|
|
vmcs12->host_cr4 = evmcs->host_cr4;
|
|
vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
|
|
vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
|
|
vmcs12->host_rip = evmcs->host_rip;
|
|
vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
|
|
vmcs12->host_es_selector = evmcs->host_es_selector;
|
|
vmcs12->host_cs_selector = evmcs->host_cs_selector;
|
|
vmcs12->host_ss_selector = evmcs->host_ss_selector;
|
|
vmcs12->host_ds_selector = evmcs->host_ds_selector;
|
|
vmcs12->host_fs_selector = evmcs->host_fs_selector;
|
|
vmcs12->host_gs_selector = evmcs->host_gs_selector;
|
|
vmcs12->host_tr_selector = evmcs->host_tr_selector;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
|
|
vmcs12->pin_based_vm_exec_control =
|
|
evmcs->pin_based_vm_exec_control;
|
|
vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
|
|
vmcs12->secondary_vm_exec_control =
|
|
evmcs->secondary_vm_exec_control;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
|
|
vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
|
|
vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
|
|
vmcs12->msr_bitmap = evmcs->msr_bitmap;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
|
|
vmcs12->guest_es_base = evmcs->guest_es_base;
|
|
vmcs12->guest_cs_base = evmcs->guest_cs_base;
|
|
vmcs12->guest_ss_base = evmcs->guest_ss_base;
|
|
vmcs12->guest_ds_base = evmcs->guest_ds_base;
|
|
vmcs12->guest_fs_base = evmcs->guest_fs_base;
|
|
vmcs12->guest_gs_base = evmcs->guest_gs_base;
|
|
vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
|
|
vmcs12->guest_tr_base = evmcs->guest_tr_base;
|
|
vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
|
|
vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
|
|
vmcs12->guest_es_limit = evmcs->guest_es_limit;
|
|
vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
|
|
vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
|
|
vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
|
|
vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
|
|
vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
|
|
vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
|
|
vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
|
|
vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
|
|
vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
|
|
vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
|
|
vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
|
|
vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
|
|
vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
|
|
vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
|
|
vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
|
|
vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
|
|
vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
|
|
vmcs12->guest_es_selector = evmcs->guest_es_selector;
|
|
vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
|
|
vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
|
|
vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
|
|
vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
|
|
vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
|
|
vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
|
|
vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
|
|
vmcs12->tsc_offset = evmcs->tsc_offset;
|
|
vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
|
|
vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
|
|
vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
|
|
vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
|
|
vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
|
|
vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
|
|
vmcs12->guest_cr0 = evmcs->guest_cr0;
|
|
vmcs12->guest_cr3 = evmcs->guest_cr3;
|
|
vmcs12->guest_cr4 = evmcs->guest_cr4;
|
|
vmcs12->guest_dr7 = evmcs->guest_dr7;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
|
|
vmcs12->host_fs_base = evmcs->host_fs_base;
|
|
vmcs12->host_gs_base = evmcs->host_gs_base;
|
|
vmcs12->host_tr_base = evmcs->host_tr_base;
|
|
vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
|
|
vmcs12->host_idtr_base = evmcs->host_idtr_base;
|
|
vmcs12->host_rsp = evmcs->host_rsp;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
|
|
vmcs12->ept_pointer = evmcs->ept_pointer;
|
|
vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
|
|
}
|
|
|
|
if (unlikely(!(evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
|
|
vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
|
|
vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
|
|
vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
|
|
vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
|
|
vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
|
|
vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
|
|
vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
|
|
vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
|
|
vmcs12->guest_pending_dbg_exceptions =
|
|
evmcs->guest_pending_dbg_exceptions;
|
|
vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
|
|
vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
|
|
vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
|
|
vmcs12->guest_activity_state = evmcs->guest_activity_state;
|
|
vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
|
|
}
|
|
|
|
/*
|
|
* Not used?
|
|
* vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
|
|
* vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
|
|
* vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
|
|
* vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
|
|
* vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
|
|
* vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
|
|
* vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
|
|
* vmcs12->page_fault_error_code_mask =
|
|
* evmcs->page_fault_error_code_mask;
|
|
* vmcs12->page_fault_error_code_match =
|
|
* evmcs->page_fault_error_code_match;
|
|
* vmcs12->cr3_target_count = evmcs->cr3_target_count;
|
|
* vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
|
|
* vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
|
|
* vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
|
|
*/
|
|
|
|
/*
|
|
* Read only fields:
|
|
* vmcs12->guest_physical_address = evmcs->guest_physical_address;
|
|
* vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
|
|
* vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
|
|
* vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
|
|
* vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
|
|
* vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
|
|
* vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
|
|
* vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
|
|
* vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
|
|
* vmcs12->exit_qualification = evmcs->exit_qualification;
|
|
* vmcs12->guest_linear_address = evmcs->guest_linear_address;
|
|
*
|
|
* Not present in struct vmcs12:
|
|
* vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
|
|
* vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
|
|
* vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
|
|
* vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
|
|
{
|
|
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
|
|
struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
|
|
|
|
/*
|
|
* Should not be changed by KVM:
|
|
*
|
|
* evmcs->host_es_selector = vmcs12->host_es_selector;
|
|
* evmcs->host_cs_selector = vmcs12->host_cs_selector;
|
|
* evmcs->host_ss_selector = vmcs12->host_ss_selector;
|
|
* evmcs->host_ds_selector = vmcs12->host_ds_selector;
|
|
* evmcs->host_fs_selector = vmcs12->host_fs_selector;
|
|
* evmcs->host_gs_selector = vmcs12->host_gs_selector;
|
|
* evmcs->host_tr_selector = vmcs12->host_tr_selector;
|
|
* evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
|
|
* evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
|
|
* evmcs->host_cr0 = vmcs12->host_cr0;
|
|
* evmcs->host_cr3 = vmcs12->host_cr3;
|
|
* evmcs->host_cr4 = vmcs12->host_cr4;
|
|
* evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
|
|
* evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
|
|
* evmcs->host_rip = vmcs12->host_rip;
|
|
* evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
|
|
* evmcs->host_fs_base = vmcs12->host_fs_base;
|
|
* evmcs->host_gs_base = vmcs12->host_gs_base;
|
|
* evmcs->host_tr_base = vmcs12->host_tr_base;
|
|
* evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
|
|
* evmcs->host_idtr_base = vmcs12->host_idtr_base;
|
|
* evmcs->host_rsp = vmcs12->host_rsp;
|
|
* sync_vmcs02_to_vmcs12() doesn't read these:
|
|
* evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
|
|
* evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
|
|
* evmcs->msr_bitmap = vmcs12->msr_bitmap;
|
|
* evmcs->ept_pointer = vmcs12->ept_pointer;
|
|
* evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
|
|
* evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
|
|
* evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
|
|
* evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
|
|
* evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
|
|
* evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
|
|
* evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
|
|
* evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
|
|
* evmcs->tpr_threshold = vmcs12->tpr_threshold;
|
|
* evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
|
|
* evmcs->exception_bitmap = vmcs12->exception_bitmap;
|
|
* evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
|
|
* evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
|
|
* evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
|
|
* evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
|
|
* evmcs->page_fault_error_code_mask =
|
|
* vmcs12->page_fault_error_code_mask;
|
|
* evmcs->page_fault_error_code_match =
|
|
* vmcs12->page_fault_error_code_match;
|
|
* evmcs->cr3_target_count = vmcs12->cr3_target_count;
|
|
* evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
|
|
* evmcs->tsc_offset = vmcs12->tsc_offset;
|
|
* evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
|
|
* evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
|
|
* evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
|
|
* evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
|
|
* evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
|
|
* evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
|
|
* evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
|
|
* evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
|
|
*
|
|
* Not present in struct vmcs12:
|
|
* evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
|
|
* evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
|
|
* evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
|
|
* evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
|
|
*/
|
|
|
|
evmcs->guest_es_selector = vmcs12->guest_es_selector;
|
|
evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
|
|
evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
|
|
evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
|
|
evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
|
|
evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
|
|
evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
|
|
evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
|
|
|
|
evmcs->guest_es_limit = vmcs12->guest_es_limit;
|
|
evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
|
|
evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
|
|
evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
|
|
evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
|
|
evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
|
|
evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
|
|
evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
|
|
evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
|
|
evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
|
|
|
|
evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
|
|
evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
|
|
evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
|
|
evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
|
|
evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
|
|
evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
|
|
evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
|
|
evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
|
|
|
|
evmcs->guest_es_base = vmcs12->guest_es_base;
|
|
evmcs->guest_cs_base = vmcs12->guest_cs_base;
|
|
evmcs->guest_ss_base = vmcs12->guest_ss_base;
|
|
evmcs->guest_ds_base = vmcs12->guest_ds_base;
|
|
evmcs->guest_fs_base = vmcs12->guest_fs_base;
|
|
evmcs->guest_gs_base = vmcs12->guest_gs_base;
|
|
evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
|
|
evmcs->guest_tr_base = vmcs12->guest_tr_base;
|
|
evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
|
|
evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
|
|
|
|
evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
|
|
evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
|
|
|
|
evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
|
|
evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
|
|
evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
|
|
evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
|
|
|
|
evmcs->guest_pending_dbg_exceptions =
|
|
vmcs12->guest_pending_dbg_exceptions;
|
|
evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
|
|
evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
|
|
|
|
evmcs->guest_activity_state = vmcs12->guest_activity_state;
|
|
evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
|
|
|
|
evmcs->guest_cr0 = vmcs12->guest_cr0;
|
|
evmcs->guest_cr3 = vmcs12->guest_cr3;
|
|
evmcs->guest_cr4 = vmcs12->guest_cr4;
|
|
evmcs->guest_dr7 = vmcs12->guest_dr7;
|
|
|
|
evmcs->guest_physical_address = vmcs12->guest_physical_address;
|
|
|
|
evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
|
|
evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
|
|
evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
|
|
evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
|
|
evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
|
|
evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
|
|
evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
|
|
evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
|
|
|
|
evmcs->exit_qualification = vmcs12->exit_qualification;
|
|
|
|
evmcs->guest_linear_address = vmcs12->guest_linear_address;
|
|
evmcs->guest_rsp = vmcs12->guest_rsp;
|
|
evmcs->guest_rflags = vmcs12->guest_rflags;
|
|
|
|
evmcs->guest_interruptibility_info =
|
|
vmcs12->guest_interruptibility_info;
|
|
evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
|
|
evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
|
|
evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
|
|
evmcs->vm_entry_exception_error_code =
|
|
vmcs12->vm_entry_exception_error_code;
|
|
evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
|
|
|
|
evmcs->guest_rip = vmcs12->guest_rip;
|
|
|
|
evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is an equivalent of the nested hypervisor executing the vmptrld
|
|
* instruction.
|
|
*/
|
|
static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
|
|
bool from_launch)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
bool evmcs_gpa_changed = false;
|
|
u64 evmcs_gpa;
|
|
|
|
if (likely(!vmx->nested.enlightened_vmcs_enabled))
|
|
return 1;
|
|
|
|
if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
|
|
return 1;
|
|
|
|
if (unlikely(!vmx->nested.hv_evmcs ||
|
|
evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
|
|
if (!vmx->nested.hv_evmcs)
|
|
vmx->nested.current_vmptr = -1ull;
|
|
|
|
nested_release_evmcs(vcpu);
|
|
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
|
|
&vmx->nested.hv_evmcs_map))
|
|
return 0;
|
|
|
|
vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
|
|
|
|
/*
|
|
* Currently, KVM only supports eVMCS version 1
|
|
* (== KVM_EVMCS_VERSION) and thus we expect guest to set this
|
|
* value to first u32 field of eVMCS which should specify eVMCS
|
|
* VersionNumber.
|
|
*
|
|
* Guest should be aware of supported eVMCS versions by host by
|
|
* examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
|
|
* expected to set this CPUID leaf according to the value
|
|
* returned in vmcs_version from nested_enable_evmcs().
|
|
*
|
|
* However, it turns out that Microsoft Hyper-V fails to comply
|
|
* to their own invented interface: When Hyper-V use eVMCS, it
|
|
* just sets first u32 field of eVMCS to revision_id specified
|
|
* in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
|
|
* which is one of the supported versions specified in
|
|
* CPUID.0x4000000A.EAX[0:15].
|
|
*
|
|
* To overcome Hyper-V bug, we accept here either a supported
|
|
* eVMCS version or VMCS12 revision_id as valid values for first
|
|
* u32 field of eVMCS.
|
|
*/
|
|
if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
|
|
(vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
|
|
nested_release_evmcs(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
vmx->nested.dirty_vmcs12 = true;
|
|
vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
|
|
|
|
evmcs_gpa_changed = true;
|
|
/*
|
|
* Unlike normal vmcs12, enlightened vmcs12 is not fully
|
|
* reloaded from guest's memory (read only fields, fields not
|
|
* present in struct hv_enlightened_vmcs, ...). Make sure there
|
|
* are no leftovers.
|
|
*/
|
|
if (from_launch) {
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
memset(vmcs12, 0, sizeof(*vmcs12));
|
|
vmcs12->hdr.revision_id = VMCS12_REVISION;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Clean fields data can't de used on VMLAUNCH and when we switch
|
|
* between different L2 guests as KVM keeps a single VMCS12 per L1.
|
|
*/
|
|
if (from_launch || evmcs_gpa_changed)
|
|
vmx->nested.hv_evmcs->hv_clean_fields &=
|
|
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* hv_evmcs may end up being not mapped after migration (when
|
|
* L2 was running), map it here to make sure vmcs12 changes are
|
|
* properly reflected.
|
|
*/
|
|
if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
|
|
nested_vmx_handle_enlightened_vmptrld(vcpu, false);
|
|
|
|
if (vmx->nested.hv_evmcs) {
|
|
copy_vmcs12_to_enlightened(vmx);
|
|
/* All fields are clean */
|
|
vmx->nested.hv_evmcs->hv_clean_fields |=
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
|
|
} else {
|
|
copy_vmcs12_to_shadow(vmx);
|
|
}
|
|
|
|
vmx->nested.need_vmcs12_to_shadow_sync = false;
|
|
}
|
|
|
|
static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
|
|
{
|
|
struct vcpu_vmx *vmx =
|
|
container_of(timer, struct vcpu_vmx, nested.preemption_timer);
|
|
|
|
vmx->nested.preemption_timer_expired = true;
|
|
kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
|
|
kvm_vcpu_kick(&vmx->vcpu);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* A timer value of zero is architecturally guaranteed to cause
|
|
* a VMExit prior to executing any instructions in the guest.
|
|
*/
|
|
if (preemption_timeout == 0) {
|
|
vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
|
|
return;
|
|
}
|
|
|
|
if (vcpu->arch.virtual_tsc_khz == 0)
|
|
return;
|
|
|
|
preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
|
|
preemption_timeout *= 1000000;
|
|
do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
|
|
hrtimer_start(&vmx->nested.preemption_timer,
|
|
ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
|
|
}
|
|
|
|
static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
|
|
{
|
|
if (vmx->nested.nested_run_pending &&
|
|
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
|
|
return vmcs12->guest_ia32_efer;
|
|
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
|
|
return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
|
|
else
|
|
return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
|
|
}
|
|
|
|
static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
|
|
{
|
|
/*
|
|
* If vmcs02 hasn't been initialized, set the constant vmcs02 state
|
|
* according to L0's settings (vmcs12 is irrelevant here). Host
|
|
* fields that come from L0 and are not constant, e.g. HOST_CR3,
|
|
* will be set as needed prior to VMLAUNCH/VMRESUME.
|
|
*/
|
|
if (vmx->nested.vmcs02_initialized)
|
|
return;
|
|
vmx->nested.vmcs02_initialized = true;
|
|
|
|
/*
|
|
* We don't care what the EPTP value is we just need to guarantee
|
|
* it's valid so we don't get a false positive when doing early
|
|
* consistency checks.
|
|
*/
|
|
if (enable_ept && nested_early_check)
|
|
vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
|
|
|
|
/* All VMFUNCs are currently emulated through L0 vmexits. */
|
|
if (cpu_has_vmx_vmfunc())
|
|
vmcs_write64(VM_FUNCTION_CONTROL, 0);
|
|
|
|
if (cpu_has_vmx_posted_intr())
|
|
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
|
|
|
|
if (cpu_has_vmx_msr_bitmap())
|
|
vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
|
|
|
|
/*
|
|
* The PML address never changes, so it is constant in vmcs02.
|
|
* Conceptually we want to copy the PML index from vmcs01 here,
|
|
* and then back to vmcs01 on nested vmexit. But since we flush
|
|
* the log and reset GUEST_PML_INDEX on each vmexit, the PML
|
|
* index is also effectively constant in vmcs02.
|
|
*/
|
|
if (enable_pml) {
|
|
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
|
|
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
|
|
}
|
|
|
|
if (cpu_has_vmx_encls_vmexit())
|
|
vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
|
|
|
|
/*
|
|
* Set the MSR load/store lists to match L0's settings. Only the
|
|
* addresses are constant (for vmcs02), the counts can change based
|
|
* on L2's behavior, e.g. switching to/from long mode.
