linux/linux-5.4.31/arch/x86/kernel/apic/vector.c

1256 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Local APIC related interfaces to support IOAPIC, MSI, etc.
*
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
* Moved from arch/x86/kernel/apic/io_apic.c.
* Jiang Liu <jiang.liu@linux.intel.com>
* Enable support of hierarchical irqdomains
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <asm/irqdomain.h>
#include <asm/hw_irq.h>
#include <asm/traps.h>
#include <asm/apic.h>
#include <asm/i8259.h>
#include <asm/desc.h>
#include <asm/irq_remapping.h>
#include <asm/trace/irq_vectors.h>
struct apic_chip_data {
struct irq_cfg hw_irq_cfg;
unsigned int vector;
unsigned int prev_vector;
unsigned int cpu;
unsigned int prev_cpu;
unsigned int irq;
struct hlist_node clist;
unsigned int move_in_progress : 1,
is_managed : 1,
can_reserve : 1,
has_reserved : 1;
};
struct irq_domain *x86_vector_domain;
EXPORT_SYMBOL_GPL(x86_vector_domain);
static DEFINE_RAW_SPINLOCK(vector_lock);
static cpumask_var_t vector_searchmask;
static struct irq_chip lapic_controller;
static struct irq_matrix *vector_matrix;
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
#endif
void lock_vector_lock(void)
{
/* Used to the online set of cpus does not change
* during assign_irq_vector.
*/
raw_spin_lock(&vector_lock);
}
void unlock_vector_lock(void)
{
raw_spin_unlock(&vector_lock);
}
void init_irq_alloc_info(struct irq_alloc_info *info,
const struct cpumask *mask)
{
memset(info, 0, sizeof(*info));
info->mask = mask;
}
void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
{
if (src)
*dst = *src;
else
memset(dst, 0, sizeof(*dst));
}
static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
{
if (!irqd)
return NULL;
while (irqd->parent_data)
irqd = irqd->parent_data;
return irqd->chip_data;
}
struct irq_cfg *irqd_cfg(struct irq_data *irqd)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
return apicd ? &apicd->hw_irq_cfg : NULL;
}
EXPORT_SYMBOL_GPL(irqd_cfg);
struct irq_cfg *irq_cfg(unsigned int irq)
{
return irqd_cfg(irq_get_irq_data(irq));
}
static struct apic_chip_data *alloc_apic_chip_data(int node)
{
struct apic_chip_data *apicd;
apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
if (apicd)
INIT_HLIST_NODE(&apicd->clist);
return apicd;
}
static void free_apic_chip_data(struct apic_chip_data *apicd)
{
kfree(apicd);
}
static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
unsigned int cpu)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
lockdep_assert_held(&vector_lock);
apicd->hw_irq_cfg.vector = vector;
apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
trace_vector_config(irqd->irq, vector, cpu,
apicd->hw_irq_cfg.dest_apicid);
}
static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
unsigned int newcpu)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
struct irq_desc *desc = irq_data_to_desc(irqd);
bool managed = irqd_affinity_is_managed(irqd);
lockdep_assert_held(&vector_lock);
trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