|
|
*/
|
|
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
|
|
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
|
|
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
|
|
|
|
vmx_set_constant_host_state(vmx);
|
|
}
|
|
|
|
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
prepare_vmcs02_constant_state(vmx);
|
|
|
|
vmcs_write64(VMCS_LINK_POINTER, -1ull);
|
|
|
|
if (enable_vpid) {
|
|
if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
|
|
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
|
|
else
|
|
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
|
|
}
|
|
}
|
|
|
|
static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
|
|
{
|
|
u32 exec_control, vmcs12_exec_ctrl;
|
|
u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
|
|
|
|
if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
|
|
prepare_vmcs02_early_rare(vmx, vmcs12);
|
|
|
|
/*
|
|
* PIN CONTROLS
|
|
*/
|
|
exec_control = vmx_pin_based_exec_ctrl(vmx);
|
|
exec_control |= (vmcs12->pin_based_vm_exec_control &
|
|
~PIN_BASED_VMX_PREEMPTION_TIMER);
|
|
|
|
/* Posted interrupts setting is only taken from vmcs12. */
|
|
if (nested_cpu_has_posted_intr(vmcs12)) {
|
|
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
|
|
vmx->nested.pi_pending = false;
|
|
} else {
|
|
exec_control &= ~PIN_BASED_POSTED_INTR;
|
|
}
|
|
pin_controls_set(vmx, exec_control);
|
|
|
|
/*
|
|
* EXEC CONTROLS
|
|
*/
|
|
exec_control = vmx_exec_control(vmx); /* L0's desires */
|
|
exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
|
|
exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
exec_control |= vmcs12->cpu_based_vm_exec_control;
|
|
|
|
if (exec_control & CPU_BASED_TPR_SHADOW)
|
|
vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
|
|
#ifdef CONFIG_X86_64
|
|
else
|
|
exec_control |= CPU_BASED_CR8_LOAD_EXITING |
|
|
CPU_BASED_CR8_STORE_EXITING;
|
|
#endif
|
|
|
|
/*
|
|
* A vmexit (to either L1 hypervisor or L0 userspace) is always needed
|
|
* for I/O port accesses.
|
|
*/
|
|
exec_control |= CPU_BASED_UNCOND_IO_EXITING;
|
|
exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
|
|
|
|
/*
|
|
* This bit will be computed in nested_get_vmcs12_pages, because
|
|
* we do not have access to L1's MSR bitmap yet. For now, keep
|
|
* the same bit as before, hoping to avoid multiple VMWRITEs that
|
|
* only set/clear this bit.
|
|
*/
|
|
exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
|
|
exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
|
|
|
|
exec_controls_set(vmx, exec_control);
|
|
|
|
/*
|
|
* SECONDARY EXEC CONTROLS
|
|
*/
|
|
if (cpu_has_secondary_exec_ctrls()) {
|
|
exec_control = vmx->secondary_exec_control;
|
|
|
|
/* Take the following fields only from vmcs12 */
|
|
exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
|
|
SECONDARY_EXEC_ENABLE_INVPCID |
|
|
SECONDARY_EXEC_RDTSCP |
|
|
SECONDARY_EXEC_XSAVES |
|
|
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
|
|
SECONDARY_EXEC_APIC_REGISTER_VIRT |
|
|
SECONDARY_EXEC_ENABLE_VMFUNC);
|
|
if (nested_cpu_has(vmcs12,
|
|
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
|
|
vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
|
|
~SECONDARY_EXEC_ENABLE_PML;
|
|
exec_control |= vmcs12_exec_ctrl;
|
|
}
|
|
|
|
/* VMCS shadowing for L2 is emulated for now */
|
|
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
|
|
|
|
/*
|
|
* Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
|
|
* will not have to rewrite the controls just for this bit.
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
|
|
(vmcs12->guest_cr4 & X86_CR4_UMIP))
|
|
exec_control |= SECONDARY_EXEC_DESC;
|
|
|
|
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
|
|
vmcs_write16(GUEST_INTR_STATUS,
|
|
vmcs12->guest_intr_status);
|
|
|
|
secondary_exec_controls_set(vmx, exec_control);
|
|
}
|
|
|
|
/*
|
|
* ENTRY CONTROLS
|
|
*
|
|
* vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
|
|
* are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
|
|
* on the related bits (if supported by the CPU) in the hope that
|
|
* we can avoid VMWrites during vmx_set_efer().
|
|
*/
|
|
exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
|
|
~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
|
|
if (cpu_has_load_ia32_efer()) {
|
|
if (guest_efer & EFER_LMA)
|
|
exec_control |= VM_ENTRY_IA32E_MODE;
|
|
if (guest_efer != host_efer)
|
|
exec_control |= VM_ENTRY_LOAD_IA32_EFER;
|
|
}
|
|
vm_entry_controls_set(vmx, exec_control);
|
|
|
|
/*
|
|
* EXIT CONTROLS
|
|
*
|
|
* L2->L1 exit controls are emulated - the hardware exit is to L0 so
|
|
* we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
|
|
* bits may be modified by vmx_set_efer() in prepare_vmcs02().
|
|
*/
|
|
exec_control = vmx_vmexit_ctrl();
|
|
if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
|
|
exec_control |= VM_EXIT_LOAD_IA32_EFER;
|
|
vm_exit_controls_set(vmx, exec_control);
|
|
|
|
/*
|
|
* Interrupt/Exception Fields
|
|
*/
|
|
if (vmx->nested.nested_run_pending) {
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
vmcs12->vm_entry_intr_info_field);
|
|
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
|
|
vmcs12->vm_entry_exception_error_code);
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
|
|
vmcs12->vm_entry_instruction_len);
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
|
|
vmcs12->guest_interruptibility_info);
|
|
vmx->loaded_vmcs->nmi_known_unmasked =
|
|
!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
|
|
} else {
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
|
|
}
|
|
}
|
|
|
|
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
|
|
{
|
|
struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
|
|
|
|
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
|
|
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
|
|
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
|
|
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
|
|
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
|
|
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
|
|
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
|
|
vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
|
|
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
|
|
vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
|
|
vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
|
|
vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
|
|
vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
|
|
vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
|
|
vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
|
|
vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
|
|
vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
|
|
vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
|
|
vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
|
|
vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
|
|
vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
|
|
vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
|
|
vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
|
|
vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
|
|
vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
|
|
vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
|
|
vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
|
|
vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
|
|
vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
|
|
vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
|
|
vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
|
|
vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
|
|
vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
|
|
vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
|
|
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
|
|
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
|
|
}
|
|
|
|
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
|
|
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
|
|
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
|
|
vmcs12->guest_pending_dbg_exceptions);
|
|
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
|
|
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
|
|
|
|
/*
|
|
* L1 may access the L2's PDPTR, so save them to construct
|
|
* vmcs12
|
|
*/
|
|
if (enable_ept) {
|
|
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
|
|
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
|
|
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
|
|
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
|
|
}
|
|
|
|
if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
|
|
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
|
|
vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
|
|
}
|
|
|
|
if (nested_cpu_has_xsaves(vmcs12))
|
|
vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
|
|
|
|
/*
|
|
* Whether page-faults are trapped is determined by a combination of
|
|
* 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
|
|
* If enable_ept, L0 doesn't care about page faults and we should
|
|
* set all of these to L1's desires. However, if !enable_ept, L0 does
|
|
* care about (at least some) page faults, and because it is not easy
|
|
* (if at all possible?) to merge L0 and L1's desires, we simply ask
|
|
* to exit on each and every L2 page fault. This is done by setting
|
|
* MASK=MATCH=0 and (see below) EB.PF=1.
|
|
* Note that below we don't need special code to set EB.PF beyond the
|
|
* "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
|
|
* vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
|
|
* !enable_ept, EB.PF is 1, so the "or" will always be 1.
|
|
*/
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
|
|
enable_ept ? vmcs12->page_fault_error_code_mask : 0);
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
|
|
enable_ept ? vmcs12->page_fault_error_code_match : 0);
|
|
|
|
if (cpu_has_vmx_apicv()) {
|
|
vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
|
|
vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
|
|
vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
|
|
vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
|
|
}
|
|
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
|
|
|
|
set_cr4_guest_host_mask(vmx);
|
|
}
|
|
|
|
/*
|
|
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
|
|
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
|
|
* with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
|
|
* guest in a way that will both be appropriate to L1's requests, and our
|
|
* needs. In addition to modifying the active vmcs (which is vmcs02), this
|
|
* function also has additional necessary side-effects, like setting various
|
|
* vcpu->arch fields.
|
|
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
|
|
* is assigned to entry_failure_code on failure.
|
|
*/
|
|
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
|
|
u32 *entry_failure_code)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
|
|
bool load_guest_pdptrs_vmcs12 = false;
|
|
|
|
if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
|
|
prepare_vmcs02_rare(vmx, vmcs12);
|
|
vmx->nested.dirty_vmcs12 = false;
|
|
|
|
load_guest_pdptrs_vmcs12 = !hv_evmcs ||
|
|
!(hv_evmcs->hv_clean_fields &
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
|
|
}
|
|
|
|
if (vmx->nested.nested_run_pending &&
|
|
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
|
|
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
|
|
} else {
|
|
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
|
|
}
|
|
if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
|
|
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
|
|
vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
|
|
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
|
|
|
|
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
|
|
* bitwise-or of what L1 wants to trap for L2, and what we want to
|
|
* trap. Note that CR0.TS also needs updating - we do this later.
|
|
*/
|
|
update_exception_bitmap(vcpu);
|
|
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
|
|
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
|
|
|
|
if (vmx->nested.nested_run_pending &&
|
|
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
|
|
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
|
|
vcpu->arch.pat = vmcs12->guest_ia32_pat;
|
|
} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
|
|
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
|
|
}
|
|
|
|
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
|
|
|
|
if (kvm_has_tsc_control)
|
|
decache_tsc_multiplier(vmx);
|
|
|
|
if (enable_vpid) {
|
|
/*
|
|
* There is no direct mapping between vpid02 and vpid12, the
|
|
* vpid02 is per-vCPU for L0 and reused while the value of
|
|
* vpid12 is changed w/ one invvpid during nested vmentry.
|
|
* The vpid12 is allocated by L1 for L2, so it will not
|
|
* influence global bitmap(for vpid01 and vpid02 allocation)
|
|
* even if spawn a lot of nested vCPUs.
|
|
*/
|
|
if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
|
|
if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
|
|
vmx->nested.last_vpid = vmcs12->virtual_processor_id;
|
|
__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
|
|
}
|
|
} else {
|
|
/*
|
|
* If L1 use EPT, then L0 needs to execute INVEPT on
|
|
* EPTP02 instead of EPTP01. Therefore, delay TLB
|
|
* flush until vmcs02->eptp is fully updated by
|
|
* KVM_REQ_LOAD_CR3. Note that this assumes
|
|
* KVM_REQ_TLB_FLUSH is evaluated after
|
|
* KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
|
|
*/
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
|
|
}
|
|
}
|
|
|
|
if (nested_cpu_has_ept(vmcs12))
|
|
nested_ept_init_mmu_context(vcpu);
|
|
else if (nested_cpu_has2(vmcs12,
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
|
|
vmx_flush_tlb(vcpu, true);
|
|
|
|
/*
|
|
* This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
|
|
* bits which we consider mandatory enabled.
|
|
* The CR0_READ_SHADOW is what L2 should have expected to read given
|
|
* the specifications by L1; It's not enough to take
|
|
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
|
|
* have more bits than L1 expected.
|
|
*/
|
|
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
|
|
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
|
|
|
|
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
|
|
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
|
|
|
|
vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
|
|
/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
|
|
vmx_set_efer(vcpu, vcpu->arch.efer);
|
|
|
|
/*
|
|
* Guest state is invalid and unrestricted guest is disabled,
|
|
* which means L1 attempted VMEntry to L2 with invalid state.
|
|
* Fail the VMEntry.
|
|
*/
|
|
if (vmx->emulation_required) {
|
|
*entry_failure_code = ENTRY_FAIL_DEFAULT;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Shadow page tables on either EPT or shadow page tables. */
|
|
if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
|
|
entry_failure_code))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
|
|
* on nested VM-Exit, which can occur without actually running L2 and
|
|
* thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
|
|
* vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
|
|
* transition to HLT instead of running L2.
|
|
*/
|
|
if (enable_ept)
|
|
vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
|
|
|
|
/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
|
|
if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
|
|
is_pae_paging(vcpu)) {
|
|
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
|
|
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
|
|
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
|
|
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
|
|
}
|
|
|
|
if (!enable_ept)
|
|
vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
|
|
|
|
kvm_rsp_write(vcpu, vmcs12->guest_rsp);
|
|
kvm_rip_write(vcpu, vmcs12->guest_rip);
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
|
|
{
|
|
if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
|
|
nested_cpu_has_virtual_nmis(vmcs12)))
|
|
return -EINVAL;
|
|
|
|
if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
|
|
nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int maxphyaddr = cpuid_maxphyaddr(vcpu);
|
|
|
|
/* Check for memory type validity */
|
|
switch (address & VMX_EPTP_MT_MASK) {
|
|
case VMX_EPTP_MT_UC:
|
|
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
|
|
return false;
|
|
break;
|
|
case VMX_EPTP_MT_WB:
|
|
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
|
|
return false;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
/* only 4 levels page-walk length are valid */
|
|
if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
|
|
return false;
|
|
|
|
/* Reserved bits should not be set */
|
|
if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
|
|
return false;
|
|
|
|
/* AD, if set, should be supported */
|
|
if (address & VMX_EPTP_AD_ENABLE_BIT) {
|
|
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Checks related to VM-Execution Control Fields
|
|
*/
|
|
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
|
|
vmx->nested.msrs.pinbased_ctls_low,
|
|
vmx->nested.msrs.pinbased_ctls_high)) ||
|
|
CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
|
|
vmx->nested.msrs.procbased_ctls_low,
|
|
vmx->nested.msrs.procbased_ctls_high)))
|
|
return -EINVAL;
|
|
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
|
|
CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
|
|
vmx->nested.msrs.secondary_ctls_low,
|
|
vmx->nested.msrs.secondary_ctls_high)))
|
|
return -EINVAL;
|
|
|
|
if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
|
|
nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_nmi_controls(vmcs12) ||
|
|
nested_vmx_check_pml_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
|
|
CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
|
|
return -EINVAL;
|
|
|
|
if (!nested_cpu_has_preemption_timer(vmcs12) &&
|
|
nested_cpu_has_save_preemption_timer(vmcs12))
|
|
return -EINVAL;
|
|
|
|
if (nested_cpu_has_ept(vmcs12) &&
|
|
CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
|
|
return -EINVAL;
|
|
|
|
if (nested_cpu_has_vmfunc(vmcs12)) {
|
|
if (CC(vmcs12->vm_function_control &
|
|
~vmx->nested.msrs.vmfunc_controls))
|
|
return -EINVAL;
|
|
|
|
if (nested_cpu_has_eptp_switching(vmcs12)) {
|
|
if (CC(!nested_cpu_has_ept(vmcs12)) ||
|
|
CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Checks related to VM-Exit Control Fields
|
|
*/
|
|
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
|
|
vmx->nested.msrs.exit_ctls_low,
|
|
vmx->nested.msrs.exit_ctls_high)) ||
|
|
CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Checks related to VM-Entry Control Fields
|
|
*/
|
|
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
|
|
vmx->nested.msrs.entry_ctls_low,
|
|
vmx->nested.msrs.entry_ctls_high)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* From the Intel SDM, volume 3:
|
|
* Fields relevant to VM-entry event injection must be set properly.
|
|
* These fields are the VM-entry interruption-information field, the
|
|
* VM-entry exception error code, and the VM-entry instruction length.
|
|
*/
|
|
if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
|
|
u32 intr_info = vmcs12->vm_entry_intr_info_field;
|
|
u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
|
|
u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
|
|
bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
|
|
bool should_have_error_code;
|
|
bool urg = nested_cpu_has2(vmcs12,
|
|
SECONDARY_EXEC_UNRESTRICTED_GUEST);
|
|
bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
|
|
|
|
/* VM-entry interruption-info field: interruption type */
|
|
if (CC(intr_type == INTR_TYPE_RESERVED) ||
|
|
CC(intr_type == INTR_TYPE_OTHER_EVENT &&
|
|
!nested_cpu_supports_monitor_trap_flag(vcpu)))
|
|
return -EINVAL;
|
|
|
|
/* VM-entry interruption-info field: vector */
|
|
if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
|
|
CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
|
|
CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
|
|
return -EINVAL;
|
|
|
|
/* VM-entry interruption-info field: deliver error code */
|
|
should_have_error_code =
|
|
intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
|
|
x86_exception_has_error_code(vector);
|
|
if (CC(has_error_code != should_have_error_code))
|
|
return -EINVAL;
|
|
|
|
/* VM-entry exception error code */
|
|
if (CC(has_error_code &&
|
|
vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
|
|
return -EINVAL;
|
|
|
|
/* VM-entry interruption-info field: reserved bits */
|
|
if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
|
|
return -EINVAL;
|
|
|
|
/* VM-entry instruction length */
|
|
switch (intr_type) {
|
|
case INTR_TYPE_SOFT_EXCEPTION:
|
|
case INTR_TYPE_SOFT_INTR:
|
|
case INTR_TYPE_PRIV_SW_EXCEPTION:
|
|
if (CC(vmcs12->vm_entry_instruction_len > 15) ||
|
|
CC(vmcs12->vm_entry_instruction_len == 0 &&
|
|
CC(!nested_cpu_has_zero_length_injection(vcpu))))
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
|
|
nested_check_vm_exit_controls(vcpu, vmcs12) ||
|
|
nested_check_vm_entry_controls(vcpu, vmcs12))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
bool ia32e;
|
|
|
|
if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
|
|
CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
|
|
CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
|
|
return -EINVAL;
|
|
|
|
if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
|
|
CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
|
|
return -EINVAL;
|
|
|
|
if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
|
|
CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
ia32e = !!(vcpu->arch.efer & EFER_LMA);
|
|
#else
|
|
ia32e = false;
|
|
#endif
|
|
|
|
if (ia32e) {
|
|
if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
|
|
CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
|
|
return -EINVAL;
|
|
} else {
|
|
if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
|
|
CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
|
|
CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
|
|
CC((vmcs12->host_rip) >> 32))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
|
|
CC(vmcs12->host_cs_selector == 0) ||
|
|
CC(vmcs12->host_tr_selector == 0) ||
|
|
CC(vmcs12->host_ss_selector == 0 && !ia32e))
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
|
|
CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
|
|
CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
|
|
CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
|
|
CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
|
|
CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
/*
|
|
* If the load IA32_EFER VM-exit control is 1, bits reserved in the
|
|
* IA32_EFER MSR must be 0 in the field for that register. In addition,
|
|
* the values of the LMA and LME bits in the field must each be that of
|
|
* the host address-space size VM-exit control.
|
|
*/
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
|
|
if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
|
|
CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
|
|
CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
int r = 0;
|
|
struct vmcs12 *shadow;
|
|
struct kvm_host_map map;
|
|
|
|
if (vmcs12->vmcs_link_pointer == -1ull)
|
|
return 0;
|
|
|
|
if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
|
|
return -EINVAL;
|
|
|
|
if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
|
|
return -EINVAL;
|
|
|
|
shadow = map.hva;
|
|
|
|
if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
|
|
CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
|
|
r = -EINVAL;
|
|
|
|
kvm_vcpu_unmap(vcpu, &map, false);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Checks related to Guest Non-register State
|
|
*/
|
|
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
|
|
{
|
|
if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
|
|
vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12,
|
|
u32 *exit_qual)
|
|
{
|
|
bool ia32e;
|
|
|
|
*exit_qual = ENTRY_FAIL_DEFAULT;
|
|
|
|
if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
|
|
CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
|
|
return -EINVAL;
|
|
|
|
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
|
|
CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
|
|
return -EINVAL;
|
|
|
|
if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
|
|
*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the load IA32_EFER VM-entry control is 1, the following checks
|
|
* are performed on the field for the IA32_EFER MSR:
|
|
* - Bits reserved in the IA32_EFER MSR must be 0.
|
|
* - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
|
|
* the IA-32e mode guest VM-exit control. It must also be identical
|
|
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
|
|
* CR0.PG) is 1.
|
|
*/
|
|
if (to_vmx(vcpu)->nested.nested_run_pending &&
|
|
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
|
|
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
|
|
if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
|
|
CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
|
|
CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
|
|
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
|
|
(CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
|
|
CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
|
|
return -EINVAL;
|
|
|
|
if (nested_check_guest_non_reg_state(vmcs12))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long cr3, cr4;
|
|
bool vm_fail;
|
|
|
|
if (!nested_early_check)
|
|
return 0;
|
|
|
|
if (vmx->msr_autoload.host.nr)
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
|
|
if (vmx->msr_autoload.guest.nr)
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
|
|
|
|
preempt_disable();
|
|
|
|
vmx_prepare_switch_to_guest(vcpu);
|
|
|
|
/*
|
|
* Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
|
|
* which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
|
|
* be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
|
|
* there is no need to preserve other bits or save/restore the field.
|
|
*/
|
|
vmcs_writel(GUEST_RFLAGS, 0);
|
|
|
|
cr3 = __get_current_cr3_fast();
|
|
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
|
|
vmcs_writel(HOST_CR3, cr3);
|
|
vmx->loaded_vmcs->host_state.cr3 = cr3;
|
|
}
|
|
|
|
cr4 = cr4_read_shadow();
|
|
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
|
|
vmcs_writel(HOST_CR4, cr4);
|
|
vmx->loaded_vmcs->host_state.cr4 = cr4;
|
|
}
|
|
|
|
asm(
|
|
"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
|
|
"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
|
|
"je 1f \n\t"
|
|
__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
|
|
"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
|
|
"1: \n\t"
|
|
"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
|
|
|
|
/* Check if vmlaunch or vmresume is needed */
|
|
"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
|
|
|
|
/*
|
|
* VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
|
|
* RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
|
|
* Valid. vmx_vmenter() directly "returns" RFLAGS, and so the
|
|
* results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
|
|
*/
|
|
"call vmx_vmenter\n\t"
|
|
|
|
CC_SET(be)
|
|
: ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
|
|
: [HOST_RSP]"r"((unsigned long)HOST_RSP),
|
|
[loaded_vmcs]"r"(vmx->loaded_vmcs),
|
|
[launched]"i"(offsetof(struct loaded_vmcs, launched)),
|
|
[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
|
|
[wordsize]"i"(sizeof(ulong))
|
|
: "memory"
|
|
);
|
|
|
|
if (vmx->msr_autoload.host.nr)
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
|
|
if (vmx->msr_autoload.guest.nr)
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
|
|
|
|
if (vm_fail) {
|
|
u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
|
|
|
|
preempt_enable();
|
|
|
|
trace_kvm_nested_vmenter_failed(
|
|
"early hardware check VM-instruction error: ", error);
|
|
WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* VMExit clears RFLAGS.IF and DR7, even on a consistency check.
|
|
*/
|
|
local_irq_enable();
|
|
if (hw_breakpoint_active())
|
|
set_debugreg(__this_cpu_read(cpu_dr7), 7);
|
|
preempt_enable();
|
|
|
|
/*
|
|
* A non-failing VMEntry means we somehow entered guest mode with
|
|
* an illegal RIP, and that's just the tip of the iceberg. There
|
|
* is no telling what memory has been modified or what state has
|
|
* been exposed to unknown code. Hitting this all but guarantees
|
|
* a (very critical) hardware issue.
|
|
*/
|
|
WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
|
|
VMX_EXIT_REASONS_FAILED_VMENTRY));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12);
|
|
|
|
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_host_map *map;
|
|
struct page *page;
|
|
u64 hpa;
|
|
|
|
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
|
|
/*
|
|
* Translate L1 physical address to host physical
|
|
* address for vmcs02. Keep the page pinned, so this
|
|
* physical address remains valid. We keep a reference
|
|
* to it so we can release it later.
|
|
*/
|
|
if (vmx->nested.apic_access_page) { /* shouldn't happen */
|
|
kvm_release_page_dirty(vmx->nested.apic_access_page);
|
|
vmx->nested.apic_access_page = NULL;
|
|
}
|
|
page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
|
|
if (!is_error_page(page)) {
|
|
vmx->nested.apic_access_page = page;
|
|
hpa = page_to_phys(vmx->nested.apic_access_page);
|
|
vmcs_write64(APIC_ACCESS_ADDR, hpa);
|
|
} else {
|
|
pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
|
|
__func__);
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror =
|
|
KVM_INTERNAL_ERROR_EMULATION;
|
|
vcpu->run->internal.ndata = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
|
|
map = &vmx->nested.virtual_apic_map;
|
|
|
|
if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
|
|
} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
|
|
nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
|
|
!nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
|
|
/*
|
|
* The processor will never use the TPR shadow, simply
|
|
* clear the bit from the execution control. Such a
|
|
* configuration is useless, but it happens in tests.
|
|
* For any other configuration, failing the vm entry is
|
|
* _not_ what the processor does but it's basically the
|
|
* only possibility we have.
|
|
*/
|
|
exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
|
|
} else {
|
|
/*
|
|
* Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
|
|
* force VM-Entry to fail.
|
|
*/
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
|
|
}
|
|
}
|
|
|
|
if (nested_cpu_has_posted_intr(vmcs12)) {
|
|
map = &vmx->nested.pi_desc_map;
|
|
|
|
if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
|
|
vmx->nested.pi_desc =
|
|
(struct pi_desc *)(((void *)map->hva) +
|
|
offset_in_page(vmcs12->posted_intr_desc_addr));
|
|
vmcs_write64(POSTED_INTR_DESC_ADDR,
|
|
pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
|
|
}
|
|
}
|
|
if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
|
|
exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
|
|
else
|
|
exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Intel's VMX Instruction Reference specifies a common set of prerequisites
|
|
* for running VMX instructions (except VMXON, whose prerequisites are
|
|
* slightly different). It also specifies what exception to inject otherwise.
|
|
* Note that many of these exceptions have priority over VM exits, so they
|
|
* don't have to be checked again here.
|
|
*/
|
|
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!to_vmx(vcpu)->nested.vmxon) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 0;
|
|
}
|
|
|
|
if (vmx_get_cpl(vcpu)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
u8 rvi = vmx_get_rvi();
|
|
u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
|
|
|
|
return ((rvi & 0xf0) > (vppr & 0xf0));
|
|
}
|
|
|
|
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12);
|
|
|
|
/*
|
|
* If from_vmentry is false, this is being called from state restore (either RSM
|
|
* or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
|
|
*
|
|
* Returns:
|
|
* NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
|
|
* NVMX_ENTRY_VMFAIL: Consistency check VMFail
|
|
* NVMX_ENTRY_VMEXIT: Consistency check VMExit
|
|
* NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
|
|
*/
|
|
enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
|
|
bool from_vmentry)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
bool evaluate_pending_interrupts;
|
|
u32 exit_reason = EXIT_REASON_INVALID_STATE;
|
|
u32 exit_qual;
|
|
|
|
evaluate_pending_interrupts = exec_controls_get(vmx) &
|
|
(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
|
|
if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
|
|
evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
|
|
|
|
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
|
|
vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
|
|
if (kvm_mpx_supported() &&
|
|
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
|
|
vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
|
|
|
|
/*
|
|
* Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
|
|
* nested early checks are disabled. In the event of a "late" VM-Fail,
|
|
* i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
|
|
* software model to the pre-VMEntry host state. When EPT is disabled,
|
|
* GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
|
|
* nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
|
|
* vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
|
|
* the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
|
|
* VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
|
|
* guaranteed to be overwritten with a shadow CR3 prior to re-entering
|
|
* L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
|
|
* KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
|
|
* pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
|
|
* path would need to manually save/restore vmcs01.GUEST_CR3.
|
|
*/
|
|
if (!enable_ept && !nested_early_check)
|
|
vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
|
|
|
|
vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
|
|
|
|
prepare_vmcs02_early(vmx, vmcs12);
|
|
|
|
if (from_vmentry) {
|
|
if (unlikely(!nested_get_vmcs12_pages(vcpu)))
|
|
return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
|
|
|
|
if (nested_vmx_check_vmentry_hw(vcpu)) {
|
|
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
|
|
return NVMX_VMENTRY_VMFAIL;
|
|
}
|
|
|
|
if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
|
|
goto vmentry_fail_vmexit;
|
|
}
|
|
|
|
enter_guest_mode(vcpu);
|
|
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
|
|
vcpu->arch.tsc_offset += vmcs12->tsc_offset;
|
|
|
|
if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
|
|
goto vmentry_fail_vmexit_guest_mode;
|
|
|
|
if (from_vmentry) {
|
|
exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
|
|
exit_qual = nested_vmx_load_msr(vcpu,
|
|
vmcs12->vm_entry_msr_load_addr,
|
|
vmcs12->vm_entry_msr_load_count);
|
|
if (exit_qual)
|
|
goto vmentry_fail_vmexit_guest_mode;
|
|
} else {
|
|
/*
|
|
* The MMU is not initialized to point at the right entities yet and
|
|
* "get pages" would need to read data from the guest (i.e. we will
|
|
* need to perform gpa to hpa translation). Request a call
|
|
* to nested_get_vmcs12_pages before the next VM-entry. The MSRs
|
|
* have already been set at vmentry time and should not be reset.
|
|
*/
|
|
kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
|
|
}
|
|
|
|
/*
|
|
* If L1 had a pending IRQ/NMI until it executed
|
|
* VMLAUNCH/VMRESUME which wasn't delivered because it was
|
|
* disallowed (e.g. interrupts disabled), L0 needs to
|
|
* evaluate if this pending event should cause an exit from L2
|
|
* to L1 or delivered directly to L2 (e.g. In case L1 don't
|
|
* intercept EXTERNAL_INTERRUPT).
|
|
*
|
|
* Usually this would be handled by the processor noticing an
|
|
* IRQ/NMI window request, or checking RVI during evaluation of
|
|
* pending virtual interrupts. However, this setting was done
|
|
* on VMCS01 and now VMCS02 is active instead. Thus, we force L0
|
|
* to perform pending event evaluation by requesting a KVM_REQ_EVENT.
|
|
*/
|
|
if (unlikely(evaluate_pending_interrupts))
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
/*
|
|
* Do not start the preemption timer hrtimer until after we know
|
|
* we are successful, so that only nested_vmx_vmexit needs to cancel
|
|
* the timer.
|
|
*/
|
|
vmx->nested.preemption_timer_expired = false;
|
|
if (nested_cpu_has_preemption_timer(vmcs12))
|
|
vmx_start_preemption_timer(vcpu);
|
|
|
|
/*
|
|
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
|
|
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
|
|
* returned as far as L1 is concerned. It will only return (and set
|
|
* the success flag) when L2 exits (see nested_vmx_vmexit()).
|
|
*/
|
|
return NVMX_VMENTRY_SUCCESS;
|
|
|
|
/*
|
|
* A failed consistency check that leads to a VMExit during L1's
|
|
* VMEnter to L2 is a variation of a normal VMexit, as explained in
|
|
* 26.7 "VM-entry failures during or after loading guest state".
|
|
*/
|
|
vmentry_fail_vmexit_guest_mode:
|
|
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
|
|
vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
|
|
leave_guest_mode(vcpu);
|
|
|
|
vmentry_fail_vmexit:
|
|
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
|
|
|
|
if (!from_vmentry)
|
|
return NVMX_VMENTRY_VMEXIT;
|
|
|
|
load_vmcs12_host_state(vcpu, vmcs12);
|
|
vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
|
|
vmcs12->exit_qualification = exit_qual;
|
|
if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
|
|
vmx->nested.need_vmcs12_to_shadow_sync = true;
|
|
return NVMX_VMENTRY_VMEXIT;
|
|
}
|
|
|
|
/*
|
|
* nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
|
|
* for running an L2 nested guest.
|
|
*/
|
|
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
|
|
{
|
|
struct vmcs12 *vmcs12;
|
|
enum nvmx_vmentry_status status;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
|
|
return 1;
|
|
|
|
if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
vmcs12 = get_vmcs12(vcpu);
|
|
|
|
/*
|
|
* Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
|
|
* that there *is* a valid VMCS pointer, RFLAGS.CF is set
|
|
* rather than RFLAGS.ZF, and no error number is stored to the
|
|
* VM-instruction error field.
|
|
*/
|
|
if (vmcs12->hdr.shadow_vmcs)
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
if (vmx->nested.hv_evmcs) {
|
|
copy_enlightened_to_vmcs12(vmx);
|
|
/* Enlightened VMCS doesn't have launch state */
|
|
vmcs12->launch_state = !launch;
|
|
} else if (enable_shadow_vmcs) {
|
|
copy_shadow_to_vmcs12(vmx);
|
|
}
|
|
|
|
/*
|
|
* The nested entry process starts with enforcing various prerequisites
|
|
* on vmcs12 as required by the Intel SDM, and act appropriately when
|
|
* they fail: As the SDM explains, some conditions should cause the
|
|
* instruction to fail, while others will cause the instruction to seem
|
|
* to succeed, but return an EXIT_REASON_INVALID_STATE.
|
|
* To speed up the normal (success) code path, we should avoid checking
|
|
* for misconfigurations which will anyway be caught by the processor
|
|
* when using the merged vmcs02.
|
|
*/
|
|
if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
|
|
|
|
if (vmcs12->launch_state == launch)
|
|
return nested_vmx_failValid(vcpu,
|
|
launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
|
|
: VMXERR_VMRESUME_NONLAUNCHED_VMCS);
|
|
|
|
if (nested_vmx_check_controls(vcpu, vmcs12))
|
|
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
|
|
|
|
if (nested_vmx_check_host_state(vcpu, vmcs12))
|
|
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
|
|
|
|
/*
|
|
* We're finally done with prerequisite checking, and can start with
|
|
* the nested entry.
|
|
*/
|
|
vmx->nested.nested_run_pending = 1;
|
|
status = nested_vmx_enter_non_root_mode(vcpu, true);
|
|
if (unlikely(status != NVMX_VMENTRY_SUCCESS))
|
|
goto vmentry_failed;
|
|
|
|
/* Hide L1D cache contents from the nested guest. */
|
|
vmx->vcpu.arch.l1tf_flush_l1d = true;
|
|
|
|
/*
|
|
* Must happen outside of nested_vmx_enter_non_root_mode() as it will
|
|
* also be used as part of restoring nVMX state for
|
|
* snapshot restore (migration).
|
|
*
|
|
* In this flow, it is assumed that vmcs12 cache was
|
|
* trasferred as part of captured nVMX state and should
|
|
* therefore not be read from guest memory (which may not
|
|
* exist on destination host yet).
|
|
*/
|
|
nested_cache_shadow_vmcs12(vcpu, vmcs12);
|
|
|
|
/*
|
|
* If we're entering a halted L2 vcpu and the L2 vcpu won't be
|
|
* awakened by event injection or by an NMI-window VM-exit or
|
|
* by an interrupt-window VM-exit, halt the vcpu.
|
|
*/
|
|
if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
|
|
!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
|
|
!(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
|
|
!((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
|
|
(vmcs12->guest_rflags & X86_EFLAGS_IF))) {
|
|
vmx->nested.nested_run_pending = 0;
|
|
return kvm_vcpu_halt(vcpu);
|
|
}
|
|
return 1;
|
|
|
|
vmentry_failed:
|
|
vmx->nested.nested_run_pending = 0;
|
|
if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
|
|
return 0;
|
|
if (status == NVMX_VMENTRY_VMEXIT)
|
|
return 1;
|
|
WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
|
|
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
|
|
}
|
|
|
|
/*
|
|
* On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
|
|
* because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
|
|
* This function returns the new value we should put in vmcs12.guest_cr0.
|
|
* It's not enough to just return the vmcs02 GUEST_CR0. Rather,
|
|
* 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
|
|
* available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
|
|
* didn't trap the bit, because if L1 did, so would L0).
|
|
* 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
|
|
* been modified by L2, and L1 knows it. So just leave the old value of
|
|
* the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
|
|
* isn't relevant, because if L0 traps this bit it can set it to anything.
|
|
* 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
|
|
* changed these bits, and therefore they need to be updated, but L0
|
|
* didn't necessarily allow them to be changed in GUEST_CR0 - and rather
|
|
* put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
|
|
*/
|
|
static inline unsigned long
|
|
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
|
|
{
|
|
return
|
|
/*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
|
|
/*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
|
|
/*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
|
|
vcpu->arch.cr0_guest_owned_bits));
|
|
}
|
|
|
|
static inline unsigned long
|
|
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
|
|
{
|
|
return
|
|
/*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
|
|
/*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
|
|
/*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
|
|
vcpu->arch.cr4_guest_owned_bits));
|
|
}
|
|
|
|
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
u32 idt_vectoring;
|
|
unsigned int nr;
|
|
|
|
if (vcpu->arch.exception.injected) {
|
|
nr = vcpu->arch.exception.nr;
|
|
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
|
|
|
|
if (kvm_exception_is_soft(nr)) {
|
|
vmcs12->vm_exit_instruction_len =
|
|
vcpu->arch.event_exit_inst_len;
|
|
idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
|
|
} else
|
|
idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
|
|
|
|
if (vcpu->arch.exception.has_error_code) {
|
|
idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
|
|
vmcs12->idt_vectoring_error_code =
|
|
vcpu->arch.exception.error_code;
|
|
}
|
|
|
|
vmcs12->idt_vectoring_info_field = idt_vectoring;
|
|
} else if (vcpu->arch.nmi_injected) {
|
|
vmcs12->idt_vectoring_info_field =
|
|
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
|
|
} else if (vcpu->arch.interrupt.injected) {
|
|
nr = vcpu->arch.interrupt.nr;
|
|
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
|
|
|
|
if (vcpu->arch.interrupt.soft) {
|
|
idt_vectoring |= INTR_TYPE_SOFT_INTR;
|
|
vmcs12->vm_entry_instruction_len =
|
|
vcpu->arch.event_exit_inst_len;
|
|
} else
|
|
idt_vectoring |= INTR_TYPE_EXT_INTR;
|
|
|
|
vmcs12->idt_vectoring_info_field = idt_vectoring;
|
|
}
|
|
}
|
|
|
|
|
|
static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
gfn_t gfn;
|
|
|
|
/*
|
|
* Don't need to mark the APIC access page dirty; it is never
|
|
* written to by the CPU during APIC virtualization.
|
|
*/
|
|
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
|
|
gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
|
|
kvm_vcpu_mark_page_dirty(vcpu, gfn);
|
|
}
|
|
|
|
if (nested_cpu_has_posted_intr(vmcs12)) {
|
|
gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
|
|
kvm_vcpu_mark_page_dirty(vcpu, gfn);
|
|
}
|
|
}
|
|
|
|
static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int max_irr;
|
|
void *vapic_page;
|
|
u16 status;
|
|
|
|
if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
|
|
return;
|
|
|
|
vmx->nested.pi_pending = false;
|
|
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
|
|
return;
|
|
|
|
max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
|
|
if (max_irr != 256) {
|
|
vapic_page = vmx->nested.virtual_apic_map.hva;
|
|
if (!vapic_page)
|
|
return;
|
|
|
|
__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
|
|
vapic_page, &max_irr);
|
|
status = vmcs_read16(GUEST_INTR_STATUS);
|
|
if ((u8)max_irr > ((u8)status & 0xff)) {
|
|
status &= ~0xff;
|
|
status |= (u8)max_irr;
|
|
vmcs_write16(GUEST_INTR_STATUS, status);
|
|
}
|
|
}
|
|
|
|
nested_mark_vmcs12_pages_dirty(vcpu);
|
|
}
|
|
|
|
static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
|
|
unsigned long exit_qual)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
unsigned int nr = vcpu->arch.exception.nr;
|
|
u32 intr_info = nr | INTR_INFO_VALID_MASK;
|
|
|
|
if (vcpu->arch.exception.has_error_code) {
|
|
vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
|
|
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
|
|
}
|
|
|
|
if (kvm_exception_is_soft(nr))
|
|
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
|
|
else
|
|
intr_info |= INTR_TYPE_HARD_EXCEPTION;
|
|
|
|
if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
|
|
vmx_get_nmi_mask(vcpu))
|
|
intr_info |= INTR_INFO_UNBLOCK_NMI;
|
|
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
|
|
}
|
|
|
|
static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long exit_qual;
|
|
bool block_nested_events =
|
|
vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
|
|
if (lapic_in_kernel(vcpu) &&
|
|
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
|
|
if (block_nested_events)
|
|
return -EBUSY;
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
if (vcpu->arch.exception.pending &&
|
|
nested_vmx_check_exception(vcpu, &exit_qual)) {
|
|
if (block_nested_events)
|
|
return -EBUSY;
|
|
nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
|
|
return 0;
|
|
}
|
|
|
|
if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
|
|
vmx->nested.preemption_timer_expired) {
|
|
if (block_nested_events)
|
|
return -EBUSY;
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
|
|
if (block_nested_events)
|
|
return -EBUSY;
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
|
|
NMI_VECTOR | INTR_TYPE_NMI_INTR |
|
|
INTR_INFO_VALID_MASK, 0);
|
|
/*
|
|
* The NMI-triggered VM exit counts as injection:
|
|
* clear this one and block further NMIs.
|
|
*/
|
|
vcpu->arch.nmi_pending = 0;
|
|
vmx_set_nmi_mask(vcpu, true);
|
|
return 0;
|
|
}
|
|
|
|
if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
|
|
nested_exit_on_intr(vcpu)) {
|
|
if (block_nested_events)
|
|
return -EBUSY;
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
vmx_complete_nested_posted_interrupt(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
|
|
{
|
|
ktime_t remaining =
|
|
hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
|
|
u64 value;
|
|
|
|
if (ktime_to_ns(remaining) <= 0)
|
|
return 0;
|
|
|
|
value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
|
|
do_div(value, 1000000);
|
|
return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
|
|
}
|
|
|
|
static bool is_vmcs12_ext_field(unsigned long field)
|
|
{
|
|
switch (field) {
|
|
case GUEST_ES_SELECTOR:
|
|
case GUEST_CS_SELECTOR:
|
|
case GUEST_SS_SELECTOR:
|
|
case GUEST_DS_SELECTOR:
|
|
case GUEST_FS_SELECTOR:
|
|
case GUEST_GS_SELECTOR:
|
|
case GUEST_LDTR_SELECTOR:
|
|
case GUEST_TR_SELECTOR:
|
|
case GUEST_ES_LIMIT:
|
|
case GUEST_CS_LIMIT:
|
|
case GUEST_SS_LIMIT:
|
|
case GUEST_DS_LIMIT:
|
|
case GUEST_FS_LIMIT:
|
|
case GUEST_GS_LIMIT:
|
|
case GUEST_LDTR_LIMIT:
|
|
case GUEST_TR_LIMIT:
|
|
case GUEST_GDTR_LIMIT:
|
|
case GUEST_IDTR_LIMIT:
|
|
case GUEST_ES_AR_BYTES:
|
|
case GUEST_DS_AR_BYTES:
|
|
case GUEST_FS_AR_BYTES:
|
|
case GUEST_GS_AR_BYTES:
|
|
case GUEST_LDTR_AR_BYTES:
|
|
case GUEST_TR_AR_BYTES:
|
|
case GUEST_ES_BASE:
|
|
case GUEST_CS_BASE:
|
|
case GUEST_SS_BASE:
|
|
case GUEST_DS_BASE:
|
|
case GUEST_FS_BASE:
|
|
case GUEST_GS_BASE:
|
|
case GUEST_LDTR_BASE:
|
|
case GUEST_TR_BASE:
|
|
case GUEST_GDTR_BASE:
|
|
case GUEST_IDTR_BASE:
|
|
case GUEST_PENDING_DBG_EXCEPTIONS:
|
|
case GUEST_BNDCFGS:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
|
|
vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
|
|
vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
|
|
vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
|
|
vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
|
|
vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
|
|
vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
|
|
vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
|
|
vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
|
|
vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
|
|
vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
|
|
vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
|
|
vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
|
|
vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
|
|
vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
|
|
vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
|
|
vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
|
|
vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
|
|
vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
|
|
vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
|
|
vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
|
|
vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
|
|
vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
|
|
vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
|
|
vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
|
|
vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
|
|
vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
|
|
vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
|
|
vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
|
|
vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
|
|
vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
|
|
vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
|
|
vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
|
|
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
|
|
vmcs12->guest_pending_dbg_exceptions =
|
|
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
|
|
if (kvm_mpx_supported())
|
|
vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
|
|
|
|
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
|
|
}
|
|
|
|
static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int cpu;
|
|
|
|
if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
|
|
return;
|
|
|
|
|
|
WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
|
|
|
|
cpu = get_cpu();
|
|
vmx->loaded_vmcs = &vmx->nested.vmcs02;
|
|
vmx_vcpu_load(&vmx->vcpu, cpu);
|
|
|
|
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
|
|
|
|
vmx->loaded_vmcs = &vmx->vmcs01;
|
|
vmx_vcpu_load(&vmx->vcpu, cpu);
|
|
put_cpu();
|
|
}
|
|
|
|
/*
|
|
* Update the guest state fields of vmcs12 to reflect changes that
|
|
* occurred while L2 was running. (The "IA-32e mode guest" bit of the
|
|
* VM-entry controls is also updated, since this is really a guest
|
|
* state bit.)
|
|
*/
|
|
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vmx->nested.hv_evmcs)
|
|
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
|
|
|
|
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
|
|
|
|
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
|
|
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
|
|
|
|
vmcs12->guest_rsp = kvm_rsp_read(vcpu);
|
|
vmcs12->guest_rip = kvm_rip_read(vcpu);
|
|
vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
|
|
|
|
vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
|
|
vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
|
|
|
|
vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
|
|
vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
|
|
vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
|
|
|
|
vmcs12->guest_interruptibility_info =
|
|
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
|
|
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
|
|
vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
|
|
else
|
|
vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
|
|
|
|
if (nested_cpu_has_preemption_timer(vmcs12) &&
|
|
vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
|
|
vmcs12->vmx_preemption_timer_value =
|
|
vmx_get_preemption_timer_value(vcpu);
|
|
|
|
/*
|
|
* In some cases (usually, nested EPT), L2 is allowed to change its
|
|
* own CR3 without exiting. If it has changed it, we must keep it.
|
|
* Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
|
|
* by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
|
|
*
|
|
* Additionally, restore L2's PDPTR to vmcs12.
|
|
*/
|
|
if (enable_ept) {
|
|
vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
|
|
if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
|
|
vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
|
|
vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
|
|
vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
|
|
vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
|
|
}
|
|
}
|
|
|
|
vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
|
|
|
|
if (nested_cpu_has_vid(vmcs12))
|
|
vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
|
|
|
|
vmcs12->vm_entry_controls =
|
|
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
|
|
(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
|
|
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
|
|
kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
|
|
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
|
|
vmcs12->guest_ia32_efer = vcpu->arch.efer;
|
|
}
|
|
|
|
/*
|
|
* prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
|
|
* and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
|
|
* and this function updates it to reflect the changes to the guest state while
|
|
* L2 was running (and perhaps made some exits which were handled directly by L0
|
|
* without going back to L1), and to reflect the exit reason.
|
|
* Note that we do not have to copy here all VMCS fields, just those that
|
|
* could have changed by the L2 guest or the exit - i.e., the guest-state and
|
|
* exit-information fields only. Other fields are modified by L1 with VMWRITE,
|
|
* which already writes to vmcs12 directly.
|
|
*/
|
|
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
|
|
u32 exit_reason, u32 exit_intr_info,
|
|
unsigned long exit_qualification)
|
|
{
|
|
/* update exit information fields: */
|
|
vmcs12->vm_exit_reason = exit_reason;
|
|
vmcs12->exit_qualification = exit_qualification;
|
|
vmcs12->vm_exit_intr_info = exit_intr_info;
|
|
|
|
vmcs12->idt_vectoring_info_field = 0;
|
|
vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
|
|
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
|
|
vmcs12->launch_state = 1;
|
|
|
|
/* vm_entry_intr_info_field is cleared on exit. Emulate this
|
|
* instead of reading the real value. */
|
|
vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
|
|
|
|
/*
|
|
* Transfer the event that L0 or L1 may wanted to inject into
|
|
* L2 to IDT_VECTORING_INFO_FIELD.
|
|
*/
|
|
vmcs12_save_pending_event(vcpu, vmcs12);
|
|
|
|
/*
|
|
* According to spec, there's no need to store the guest's
|
|
* MSRs if the exit is due to a VM-entry failure that occurs
|
|
* during or after loading the guest state. Since this exit
|
|
* does not fall in that category, we need to save the MSRs.
|
|
*/
|
|
if (nested_vmx_store_msr(vcpu,
|
|
vmcs12->vm_exit_msr_store_addr,
|
|
vmcs12->vm_exit_msr_store_count))
|
|
nested_vmx_abort(vcpu,
|
|
VMX_ABORT_SAVE_GUEST_MSR_FAIL);
|
|
}
|
|
|
|
/*
|
|
* Drop what we picked up for L2 via vmx_complete_interrupts. It is
|
|
* preserved above and would only end up incorrectly in L1.
|
|
*/
|
|
vcpu->arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(vcpu);
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
}
|
|
|
|
/*
|
|
* A part of what we need to when the nested L2 guest exits and we want to
|
|
* run its L1 parent, is to reset L1's guest state to the host state specified
|
|
* in vmcs12.
|
|
* This function is to be called not only on normal nested exit, but also on
|
|
* a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
|
|
* Failures During or After Loading Guest State").
|
|
* This function should be called when the active VMCS is L1's (vmcs01).
|
|
*/
|
|
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
struct kvm_segment seg;
|
|
u32 entry_failure_code;
|
|
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
|
|
vcpu->arch.efer = vmcs12->host_ia32_efer;
|
|
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
|
|
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
|
|
else
|
|
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
|
|
vmx_set_efer(vcpu, vcpu->arch.efer);
|
|
|
|
kvm_rsp_write(vcpu, vmcs12->host_rsp);
|
|
kvm_rip_write(vcpu, vmcs12->host_rip);
|
|
vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
|
|
vmx_set_interrupt_shadow(vcpu, 0);
|
|
|
|
/*
|
|
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
|
|
* actually changed, because vmx_set_cr0 refers to efer set above.
|
|
*
|
|
* CR0_GUEST_HOST_MASK is already set in the original vmcs01
|
|
* (KVM doesn't change it);
|
|
*/
|
|
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
|
|
vmx_set_cr0(vcpu, vmcs12->host_cr0);
|
|
|
|
/* Same as above - no reason to call set_cr4_guest_host_mask(). */
|
|
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
|
|
vmx_set_cr4(vcpu, vmcs12->host_cr4);
|
|
|
|
nested_ept_uninit_mmu_context(vcpu);
|
|
|
|
/*
|
|
* Only PDPTE load can fail as the value of cr3 was checked on entry and
|
|
* couldn't have changed.
|
|
*/
|
|
if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
|
|
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
|
|
|
|
if (!enable_ept)
|
|
vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
|
|
|
|
/*
|
|
* If vmcs01 doesn't use VPID, CPU flushes TLB on every
|
|
* VMEntry/VMExit. Thus, no need to flush TLB.
|
|
*
|
|
* If vmcs12 doesn't use VPID, L1 expects TLB to be
|
|
* flushed on every VMEntry/VMExit.
|
|
*
|
|
* Otherwise, we can preserve TLB entries as long as we are
|
|
* able to tag L1 TLB entries differently than L2 TLB entries.
|
|
*
|
|
* If vmcs12 uses EPT, we need to execute this flush on EPTP01
|
|
* and therefore we request the TLB flush to happen only after VMCS EPTP
|
|
* has been set by KVM_REQ_LOAD_CR3.
|
|
*/
|
|
if (enable_vpid &&
|
|
(!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
|
|
}
|
|
|
|
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
|
|
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
|
|
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
|
|
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
|
|
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
|
|
vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
|
|
vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
|
|
|
|
/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
|
|
vmcs_write64(GUEST_BNDCFGS, 0);
|
|
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
|
|
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
|
|
vcpu->arch.pat = vmcs12->host_ia32_pat;
|
|
}
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
|
|
vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
|
|
vmcs12->host_ia32_perf_global_ctrl);
|
|
|
|
/* Set L1 segment info according to Intel SDM
|
|
27.5.2 Loading Host Segment and Descriptor-Table Registers */
|
|
seg = (struct kvm_segment) {
|
|
.base = 0,
|
|
.limit = 0xFFFFFFFF,
|
|
.selector = vmcs12->host_cs_selector,
|
|
.type = 11,
|
|
.present = 1,
|
|
.s = 1,
|
|
.g = 1
|
|
};
|
|
if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
|
|
seg.l = 1;
|
|
else
|
|
seg.db = 1;
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
|
|
seg = (struct kvm_segment) {
|
|
.base = 0,
|
|
.limit = 0xFFFFFFFF,
|
|
.type = 3,
|
|
.present = 1,
|
|
.s = 1,
|
|
.db = 1,
|
|
.g = 1
|
|
};
|
|
seg.selector = vmcs12->host_ds_selector;
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
|
|
seg.selector = vmcs12->host_es_selector;
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
|
|
seg.selector = vmcs12->host_ss_selector;
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
|
|
seg.selector = vmcs12->host_fs_selector;
|
|
seg.base = vmcs12->host_fs_base;
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
|
|
seg.selector = vmcs12->host_gs_selector;
|
|
seg.base = vmcs12->host_gs_base;
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
|
|
seg = (struct kvm_segment) {
|
|
.base = vmcs12->host_tr_base,
|
|
.limit = 0x67,
|
|
.selector = vmcs12->host_tr_selector,
|
|
.type = 11,
|
|
.present = 1
|
|
};
|
|
vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
|
|
|
|
kvm_set_dr(vcpu, 7, 0x400);
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
|
|
|
|
if (cpu_has_vmx_msr_bitmap())
|
|
vmx_update_msr_bitmap(vcpu);
|
|
|
|
if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
|
|
vmcs12->vm_exit_msr_load_count))
|
|
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
|
|
}
|
|
|
|
static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
|
|
{
|
|
struct shared_msr_entry *efer_msr;
|
|
unsigned int i;
|
|
|
|
if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
|
|
return vmcs_read64(GUEST_IA32_EFER);
|
|
|
|
if (cpu_has_load_ia32_efer())
|
|
return host_efer;
|
|
|
|
for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
|
|
if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
|
|
return vmx->msr_autoload.guest.val[i].value;
|
|
}
|
|
|
|
efer_msr = find_msr_entry(vmx, MSR_EFER);
|
|
if (efer_msr)
|
|
return efer_msr->data;
|
|
|
|
return host_efer;
|
|
}
|
|
|
|
static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmx_msr_entry g, h;
|
|
gpa_t gpa;
|
|
u32 i, j;
|
|
|
|
vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
|
|
|
|
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
|
|
/*
|
|
* L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
|
|
* as vmcs01.GUEST_DR7 contains a userspace defined value
|
|
* and vcpu->arch.dr7 is not squirreled away before the
|
|
* nested VMENTER (not worth adding a variable in nested_vmx).
|
|
*/
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
kvm_set_dr(vcpu, 7, DR7_FIXED_1);
|
|
else
|
|
WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
|
|
}
|
|
|
|
/*
|
|
* Note that calling vmx_set_{efer,cr0,cr4} is important as they
|
|
* handle a variety of side effects to KVM's software model.
|
|
*/
|
|
vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
|
|
|
|
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
|
|
vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
|
|
|
|
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
|
|
vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
|
|
|
|
nested_ept_uninit_mmu_context(vcpu);
|
|
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
|
|
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
|
|
|
|
/*
|
|
* Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
|
|
* from vmcs01 (if necessary). The PDPTRs are not loaded on
|
|
* VMFail, like everything else we just need to ensure our
|
|
* software model is up-to-date.
|
|
*/
|
|
if (enable_ept)
|
|
ept_save_pdptrs(vcpu);
|
|
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
if (cpu_has_vmx_msr_bitmap())
|
|
vmx_update_msr_bitmap(vcpu);
|
|
|
|
/*
|
|
* This nasty bit of open coding is a compromise between blindly
|
|
* loading L1's MSRs using the exit load lists (incorrect emulation
|
|
* of VMFail), leaving the nested VM's MSRs in the software model
|
|
* (incorrect behavior) and snapshotting the modified MSRs (too
|
|
* expensive since the lists are unbound by hardware). For each
|
|
* MSR that was (prematurely) loaded from the nested VMEntry load
|
|
* list, reload it from the exit load list if it exists and differs
|
|
* from the guest value. The intent is to stuff host state as
|
|
* silently as possible, not to fully process the exit load list.
|
|
*/
|
|
for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
|
|
gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
|
|
if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
|
|
pr_debug_ratelimited(
|
|
"%s read MSR index failed (%u, 0x%08llx)\n",
|
|
__func__, i, gpa);
|
|
goto vmabort;
|
|
}
|
|
|
|
for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
|
|
gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
|
|
if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
|
|
pr_debug_ratelimited(
|
|
"%s read MSR failed (%u, 0x%08llx)\n",
|
|
__func__, j, gpa);
|
|
goto vmabort;
|
|
}
|
|
if (h.index != g.index)
|
|
continue;
|
|
if (h.value == g.value)
|
|
break;
|
|
|
|
if (nested_vmx_load_msr_check(vcpu, &h)) {
|
|
pr_debug_ratelimited(
|
|
"%s check failed (%u, 0x%x, 0x%x)\n",
|
|
__func__, j, h.index, h.reserved);
|
|
goto vmabort;
|
|
}
|
|
|
|
if (kvm_set_msr(vcpu, h.index, h.value)) {
|
|
pr_debug_ratelimited(
|
|
"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
|
|
__func__, j, h.index, h.value);
|
|
goto vmabort;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
vmabort:
|
|
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
|
|
}
|
|
|
|
/*
|
|
* Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
|
|
* and modify vmcs12 to make it see what it would expect to see there if
|
|
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
|
|
*/
|
|
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
|
|
u32 exit_intr_info, unsigned long exit_qualification)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
/* trying to cancel vmlaunch/vmresume is a bug */
|
|
WARN_ON_ONCE(vmx->nested.nested_run_pending);
|
|
|
|
leave_guest_mode(vcpu);
|
|
|
|
if (nested_cpu_has_preemption_timer(vmcs12))
|
|
hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
|
|
|
|
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
|
|
vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
|
|
|
|
if (likely(!vmx->fail)) {
|
|
sync_vmcs02_to_vmcs12(vcpu, vmcs12);
|
|
|
|
if (exit_reason != -1)
|
|
prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
|
|
exit_qualification);
|
|
|
|
/*
|
|
* Must happen outside of sync_vmcs02_to_vmcs12() as it will
|
|
* also be used to capture vmcs12 cache as part of
|
|
* capturing nVMX state for snapshot (migration).
|
|
*
|
|
* Otherwise, this flush will dirty guest memory at a
|
|
* point it is already assumed by user-space to be
|
|
* immutable.
|
|
*/
|
|
nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
|
|
} else {
|
|
/*
|
|
* The only expected VM-instruction error is "VM entry with
|
|
* invalid control field(s)." Anything else indicates a
|
|
* problem with L0. And we should never get here with a
|
|
* VMFail of any type if early consistency checks are enabled.
|
|
*/
|
|
WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
|
|
VMXERR_ENTRY_INVALID_CONTROL_FIELD);
|
|
WARN_ON_ONCE(nested_early_check);
|
|
}
|
|
|
|
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
|
|
|
|
/* Update any VMCS fields that might have changed while L2 ran */
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
|
|
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
|
|
|
|
if (kvm_has_tsc_control)
|
|
decache_tsc_multiplier(vmx);
|
|
|
|
if (vmx->nested.change_vmcs01_virtual_apic_mode) {
|
|
vmx->nested.change_vmcs01_virtual_apic_mode = false;
|
|
vmx_set_virtual_apic_mode(vcpu);
|
|
} else if (!nested_cpu_has_ept(vmcs12) &&
|
|
nested_cpu_has2(vmcs12,
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
|
|
vmx_flush_tlb(vcpu, true);
|
|
}
|
|
|
|
/* Unpin physical memory we referred to in vmcs02 */
|
|
if (vmx->nested.apic_access_page) {
|
|
kvm_release_page_dirty(vmx->nested.apic_access_page);
|
|
vmx->nested.apic_access_page = NULL;
|
|
}
|
|
kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
|
|
kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
|
|
vmx->nested.pi_desc = NULL;
|
|
|
|
/*
|
|
* We are now running in L2, mmu_notifier will force to reload the
|
|
* page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
|
|
*/
|
|
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
|
|
|
|
if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
|
|
vmx->nested.need_vmcs12_to_shadow_sync = true;
|
|
|
|
/* in case we halted in L2 */
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
if (likely(!vmx->fail)) {
|
|
/*
|
|
* TODO: SDM says that with acknowledge interrupt on
|
|
* exit, bit 31 of the VM-exit interrupt information
|
|
* (valid interrupt) is always set to 1 on
|
|
* EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
|
|
* need kvm_cpu_has_interrupt(). See the commit
|
|
* message for details.
|
|
*/
|
|
if (nested_exit_intr_ack_set(vcpu) &&
|
|
exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
|
|
kvm_cpu_has_interrupt(vcpu)) {
|
|
int irq = kvm_cpu_get_interrupt(vcpu);
|
|
WARN_ON(irq < 0);
|
|
vmcs12->vm_exit_intr_info = irq |
|
|
INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
|
|
}
|
|
|
|
if (exit_reason != -1)
|
|
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
|
|
vmcs12->exit_qualification,
|
|
vmcs12->idt_vectoring_info_field,
|
|
vmcs12->vm_exit_intr_info,
|
|
vmcs12->vm_exit_intr_error_code,
|
|
KVM_ISA_VMX);
|
|
|
|
load_vmcs12_host_state(vcpu, vmcs12);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* After an early L2 VM-entry failure, we're now back
|
|
* in L1 which thinks it just finished a VMLAUNCH or
|
|
* VMRESUME instruction, so we need to set the failure
|
|
* flag and the VM-instruction error field of the VMCS
|
|
* accordingly, and skip the emulated instruction.
|
|
*/
|
|
(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
|
|
|
|
/*
|
|
* Restore L1's host state to KVM's software model. We're here
|
|
* because a consistency check was caught by hardware, which
|
|
* means some amount of guest state has been propagated to KVM's
|
|
* model and needs to be unwound to the host's state.
|
|
*/
|
|
nested_vmx_restore_host_state(vcpu);
|
|
|
|
vmx->fail = 0;
|
|
}
|
|
|
|
/*
|
|
* Decode the memory-address operand of a vmx instruction, as recorded on an
|
|
* exit caused by such an instruction (run by a guest hypervisor).
|
|
* On success, returns 0. When the operand is invalid, returns 1 and throws
|
|
* #UD or #GP.
|
|
*/
|
|
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
|
|
u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
|
|
{
|
|
gva_t off;
|
|
bool exn;
|
|
struct kvm_segment s;
|
|
|
|
/*
|
|
* According to Vol. 3B, "Information for VM Exits Due to Instruction
|
|
* Execution", on an exit, vmx_instruction_info holds most of the
|
|
* addressing components of the operand. Only the displacement part
|
|
* is put in exit_qualification (see 3B, "Basic VM-Exit Information").
|
|
* For how an actual address is calculated from all these components,
|
|
* refer to Vol. 1, "Operand Addressing".
|
|
*/
|
|
int scaling = vmx_instruction_info & 3;
|
|
int addr_size = (vmx_instruction_info >> 7) & 7;
|
|
bool is_reg = vmx_instruction_info & (1u << 10);
|
|
int seg_reg = (vmx_instruction_info >> 15) & 7;
|
|
int index_reg = (vmx_instruction_info >> 18) & 0xf;
|
|
bool index_is_valid = !(vmx_instruction_info & (1u << 22));
|
|
int base_reg = (vmx_instruction_info >> 23) & 0xf;
|
|
bool base_is_valid = !(vmx_instruction_info & (1u << 27));
|
|
|
|
if (is_reg) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
/* Addr = segment_base + offset */
|
|
/* offset = base + [index * scale] + displacement */
|
|
off = exit_qualification; /* holds the displacement */
|
|
if (addr_size == 1)
|
|
off = (gva_t)sign_extend64(off, 31);
|
|
else if (addr_size == 0)
|
|
off = (gva_t)sign_extend64(off, 15);
|
|
if (base_is_valid)
|
|
off += kvm_register_read(vcpu, base_reg);
|
|
if (index_is_valid)
|
|
off += kvm_register_read(vcpu, index_reg)<<scaling;
|
|
vmx_get_segment(vcpu, &s, seg_reg);
|
|
|
|
/*
|
|
* The effective address, i.e. @off, of a memory operand is truncated
|
|
* based on the address size of the instruction. Note that this is
|
|
* the *effective address*, i.e. the address prior to accounting for
|
|
* the segment's base.
|
|
*/
|
|
if (addr_size == 1) /* 32 bit */
|
|
off &= 0xffffffff;
|
|
else if (addr_size == 0) /* 16 bit */
|
|
off &= 0xffff;
|
|
|
|
/* Checks for #GP/#SS exceptions. */
|
|
exn = false;
|
|
if (is_long_mode(vcpu)) {
|
|
/*
|
|
* The virtual/linear address is never truncated in 64-bit
|
|
* mode, e.g. a 32-bit address size can yield a 64-bit virtual
|
|
* address when using FS/GS with a non-zero base.
|
|
*/
|
|
if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
|
|
*ret = s.base + off;
|
|
else
|
|
*ret = off;
|
|
|
|
/* Long mode: #GP(0)/#SS(0) if the memory address is in a
|
|
* non-canonical form. This is the only check on the memory
|
|
* destination for long mode!
|
|
*/
|
|
exn = is_noncanonical_address(*ret, vcpu);
|
|
} else {
|
|
/*
|
|
* When not in long mode, the virtual/linear address is
|
|
* unconditionally truncated to 32 bits regardless of the
|
|
* address size.
|
|
*/
|
|
*ret = (s.base + off) & 0xffffffff;
|
|
|
|
/* Protected mode: apply checks for segment validity in the
|
|
* following order:
|
|
* - segment type check (#GP(0) may be thrown)
|
|
* - usability check (#GP(0)/#SS(0))
|
|
* - limit check (#GP(0)/#SS(0))
|
|
*/
|
|
if (wr)
|
|
/* #GP(0) if the destination operand is located in a
|
|
* read-only data segment or any code segment.
|
|
*/
|
|
exn = ((s.type & 0xa) == 0 || (s.type & 8));
|
|
else
|
|
/* #GP(0) if the source operand is located in an
|
|
* execute-only code segment
|
|
*/
|
|
exn = ((s.type & 0xa) == 8);
|
|
if (exn) {
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
|
|
return 1;
|
|
}
|
|
/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
|
|
*/
|
|
exn = (s.unusable != 0);
|
|
|
|
/*
|
|
* Protected mode: #GP(0)/#SS(0) if the memory operand is
|
|
* outside the segment limit. All CPUs that support VMX ignore
|
|
* limit checks for flat segments, i.e. segments with base==0,
|
|
* limit==0xffffffff and of type expand-up data or code.
|
|
*/
|
|
if (!(s.base == 0 && s.limit == 0xffffffff &&
|
|
((s.type & 8) || !(s.type & 4))))
|
|
exn = exn || ((u64)off + len - 1 > s.limit);
|
|
}
|
|
if (exn) {
|
|
kvm_queue_exception_e(vcpu,
|
|
seg_reg == VCPU_SREG_SS ?
|
|
SS_VECTOR : GP_VECTOR,
|
|
0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
|
|
{
|
|
gva_t gva;
|
|
struct x86_exception e;
|
|
|
|
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
|
|
vmcs_read32(VMX_INSTRUCTION_INFO), false,
|
|
sizeof(*vmpointer), &gva))
|
|
return 1;
|
|
|
|
if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
|
|
kvm_inject_page_fault(vcpu, &e);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a shadow VMCS and associate it with the currently loaded
|
|
* VMCS, unless such a shadow VMCS already exists. The newly allocated
|
|
* VMCS is also VMCLEARed, so that it is ready for use.
|
|
*/
|
|
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
|
|
|
|
/*
|
|
* We should allocate a shadow vmcs for vmcs01 only when L1
|
|
* executes VMXON and free it when L1 executes VMXOFF.
|
|
* As it is invalid to execute VMXON twice, we shouldn't reach
|
|
* here when vmcs01 already have an allocated shadow vmcs.
|
|
*/
|
|
WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
|
|
|
|
if (!loaded_vmcs->shadow_vmcs) {
|
|
loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
|
|
if (loaded_vmcs->shadow_vmcs)
|
|
vmcs_clear(loaded_vmcs->shadow_vmcs);
|
|
}
|
|
return loaded_vmcs->shadow_vmcs;
|
|
}
|
|
|
|
static int enter_vmx_operation(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int r;
|
|
|
|
r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
|
|
if (r < 0)
|
|
goto out_vmcs02;
|
|
|
|
vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
|
|
if (!vmx->nested.cached_vmcs12)
|
|
goto out_cached_vmcs12;
|
|
|
|
vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
|
|
if (!vmx->nested.cached_shadow_vmcs12)
|
|
goto out_cached_shadow_vmcs12;
|
|
|
|
if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
|
|
goto out_shadow_vmcs;
|
|
|
|
hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_REL_PINNED);
|
|
vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
|
|
|
|
vmx->nested.vpid02 = allocate_vpid();
|
|
|
|
vmx->nested.vmcs02_initialized = false;
|
|
vmx->nested.vmxon = true;
|
|
|
|
if (pt_mode == PT_MODE_HOST_GUEST) {
|
|
vmx->pt_desc.guest.ctl = 0;
|
|
pt_update_intercept_for_msr(vmx);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_shadow_vmcs:
|
|
kfree(vmx->nested.cached_shadow_vmcs12);
|
|
|
|
out_cached_shadow_vmcs12:
|
|
kfree(vmx->nested.cached_vmcs12);
|
|
|
|
out_cached_vmcs12:
|
|
free_loaded_vmcs(&vmx->nested.vmcs02);
|
|
|
|
out_vmcs02:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Emulate the VMXON instruction.
|
|
* Currently, we just remember that VMX is active, and do not save or even
|
|
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
|
|
* do not currently need to store anything in that guest-allocated memory
|
|
* region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
|
|
* argument is different from the VMXON pointer (which the spec says they do).
|
|
*/
|
|
static int handle_vmon(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
gpa_t vmptr;
|
|
uint32_t revision;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
|
|
| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
|
|
|
|
/*
|
|
* The Intel VMX Instruction Reference lists a bunch of bits that are
|
|
* prerequisite to running VMXON, most notably cr4.VMXE must be set to
|
|
* 1 (see vmx_set_cr4() for when we allow the guest to set this).
|
|
* Otherwise, we should fail with #UD. But most faulting conditions
|
|
* have already been checked by hardware, prior to the VM-exit for
|
|
* VMXON. We do test guest cr4.VMXE because processor CR4 always has
|
|
* that bit set to 1 in non-root mode.
|
|
*/
|
|
if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
/* CPL=0 must be checked manually. */
|
|
if (vmx_get_cpl(vcpu)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
if (vmx->nested.vmxon)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
|
|
|
|
if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
|
|
!= VMXON_NEEDED_FEATURES) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
if (nested_vmx_get_vmptr(vcpu, &vmptr))
|
|
return 1;
|
|
|
|
/*
|
|
* SDM 3: 24.11.5
|
|
* The first 4 bytes of VMXON region contain the supported
|
|
* VMCS revision identifier
|
|
*
|
|
* Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
|
|
* which replaces physical address width with 32
|
|
*/
|
|
if (!page_address_valid(vcpu, vmptr))
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
|
|
revision != VMCS12_REVISION)
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
vmx->nested.vmxon_ptr = vmptr;
|
|
ret = enter_vmx_operation(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vmx->nested.current_vmptr == -1ull)
|
|
return;
|
|
|
|
copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
|
|
|
|
if (enable_shadow_vmcs) {
|
|
/* copy to memory all shadowed fields in case
|
|
they were modified */
|
|
copy_shadow_to_vmcs12(vmx);
|
|
vmx_disable_shadow_vmcs(vmx);
|
|
}
|
|
vmx->nested.posted_intr_nv = -1;
|
|
|
|
/* Flush VMCS12 to guest memory */
|
|
kvm_vcpu_write_guest_page(vcpu,
|
|
vmx->nested.current_vmptr >> PAGE_SHIFT,
|
|
vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
|
|
|
|
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
|
|
|
|
vmx->nested.current_vmptr = -1ull;
|
|
}
|
|
|
|
/* Emulate the VMXOFF instruction */
|
|
static int handle_vmoff(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
free_nested(vcpu);
|
|
|
|
/* Process a latched INIT during time CPU was in VMX operation */
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
/* Emulate the VMCLEAR instruction */
|
|
static int handle_vmclear(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 zero = 0;
|
|
gpa_t vmptr;
|
|
u64 evmcs_gpa;
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
if (nested_vmx_get_vmptr(vcpu, &vmptr))
|
|
return 1;
|
|
|
|
if (!page_address_valid(vcpu, vmptr))
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMCLEAR_INVALID_ADDRESS);
|
|
|
|
if (vmptr == vmx->nested.vmxon_ptr)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMCLEAR_VMXON_POINTER);
|
|
|
|
/*
|
|
* When Enlightened VMEntry is enabled on the calling CPU we treat
|
|
* memory area pointer by vmptr as Enlightened VMCS (as there's no good
|
|
* way to distinguish it from VMCS12) and we must not corrupt it by
|
|
* writing to the non-existent 'launch_state' field. The area doesn't
|
|
* have to be the currently active EVMCS on the calling CPU and there's
|
|
* nothing KVM has to do to transition it from 'active' to 'non-active'
|
|
* state. It is possible that the area will stay mapped as
|
|
* vmx->nested.hv_evmcs but this shouldn't be a problem.
|
|
*/
|
|
if (likely(!vmx->nested.enlightened_vmcs_enabled ||
|
|
!nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
|
|
if (vmptr == vmx->nested.current_vmptr)
|
|
nested_release_vmcs12(vcpu);
|
|
|
|
kvm_vcpu_write_guest(vcpu,
|
|
vmptr + offsetof(struct vmcs12,
|
|
launch_state),
|
|
&zero, sizeof(zero));
|
|
}
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
|
|
|
|
/* Emulate the VMLAUNCH instruction */
|
|
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
|
|
{
|
|
return nested_vmx_run(vcpu, true);
|
|
}
|
|
|
|
/* Emulate the VMRESUME instruction */
|
|
static int handle_vmresume(struct kvm_vcpu *vcpu)
|
|
{
|
|
|
|
return nested_vmx_run(vcpu, false);
|
|
}
|
|
|
|
static int handle_vmread(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long field;
|
|
u64 field_value;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
int len;
|
|
gva_t gva = 0;
|
|
struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
|
|
: get_vmcs12(vcpu);
|
|
struct x86_exception e;
|
|
short offset;
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
/*
|
|
* In VMX non-root operation, when the VMCS-link pointer is -1ull,
|
|
* any VMREAD sets the ALU flags for VMfailInvalid.
|
|
*/
|
|
if (vmx->nested.current_vmptr == -1ull ||
|
|
(is_guest_mode(vcpu) &&
|
|
get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
/* Decode instruction info and find the field to read */
|
|
field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
|
|
|
|
offset = vmcs_field_to_offset(field);
|
|
if (offset < 0)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_UNSUPPORTED_VMCS_COMPONENT);
|
|
|
|
if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
|
|
copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
|
|
|
|
/* Read the field, zero-extended to a u64 field_value */
|
|
field_value = vmcs12_read_any(vmcs12, field, offset);
|
|
|
|
/*
|
|
* Now copy part of this value to register or memory, as requested.
|
|
* Note that the number of bits actually copied is 32 or 64 depending
|
|
* on the guest's mode (32 or 64 bit), not on the given field's length.
|
|
*/
|
|
if (vmx_instruction_info & (1u << 10)) {
|
|
kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
|
|
field_value);
|
|
} else {
|
|
len = is_64_bit_mode(vcpu) ? 8 : 4;
|
|
if (get_vmx_mem_address(vcpu, exit_qualification,
|
|
vmx_instruction_info, true, len, &gva))
|
|
return 1;
|
|
/* _system ok, nested_vmx_check_permission has verified cpl=0 */
|
|
if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e)) {
|
|
kvm_inject_page_fault(vcpu, &e);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
static bool is_shadow_field_rw(unsigned long field)
|
|
{
|
|
switch (field) {
|
|
#define SHADOW_FIELD_RW(x, y) case x:
|
|
#include "vmcs_shadow_fields.h"
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool is_shadow_field_ro(unsigned long field)
|
|
{
|
|
switch (field) {
|
|
#define SHADOW_FIELD_RO(x, y) case x:
|
|
#include "vmcs_shadow_fields.h"
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int handle_vmwrite(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long field;
|
|
int len;
|
|
gva_t gva;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
|
|
/* The value to write might be 32 or 64 bits, depending on L1's long
|
|
* mode, and eventually we need to write that into a field of several
|
|
* possible lengths. The code below first zero-extends the value to 64
|
|
* bit (field_value), and then copies only the appropriate number of
|
|
* bits into the vmcs12 field.
|
|
*/
|
|
u64 field_value = 0;
|
|
struct x86_exception e;
|
|
struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
|
|
: get_vmcs12(vcpu);
|
|
short offset;
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
/*
|
|
* In VMX non-root operation, when the VMCS-link pointer is -1ull,
|
|
* any VMWRITE sets the ALU flags for VMfailInvalid.
|
|
*/
|
|
if (vmx->nested.current_vmptr == -1ull ||
|
|
(is_guest_mode(vcpu) &&
|
|
get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
|
|
return nested_vmx_failInvalid(vcpu);
|
|
|
|
if (vmx_instruction_info & (1u << 10))
|
|
field_value = kvm_register_readl(vcpu,
|
|
(((vmx_instruction_info) >> 3) & 0xf));
|
|
else {
|
|
len = is_64_bit_mode(vcpu) ? 8 : 4;
|
|
if (get_vmx_mem_address(vcpu, exit_qualification,
|
|
vmx_instruction_info, false, len, &gva))
|
|
return 1;
|
|
if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
|
|
kvm_inject_page_fault(vcpu, &e);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
|
|
|
|
offset = vmcs_field_to_offset(field);
|
|
if (offset < 0)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_UNSUPPORTED_VMCS_COMPONENT);
|
|
|
|
/*
|
|
* If the vCPU supports "VMWRITE to any supported field in the
|
|
* VMCS," then the "read-only" fields are actually read/write.
|
|
*/
|
|
if (vmcs_field_readonly(field) &&
|
|
!nested_cpu_has_vmwrite_any_field(vcpu))
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
|
|
|
|
/*
|
|
* Ensure vmcs12 is up-to-date before any VMWRITE that dirties
|
|
* vmcs12, else we may crush a field or consume a stale value.
|
|
*/
|
|
if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
|
|
copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
|
|
|
|
/*
|
|
* Some Intel CPUs intentionally drop the reserved bits of the AR byte
|
|
* fields on VMWRITE. Emulate this behavior to ensure consistent KVM
|
|
* behavior regardless of the underlying hardware, e.g. if an AR_BYTE
|
|
* field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
|
|
* from L1 will return a different value than VMREAD from L2 (L1 sees
|
|
* the stripped down value, L2 sees the full value as stored by KVM).
|
|
*/
|
|
if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
|
|
field_value &= 0x1f0ff;
|
|
|
|
vmcs12_write_any(vmcs12, field, offset, field_value);
|
|
|
|
/*
|
|
* Do not track vmcs12 dirty-state if in guest-mode as we actually
|
|
* dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
|
|
* by L1 without a vmexit are always updated in the vmcs02, i.e. don't
|
|
* "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
|
|
*/
|
|
if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
|
|
/*
|
|
* L1 can read these fields without exiting, ensure the
|
|
* shadow VMCS is up-to-date.
|
|
*/
|
|
if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
|
|
preempt_disable();
|
|
vmcs_load(vmx->vmcs01.shadow_vmcs);
|
|
|
|
__vmcs_writel(field, field_value);
|
|
|
|
vmcs_clear(vmx->vmcs01.shadow_vmcs);
|
|
vmcs_load(vmx->loaded_vmcs->vmcs);
|
|
preempt_enable();
|
|
}
|
|
vmx->nested.dirty_vmcs12 = true;
|
|
}
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
|
|
{
|
|
vmx->nested.current_vmptr = vmptr;
|
|
if (enable_shadow_vmcs) {
|
|
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
|
|
vmcs_write64(VMCS_LINK_POINTER,
|
|
__pa(vmx->vmcs01.shadow_vmcs));
|
|
vmx->nested.need_vmcs12_to_shadow_sync = true;
|
|
}
|
|
vmx->nested.dirty_vmcs12 = true;
|
|
}
|
|
|
|
/* Emulate the VMPTRLD instruction */
|
|
static int handle_vmptrld(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
gpa_t vmptr;
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
if (nested_vmx_get_vmptr(vcpu, &vmptr))
|
|
return 1;
|
|
|
|
if (!page_address_valid(vcpu, vmptr))
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMPTRLD_INVALID_ADDRESS);
|
|
|
|
if (vmptr == vmx->nested.vmxon_ptr)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMPTRLD_VMXON_POINTER);
|
|
|
|
/* Forbid normal VMPTRLD if Enlightened version was used */
|
|
if (vmx->nested.hv_evmcs)
|
|
return 1;
|
|
|
|
if (vmx->nested.current_vmptr != vmptr) {
|
|
struct kvm_host_map map;
|
|
struct vmcs12 *new_vmcs12;
|
|
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
|
|
/*
|
|
* Reads from an unbacked page return all 1s,
|
|
* which means that the 32 bits located at the
|
|
* given physical address won't match the required
|
|
* VMCS12_REVISION identifier.
|
|
*/
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
|
|
}
|
|
|
|
new_vmcs12 = map.hva;
|
|
|
|
if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
|
|
(new_vmcs12->hdr.shadow_vmcs &&
|
|
!nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
|
|
kvm_vcpu_unmap(vcpu, &map, false);
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
|
|
}
|
|
|
|
nested_release_vmcs12(vcpu);
|
|
|
|
/*
|
|
* Load VMCS12 from guest memory since it is not already
|
|
* cached.
|
|
*/
|
|
memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
|
|
kvm_vcpu_unmap(vcpu, &map, false);
|
|
|
|
set_current_vmptr(vmx, vmptr);
|
|
}
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
/* Emulate the VMPTRST instruction */
|
|
static int handle_vmptrst(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
|
|
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
|
|
struct x86_exception e;
|
|
gva_t gva;
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
|
|
return 1;
|
|
|
|
if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
|
|
true, sizeof(gpa_t), &gva))
|
|
return 1;
|
|
/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
|
|
if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
|
|
sizeof(gpa_t), &e)) {
|
|
kvm_inject_page_fault(vcpu, &e);
|
|
return 1;
|
|
}
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
/* Emulate the INVEPT instruction */
|
|
static int handle_invept(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 vmx_instruction_info, types;
|
|
unsigned long type;
|
|
gva_t gva;
|
|
struct x86_exception e;
|
|
struct {
|
|
u64 eptp, gpa;
|
|
} operand;
|
|
|
|
if (!(vmx->nested.msrs.secondary_ctls_high &
|
|
SECONDARY_EXEC_ENABLE_EPT) ||
|
|
!(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
|
|
|
|
types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
|
|
|
|
if (type >= 32 || !(types & (1 << type)))
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
|
|
|
|
/* According to the Intel VMX instruction reference, the memory
|
|
* operand is read even if it isn't needed (e.g., for type==global)
|
|
*/
|
|
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
|
|
vmx_instruction_info, false, sizeof(operand), &gva))
|
|
return 1;
|
|
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
|
|
kvm_inject_page_fault(vcpu, &e);
|
|
return 1;
|
|
}
|
|
|
|
switch (type) {
|
|
case VMX_EPT_EXTENT_GLOBAL:
|
|
case VMX_EPT_EXTENT_CONTEXT:
|
|
/*
|
|
* TODO: Sync the necessary shadow EPT roots here, rather than
|
|
* at the next emulated VM-entry.
|
|
*/
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
static int handle_invvpid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 vmx_instruction_info;
|
|
unsigned long type, types;
|
|
gva_t gva;
|
|
struct x86_exception e;
|
|
struct {
|
|
u64 vpid;
|
|
u64 gla;
|
|
} operand;
|
|
u16 vpid02;
|
|
|
|
if (!(vmx->nested.msrs.secondary_ctls_high &
|
|
SECONDARY_EXEC_ENABLE_VPID) ||
|
|
!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (!nested_vmx_check_permission(vcpu))
|
|
return 1;
|
|
|
|
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
|
|
|
|
types = (vmx->nested.msrs.vpid_caps &
|
|
VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
|
|
|
|
if (type >= 32 || !(types & (1 << type)))
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
|
|
|
|
/* according to the intel vmx instruction reference, the memory
|
|
* operand is read even if it isn't needed (e.g., for type==global)
|
|
*/
|
|
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
|
|
vmx_instruction_info, false, sizeof(operand), &gva))
|
|
return 1;
|
|
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
|
|
kvm_inject_page_fault(vcpu, &e);
|
|
return 1;
|
|
}
|
|
if (operand.vpid >> 16)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
|
|
|
|
vpid02 = nested_get_vpid02(vcpu);
|
|
switch (type) {
|
|
case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
|
|
if (!operand.vpid ||
|
|
is_noncanonical_address(operand.gla, vcpu))
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
|
|
if (cpu_has_vmx_invvpid_individual_addr()) {
|
|
__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
|
|
vpid02, operand.gla);
|
|
} else
|
|
__vmx_flush_tlb(vcpu, vpid02, false);
|
|
break;
|
|
case VMX_VPID_EXTENT_SINGLE_CONTEXT:
|
|
case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
|
|
if (!operand.vpid)
|
|
return nested_vmx_failValid(vcpu,
|
|
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
|
|
__vmx_flush_tlb(vcpu, vpid02, false);
|
|
break;
|
|
case VMX_VPID_EXTENT_ALL_CONTEXT:
|
|
__vmx_flush_tlb(vcpu, vpid02, false);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
return nested_vmx_succeed(vcpu);
|
|
}
|
|
|
|
static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
u32 index = kvm_rcx_read(vcpu);
|
|
u64 address;
|
|
bool accessed_dirty;
|
|
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
|
|
|
|
if (!nested_cpu_has_eptp_switching(vmcs12) ||
|
|
!nested_cpu_has_ept(vmcs12))
|
|
return 1;
|
|
|
|
if (index >= VMFUNC_EPTP_ENTRIES)
|
|
return 1;
|
|
|
|
|
|
if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
|
|
&address, index * 8, 8))
|
|
return 1;
|
|
|
|
accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
|
|
|
|
/*
|
|
* If the (L2) guest does a vmfunc to the currently
|
|
* active ept pointer, we don't have to do anything else
|
|
*/
|
|
if (vmcs12->ept_pointer != address) {
|
|
if (!valid_ept_address(vcpu, address))
|
|
return 1;
|
|
|
|
kvm_mmu_unload(vcpu);
|
|
mmu->ept_ad = accessed_dirty;
|
|
mmu->mmu_role.base.ad_disabled = !accessed_dirty;
|
|
vmcs12->ept_pointer = address;
|
|
/*
|
|
* TODO: Check what's the correct approach in case
|
|
* mmu reload fails. Currently, we just let the next
|
|
* reload potentially fail
|
|
*/
|
|
kvm_mmu_reload(vcpu);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_vmfunc(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmcs12 *vmcs12;
|
|
u32 function = kvm_rax_read(vcpu);
|
|
|
|
/*
|
|
* VMFUNC is only supported for nested guests, but we always enable the
|
|
* secondary control for simplicity; for non-nested mode, fake that we
|
|
* didn't by injecting #UD.
|
|
*/
|
|
if (!is_guest_mode(vcpu)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
vmcs12 = get_vmcs12(vcpu);
|
|
if ((vmcs12->vm_function_control & (1 << function)) == 0)
|
|
goto fail;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
if (nested_vmx_eptp_switching(vcpu, vmcs12))
|
|
goto fail;
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
|
|
fail:
|
|
nested_vmx_vmexit(vcpu, vmx->exit_reason,
|
|
vmcs_read32(VM_EXIT_INTR_INFO),
|
|
vmcs_readl(EXIT_QUALIFICATION));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return true if an IO instruction with the specified port and size should cause
|
|
* a VM-exit into L1.
|
|
*/
|
|
bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
|
|
int size)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
gpa_t bitmap, last_bitmap;
|
|
u8 b;
|
|
|
|
last_bitmap = (gpa_t)-1;
|
|
b = -1;
|
|
|
|
while (size > 0) {
|
|
if (port < 0x8000)
|
|
bitmap = vmcs12->io_bitmap_a;
|
|
else if (port < 0x10000)
|
|
bitmap = vmcs12->io_bitmap_b;
|
|
else
|
|
return true;
|
|
bitmap += (port & 0x7fff) / 8;
|
|
|
|
if (last_bitmap != bitmap)
|
|
if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
|
|
return true;
|
|
if (b & (1 << (port & 7)))
|
|
return true;
|
|
|
|
port++;
|
|
size--;
|
|
last_bitmap = bitmap;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
unsigned long exit_qualification;
|
|
unsigned short port;
|
|
int size;
|
|
|
|
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
|
|
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
|
|
port = exit_qualification >> 16;
|
|
size = (exit_qualification & 7) + 1;
|
|
|
|
return nested_vmx_check_io_bitmaps(vcpu, port, size);
|
|
}
|
|
|
|
/*
|
|
* Return 1 if we should exit from L2 to L1 to handle an MSR access access,
|
|
* rather than handle it ourselves in L0. I.e., check whether L1 expressed
|
|
* disinterest in the current event (read or write a specific MSR) by using an
|
|
* MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
|
|
*/
|
|
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12, u32 exit_reason)
|
|
{
|
|
u32 msr_index = kvm_rcx_read(vcpu);
|
|
gpa_t bitmap;
|
|
|
|
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
|
|
return true;
|
|
|
|
/*
|
|
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
|
|
* for the four combinations of read/write and low/high MSR numbers.
|
|
* First we need to figure out which of the four to use:
|
|
*/
|
|
bitmap = vmcs12->msr_bitmap;
|
|
if (exit_reason == EXIT_REASON_MSR_WRITE)
|
|
bitmap += 2048;
|
|
if (msr_index >= 0xc0000000) {
|
|
msr_index -= 0xc0000000;
|
|
bitmap += 1024;
|
|
}
|
|
|
|
/* Then read the msr_index'th bit from this bitmap: */
|
|
if (msr_index < 1024*8) {
|
|
unsigned char b;
|
|
if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
|
|
return true;
|
|
return 1 & (b >> (msr_index & 7));
|
|
} else
|
|
return true; /* let L1 handle the wrong parameter */
|
|
}
|
|
|
|
/*
|
|
* Return 1 if we should exit from L2 to L1 to handle a CR access exit,
|
|
* rather than handle it ourselves in L0. I.e., check if L1 wanted to
|
|
* intercept (via guest_host_mask etc.) the current event.
|
|
*/
|
|
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12)
|
|
{
|
|
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
int cr = exit_qualification & 15;
|
|
int reg;
|
|
unsigned long val;
|
|
|
|
switch ((exit_qualification >> 4) & 3) {
|
|
case 0: /* mov to cr */
|
|
reg = (exit_qualification >> 8) & 15;
|
|
val = kvm_register_readl(vcpu, reg);
|
|
switch (cr) {
|
|
case 0:
|
|
if (vmcs12->cr0_guest_host_mask &
|
|
(val ^ vmcs12->cr0_read_shadow))
|
|
return true;
|
|
break;
|
|
case 3:
|
|
if ((vmcs12->cr3_target_count >= 1 &&
|
|
vmcs12->cr3_target_value0 == val) ||
|
|
(vmcs12->cr3_target_count >= 2 &&
|
|
vmcs12->cr3_target_value1 == val) ||
|
|
(vmcs12->cr3_target_count >= 3 &&
|
|
vmcs12->cr3_target_value2 == val) ||
|
|
(vmcs12->cr3_target_count >= 4 &&
|
|
vmcs12->cr3_target_value3 == val))
|
|
return false;
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
|
|
return true;
|
|
break;
|
|
case 4:
|
|
if (vmcs12->cr4_guest_host_mask &
|
|
(vmcs12->cr4_read_shadow ^ val))
|
|
return true;
|
|
break;
|
|
case 8:
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
|
|
return true;
|
|
break;
|
|
}
|
|
break;
|
|
case 2: /* clts */
|
|
if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
|
|
(vmcs12->cr0_read_shadow & X86_CR0_TS))
|
|
return true;
|
|
break;
|
|
case 1: /* mov from cr */
|
|
switch (cr) {
|
|
case 3:
|
|
if (vmcs12->cpu_based_vm_exec_control &
|
|
CPU_BASED_CR3_STORE_EXITING)
|
|
return true;
|
|
break;
|
|
case 8:
|
|
if (vmcs12->cpu_based_vm_exec_control &
|
|
CPU_BASED_CR8_STORE_EXITING)
|
|
return true;
|
|
break;
|
|
}
|
|
break;
|
|
case 3: /* lmsw */
|
|
/*
|
|
* lmsw can change bits 1..3 of cr0, and only set bit 0 of
|
|
* cr0. Other attempted changes are ignored, with no exit.
|
|
*/
|
|
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
|
|
if (vmcs12->cr0_guest_host_mask & 0xe &
|
|
(val ^ vmcs12->cr0_read_shadow))
|
|
return true;
|
|
if ((vmcs12->cr0_guest_host_mask & 0x1) &&
|
|
!(vmcs12->cr0_read_shadow & 0x1) &&
|
|
(val & 0x1))
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
|
|
struct vmcs12 *vmcs12, gpa_t bitmap)
|
|
{
|
|
u32 vmx_instruction_info;
|
|
unsigned long field;
|
|
u8 b;
|
|
|
|
if (!nested_cpu_has_shadow_vmcs(vmcs12))
|
|
return true;
|
|
|
|
/* Decode instruction info and find the field to access */
|
|
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
|
|
|
|
/* Out-of-range fields always cause a VM exit from L2 to L1 */
|
|
if (field >> 15)
|
|
return true;
|
|
|
|
if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
|
|
return true;
|
|
|
|
return 1 & (b >> (field & 7));
|
|
}
|
|
|
|
/*
|
|
* Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
|
|
* should handle it ourselves in L0 (and then continue L2). Only call this
|
|
* when in is_guest_mode (L2).
|
|
*/
|
|
bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
|
|
{
|
|
u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
if (vmx->nested.nested_run_pending)
|
|
return false;
|
|
|
|
if (unlikely(vmx->fail)) {
|
|
trace_kvm_nested_vmenter_failed(
|
|
"hardware VM-instruction error: ",
|
|
vmcs_read32(VM_INSTRUCTION_ERROR));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The host physical addresses of some pages of guest memory
|
|
* are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
|
|
* Page). The CPU may write to these pages via their host
|
|
* physical address while L2 is running, bypassing any
|
|
* address-translation-based dirty tracking (e.g. EPT write
|
|
* protection).
|
|
*
|
|
* Mark them dirty on every exit from L2 to prevent them from
|
|
* getting out of sync with dirty tracking.
|
|
*/
|
|
nested_mark_vmcs12_pages_dirty(vcpu);
|
|
|
|
trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
|
|
vmcs_readl(EXIT_QUALIFICATION),
|
|
vmx->idt_vectoring_info,
|
|
intr_info,
|
|
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
|
|
KVM_ISA_VMX);
|
|
|
|
switch (exit_reason) {
|
|
case EXIT_REASON_EXCEPTION_NMI:
|
|
if (is_nmi(intr_info))
|
|
return false;
|
|
else if (is_page_fault(intr_info))
|
|
return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
|
|
else if (is_debug(intr_info) &&
|
|
vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
|
|
return false;
|
|
else if (is_breakpoint(intr_info) &&
|
|
vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
return false;
|
|
return vmcs12->exception_bitmap &
|
|
(1u << (intr_info & INTR_INFO_VECTOR_MASK));
|
|
case EXIT_REASON_EXTERNAL_INTERRUPT:
|
|
return false;
|
|
case EXIT_REASON_TRIPLE_FAULT:
|
|
return true;
|
|
case EXIT_REASON_PENDING_INTERRUPT:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
|
|
case EXIT_REASON_NMI_WINDOW:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
|
|
case EXIT_REASON_TASK_SWITCH:
|
|
return true;
|
|
case EXIT_REASON_CPUID:
|
|
return true;
|
|
case EXIT_REASON_HLT:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
|
|
case EXIT_REASON_INVD:
|
|
return true;
|
|
case EXIT_REASON_INVLPG:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
|
|
case EXIT_REASON_RDPMC:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
|
|
case EXIT_REASON_RDRAND:
|
|
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
|
|
case EXIT_REASON_RDSEED:
|
|
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
|
|
case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
|
|
case EXIT_REASON_VMREAD:
|
|
return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
|
|
vmcs12->vmread_bitmap);
|
|
case EXIT_REASON_VMWRITE:
|
|
return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
|
|
vmcs12->vmwrite_bitmap);
|
|
case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
|
|
case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
|
|
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
|
|
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
|
|
case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
|
|
/*
|
|
* VMX instructions trap unconditionally. This allows L1 to
|
|
* emulate them for its L2 guest, i.e., allows 3-level nesting!
|
|
*/
|
|
return true;
|
|
case EXIT_REASON_CR_ACCESS:
|
|
return nested_vmx_exit_handled_cr(vcpu, vmcs12);
|
|
case EXIT_REASON_DR_ACCESS:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
|
|
case EXIT_REASON_IO_INSTRUCTION:
|
|
return nested_vmx_exit_handled_io(vcpu, vmcs12);
|
|
case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
|
|
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
|
|
case EXIT_REASON_MSR_READ:
|
|
case EXIT_REASON_MSR_WRITE:
|
|
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
|
|
case EXIT_REASON_INVALID_STATE:
|
|
return true;
|
|
case EXIT_REASON_MWAIT_INSTRUCTION:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
|
|
case EXIT_REASON_MONITOR_TRAP_FLAG:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
|
|
case EXIT_REASON_MONITOR_INSTRUCTION:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
|
|
case EXIT_REASON_PAUSE_INSTRUCTION:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
|
|
nested_cpu_has2(vmcs12,
|
|
SECONDARY_EXEC_PAUSE_LOOP_EXITING);
|
|
case EXIT_REASON_MCE_DURING_VMENTRY:
|
|
return false;
|
|
case EXIT_REASON_TPR_BELOW_THRESHOLD:
|
|
return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
|
|
case EXIT_REASON_APIC_ACCESS:
|
|
case EXIT_REASON_APIC_WRITE:
|
|
case EXIT_REASON_EOI_INDUCED:
|
|
/*
|
|
* The controls for "virtualize APIC accesses," "APIC-
|
|
* register virtualization," and "virtual-interrupt
|
|
* delivery" only come from vmcs12.
|
|
*/
|
|
return true;
|
|
case EXIT_REASON_EPT_VIOLATION:
|
|
/*
|
|
* L0 always deals with the EPT violation. If nested EPT is
|
|
* used, and the nested mmu code discovers that the address is
|
|
* missing in the guest EPT table (EPT12), the EPT violation
|
|
* will be injected with nested_ept_inject_page_fault()
|
|
*/
|
|
return false;
|
|
case EXIT_REASON_EPT_MISCONFIG:
|
|
/*
|
|
* L2 never uses directly L1's EPT, but rather L0's own EPT
|
|
* table (shadow on EPT) or a merged EPT table that L0 built
|
|
* (EPT on EPT). So any problems with the structure of the
|
|
* table is L0's fault.
|
|
*/
|
|
return false;
|
|
case EXIT_REASON_INVPCID:
|
|
return
|
|
nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
|
|
nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
|
|
case EXIT_REASON_WBINVD:
|
|
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
|
|
case EXIT_REASON_XSETBV:
|
|
return true;
|
|
case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
|
|
/*
|
|
* This should never happen, since it is not possible to
|
|
* set XSS to a non-zero value---neither in L1 nor in L2.
|
|
* If if it were, XSS would have to be checked against
|
|
* the XSS exit bitmap in vmcs12.
|
|
*/
|
|
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
|
|
case EXIT_REASON_PREEMPTION_TIMER:
|
|
return false;
|
|
case EXIT_REASON_PML_FULL:
|
|
/* We emulate PML support to L1. */
|
|
return false;
|
|
case EXIT_REASON_VMFUNC:
|
|
/* VM functions are emulated through L2->L0 vmexits. */
|
|
return false;
|
|
case EXIT_REASON_ENCLS:
|
|
/* SGX is never exposed to L1 */
|
|
return false;
|
|
case EXIT_REASON_UMWAIT:
|
|
case EXIT_REASON_TPAUSE:
|
|
return nested_cpu_has2(vmcs12,
|
|
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
|
|
struct kvm_nested_state __user *user_kvm_nested_state,
|
|
u32 user_data_size)
|
|
{
|
|
struct vcpu_vmx *vmx;
|
|
struct vmcs12 *vmcs12;
|
|
struct kvm_nested_state kvm_state = {
|
|
.flags = 0,
|
|
.format = KVM_STATE_NESTED_FORMAT_VMX,
|
|
.size = sizeof(kvm_state),
|
|
.hdr.vmx.vmxon_pa = -1ull,
|
|
.hdr.vmx.vmcs12_pa = -1ull,
|
|
};
|
|
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
|
|
&user_kvm_nested_state->data.vmx[0];
|
|
|
|
if (!vcpu)
|
|
return kvm_state.size + sizeof(*user_vmx_nested_state);
|
|
|
|
vmx = to_vmx(vcpu);
|
|
vmcs12 = get_vmcs12(vcpu);
|
|
|
|
if (nested_vmx_allowed(vcpu) &&
|
|
(vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
|
|
kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
|
|
kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
|
|
|
|
if (vmx_has_valid_vmcs12(vcpu)) {
|
|
kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
|
|
|
|
if (vmx->nested.hv_evmcs)
|
|
kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
|
|
|
|
if (is_guest_mode(vcpu) &&
|
|
nested_cpu_has_shadow_vmcs(vmcs12) &&
|
|
vmcs12->vmcs_link_pointer != -1ull)
|
|
kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
|
|
}
|
|
|
|
if (vmx->nested.smm.vmxon)
|
|
kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
|
|
|
|
if (vmx->nested.smm.guest_mode)
|
|
kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
|
|
|
|
if (vmx->nested.nested_run_pending)
|
|
kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
|
|
}
|
|
}
|
|
|
|
if (user_data_size < kvm_state.size)
|
|
goto out;
|
|
|
|
if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
|
|
return -EFAULT;
|
|
|
|
if (!vmx_has_valid_vmcs12(vcpu))
|
|
goto out;
|
|
|
|
/*
|
|
* When running L2, the authoritative vmcs12 state is in the
|
|
* vmcs02. When running L1, the authoritative vmcs12 state is
|
|
* in the shadow or enlightened vmcs linked to vmcs01, unless
|
|
* need_vmcs12_to_shadow_sync is set, in which case, the authoritative
|
|
* vmcs12 state is in the vmcs12 already.
|
|
*/
|
|
if (is_guest_mode(vcpu)) {
|
|
sync_vmcs02_to_vmcs12(vcpu, vmcs12);
|
|
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
|
|
} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
|
|
if (vmx->nested.hv_evmcs)
|
|
copy_enlightened_to_vmcs12(vmx);
|
|
else if (enable_shadow_vmcs)
|
|
copy_shadow_to_vmcs12(vmx);
|
|
}
|
|
|
|
BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
|
|
BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
|
|
|
|
/*
|
|
* Copy over the full allocated size of vmcs12 rather than just the size
|
|
* of the struct.
|
|
*/
|
|
if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
|
|
return -EFAULT;
|
|
|
|
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
|
|
vmcs12->vmcs_link_pointer != -1ull) {
|
|
if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
|
|
get_shadow_vmcs12(vcpu), VMCS12_SIZE))
|
|
return -EFAULT;
|
|
}
|
|
|
|
out:
|
|
return kvm_state.size;
|
|
}
|
|
|
|
/*
|
|
* Forcibly leave nested mode in order to be able to reset the VCPU later on.
|
|
*/
|
|
void vmx_leave_nested(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu)) {
|
|
to_vmx(vcpu)->nested.nested_run_pending = 0;
|
|
nested_vmx_vmexit(vcpu, -1, 0, 0);
|
|
}
|
|
free_nested(vcpu);
|
|
}
|
|
|
|
static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
|
|
struct kvm_nested_state __user *user_kvm_nested_state,
|
|
struct kvm_nested_state *kvm_state)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmcs12 *vmcs12;
|
|
u32 exit_qual;
|
|
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
|
|
&user_kvm_nested_state->data.vmx[0];
|
|
int ret;
|
|
|
|
if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
|
|
return -EINVAL;
|
|
|
|
if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
|
|
if (kvm_state->hdr.vmx.smm.flags)
|
|
return -EINVAL;
|
|
|
|
if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* KVM_STATE_NESTED_EVMCS used to signal that KVM should
|
|
* enable eVMCS capability on vCPU. However, since then
|
|
* code was changed such that flag signals vmcs12 should
|
|
* be copied into eVMCS in guest memory.
|
|
*
|
|
* To preserve backwards compatability, allow user
|
|
* to set this flag even when there is no VMXON region.
|
|
*/
|
|
if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
|
|
return -EINVAL;
|
|
} else {
|
|
if (!nested_vmx_allowed(vcpu))
|
|
return -EINVAL;
|
|
|
|
if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
|
|
(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
|
|
return -EINVAL;
|
|
|
|
if (kvm_state->hdr.vmx.smm.flags &
|
|
~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* SMM temporarily disables VMX, so we cannot be in guest mode,
|
|
* nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
|
|
* must be zero.
|
|
*/
|
|
if (is_smm(vcpu) ?
|
|
(kvm_state->flags &
|
|
(KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
|
|
: kvm_state->hdr.vmx.smm.flags)
|
|
return -EINVAL;
|
|
|
|
if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
|
|
!(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
|
|
return -EINVAL;
|
|
|
|
if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
|
|
(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
|
|
return -EINVAL;
|
|
|
|
vmx_leave_nested(vcpu);
|
|
|
|
if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
|
|
return 0;
|
|
|
|
vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
|
|
ret = enter_vmx_operation(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Empty 'VMXON' state is permitted */
|
|
if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
|
|
return 0;
|
|
|
|
if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
|
|
if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
|
|
!page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
|
|
return -EINVAL;
|
|
|
|
set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
|
|
} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
|
|
/*
|
|
* Sync eVMCS upon entry as we may not have
|
|
* HV_X64_MSR_VP_ASSIST_PAGE set up yet.
|
|
*/
|
|
vmx->nested.need_vmcs12_to_shadow_sync = true;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
|
|
vmx->nested.smm.vmxon = true;
|
|
vmx->nested.vmxon = false;
|
|
|
|
if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
|
|
vmx->nested.smm.guest_mode = true;
|
|
}
|
|
|
|
vmcs12 = get_vmcs12(vcpu);
|
|
if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
|
|
return -EFAULT;
|
|
|
|
if (vmcs12->hdr.revision_id != VMCS12_REVISION)
|
|
return -EINVAL;
|
|
|
|
if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
|
|
return 0;
|
|
|
|
vmx->nested.nested_run_pending =
|
|
!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
|
|
|
|
ret = -EINVAL;
|
|
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
|
|
vmcs12->vmcs_link_pointer != -1ull) {
|
|
struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
|
|
|
|
if (kvm_state->size <
|
|
sizeof(*kvm_state) +
|
|
sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
|
|
goto error_guest_mode;
|
|
|
|
if (copy_from_user(shadow_vmcs12,
|
|
user_vmx_nested_state->shadow_vmcs12,
|
|
sizeof(*shadow_vmcs12))) {
|
|
ret = -EFAULT;
|
|
goto error_guest_mode;
|
|
}
|
|
|
|
if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
|
|
!shadow_vmcs12->hdr.shadow_vmcs)
|
|
goto error_guest_mode;
|
|
}
|
|
|
|
if (nested_vmx_check_controls(vcpu, vmcs12) ||
|
|
nested_vmx_check_host_state(vcpu, vmcs12) ||
|
|
nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
|
|
goto error_guest_mode;
|
|
|
|
vmx->nested.dirty_vmcs12 = true;
|
|
ret = nested_vmx_enter_non_root_mode(vcpu, false);
|
|
if (ret)
|
|
goto error_guest_mode;
|
|
|
|
return 0;
|
|
|
|
error_guest_mode:
|
|
vmx->nested.nested_run_pending = 0;
|
|
return ret;
|
|
}
|
|
|
|
void nested_vmx_vcpu_setup(void)
|
|
{
|
|
if (enable_shadow_vmcs) {
|
|
vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
|
|
vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
|
|
* returned for the various VMX controls MSRs when nested VMX is enabled.
|
|
* The same values should also be used to verify that vmcs12 control fields are
|
|
* valid during nested entry from L1 to L2.
|
|
* Each of these control msrs has a low and high 32-bit half: A low bit is on
|
|
* if the corresponding bit in the (32-bit) control field *must* be on, and a
|
|
* bit in the high half is on if the corresponding bit in the control field
|
|
* may be on. See also vmx_control_verify().
|
|
*/
|
|
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
|
|
{
|
|
/*
|
|
* Note that as a general rule, the high half of the MSRs (bits in
|
|
* the control fields which may be 1) should be initialized by the
|
|
* intersection of the underlying hardware's MSR (i.e., features which
|
|
* can be supported) and the list of features we want to expose -
|
|
* because they are known to be properly supported in our code.
|
|
* Also, usually, the low half of the MSRs (bits which must be 1) can
|
|
* be set to 0, meaning that L1 may turn off any of these bits. The
|
|
* reason is that if one of these bits is necessary, it will appear
|
|
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
|
|
* fields of vmcs01 and vmcs02, will turn these bits off - and
|
|
* nested_vmx_exit_reflected() will not pass related exits to L1.
|
|
* These rules have exceptions below.
|
|
*/
|
|
|
|
/* pin-based controls */
|
|
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
|
|
msrs->pinbased_ctls_low,
|
|
msrs->pinbased_ctls_high);
|
|
msrs->pinbased_ctls_low |=
|
|
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
msrs->pinbased_ctls_high &=
|
|
PIN_BASED_EXT_INTR_MASK |
|
|
PIN_BASED_NMI_EXITING |
|
|
PIN_BASED_VIRTUAL_NMIS |
|
|
(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
|
|
msrs->pinbased_ctls_high |=
|
|
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
|
|
PIN_BASED_VMX_PREEMPTION_TIMER;
|
|
|
|
/* exit controls */
|
|
rdmsr(MSR_IA32_VMX_EXIT_CTLS,
|
|
msrs->exit_ctls_low,
|
|
msrs->exit_ctls_high);
|
|
msrs->exit_ctls_low =
|
|
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
|
|
msrs->exit_ctls_high &=
|
|
#ifdef CONFIG_X86_64
|
|
VM_EXIT_HOST_ADDR_SPACE_SIZE |
|
|
#endif
|
|
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
|
|
msrs->exit_ctls_high |=
|
|
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
|
|
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
|
|
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
|
|
|
|
/* We support free control of debug control saving. */
|
|
msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
|
|
|
|
/* entry controls */
|
|
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
|
|
msrs->entry_ctls_low,
|
|
msrs->entry_ctls_high);
|
|
msrs->entry_ctls_low =
|
|
VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
msrs->entry_ctls_high &=
|
|
#ifdef CONFIG_X86_64
|
|
VM_ENTRY_IA32E_MODE |
|
|
#endif
|
|
VM_ENTRY_LOAD_IA32_PAT;
|
|
msrs->entry_ctls_high |=
|
|
(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
|
|
|
|
/* We support free control of debug control loading. */
|
|
msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
|
|
|
|
/* cpu-based controls */
|
|
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
|
|
msrs->procbased_ctls_low,
|
|
msrs->procbased_ctls_high);
|
|
msrs->procbased_ctls_low =
|
|
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
|
|
msrs->procbased_ctls_high &=
|
|
CPU_BASED_VIRTUAL_INTR_PENDING |
|
|
CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
|
|
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
|
|
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_CR3_STORE_EXITING |
|
|
#ifdef CONFIG_X86_64
|
|
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
|
|
#endif
|
|
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
|
|
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
|
|
CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
|
|
CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
|
|
CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
|
|
/*
|
|
* We can allow some features even when not supported by the
|
|
* hardware. For example, L1 can specify an MSR bitmap - and we
|
|
* can use it to avoid exits to L1 - even when L0 runs L2
|
|
* without MSR bitmaps.
|
|
*/
|
|
msrs->procbased_ctls_high |=
|
|
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
|
|
CPU_BASED_USE_MSR_BITMAPS;
|
|
|
|
/* We support free control of CR3 access interception. */
|
|
msrs->procbased_ctls_low &=
|
|
~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
|
|
|
|
/*
|
|
* secondary cpu-based controls. Do not include those that
|
|
* depend on CPUID bits, they are added later by vmx_cpuid_update.
|
|
*/
|
|
if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
|
|
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
msrs->secondary_ctls_low,
|
|
msrs->secondary_ctls_high);
|
|
|
|
msrs->secondary_ctls_low = 0;
|
|
msrs->secondary_ctls_high &=
|
|
SECONDARY_EXEC_DESC |
|
|
SECONDARY_EXEC_RDTSCP |
|
|
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
|
|
SECONDARY_EXEC_WBINVD_EXITING |
|
|
SECONDARY_EXEC_APIC_REGISTER_VIRT |
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
|
|
SECONDARY_EXEC_RDRAND_EXITING |
|
|
SECONDARY_EXEC_ENABLE_INVPCID |
|
|
SECONDARY_EXEC_RDSEED_EXITING |
|
|
SECONDARY_EXEC_XSAVES;
|
|
|
|
/*
|
|
* We can emulate "VMCS shadowing," even if the hardware
|
|
* doesn't support it.
|
|
*/
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_SHADOW_VMCS;
|
|
|
|
if (enable_ept) {
|
|
/* nested EPT: emulate EPT also to L1 */
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_ENABLE_EPT;
|
|
msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
|
|
VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
|
|
if (cpu_has_vmx_ept_execute_only())
|
|
msrs->ept_caps |=
|
|
VMX_EPT_EXECUTE_ONLY_BIT;
|
|
msrs->ept_caps &= ept_caps;
|
|
msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
|
|
VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
|
|
VMX_EPT_1GB_PAGE_BIT;
|
|
if (enable_ept_ad_bits) {
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_ENABLE_PML;
|
|
msrs->ept_caps |= VMX_EPT_AD_BIT;
|
|
}
|
|
}
|
|
|
|
if (cpu_has_vmx_vmfunc()) {
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_ENABLE_VMFUNC;
|
|
/*
|
|
* Advertise EPTP switching unconditionally
|
|
* since we emulate it
|
|
*/
|
|
if (enable_ept)
|
|
msrs->vmfunc_controls =
|
|
VMX_VMFUNC_EPTP_SWITCHING;
|
|
}
|
|
|
|
/*
|
|
* Old versions of KVM use the single-context version without
|
|
* checking for support, so declare that it is supported even
|
|
* though it is treated as global context. The alternative is
|
|
* not failing the single-context invvpid, and it is worse.
|
|
*/
|
|
if (enable_vpid) {
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_ENABLE_VPID;
|
|
msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
|
|
VMX_VPID_EXTENT_SUPPORTED_MASK;
|
|
}
|
|
|
|
if (enable_unrestricted_guest)
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_UNRESTRICTED_GUEST;
|
|
|
|
if (flexpriority_enabled)
|
|
msrs->secondary_ctls_high |=
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
|
|
|
|
/* miscellaneous data */
|
|
rdmsr(MSR_IA32_VMX_MISC,
|
|
msrs->misc_low,
|
|
msrs->misc_high);
|
|
msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
|
|
msrs->misc_low |=
|
|
MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
|
|
VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
|
|
VMX_MISC_ACTIVITY_HLT;
|
|
msrs->misc_high = 0;
|
|
|
|
/*
|
|
* This MSR reports some information about VMX support. We
|
|
* should return information about the VMX we emulate for the
|
|
* guest, and the VMCS structure we give it - not about the
|
|
* VMX support of the underlying hardware.
|
|
*/
|
|
msrs->basic =
|
|
VMCS12_REVISION |
|
|
VMX_BASIC_TRUE_CTLS |
|
|
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
|
|
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
|
|
|
|
if (cpu_has_vmx_basic_inout())
|
|
msrs->basic |= VMX_BASIC_INOUT;
|
|
|
|
/*
|
|
* These MSRs specify bits which the guest must keep fixed on
|
|
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
|
|
* We picked the standard core2 setting.
|
|
*/
|
|
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
|
|
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
|
|
msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
|
|
msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
|
|
|
|
/* These MSRs specify bits which the guest must keep fixed off. */
|
|
rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
|
|
rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
|
|
|
|
/* highest index: VMX_PREEMPTION_TIMER_VALUE */
|
|
msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
|
|
}
|
|
|
|
void nested_vmx_hardware_unsetup(void)
|
|
{
|
|
int i;
|
|
|
|
if (enable_shadow_vmcs) {
|
|
for (i = 0; i < VMX_BITMAP_NR; i++)
|
|
free_page((unsigned long)vmx_bitmap[i]);
|
|
}
|
|
}
|
|
|
|
__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
|
|
{
|
|
int i;
|
|
|
|
if (!cpu_has_vmx_shadow_vmcs())
|
|
enable_shadow_vmcs = 0;
|
|
if (enable_shadow_vmcs) {
|
|
for (i = 0; i < VMX_BITMAP_NR; i++) {
|
|
/*
|
|
* The vmx_bitmap is not tied to a VM and so should
|
|
* not be charged to a memcg.
|
|
*/
|
|
vmx_bitmap[i] = (unsigned long *)
|
|
__get_free_page(GFP_KERNEL);
|
|
if (!vmx_bitmap[i]) {
|
|
nested_vmx_hardware_unsetup();
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
init_vmcs_shadow_fields();
|
|
}
|
|
|
|
exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
|
|
exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
|
|
exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
|
|
exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
|
|
exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
|
|
exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
|
|
exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
|
|
exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
|
|
exit_handlers[EXIT_REASON_VMON] = handle_vmon,
|
|
exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
|
|
exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
|
|
exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
|
|
|
|
kvm_x86_ops->check_nested_events = vmx_check_nested_events;
|
|
kvm_x86_ops->get_nested_state = vmx_get_nested_state;
|
|
kvm_x86_ops->set_nested_state = vmx_set_nested_state;
|
|
kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
|
|
kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
|
|
kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
|
|
|
|
return 0;
|
|
}
|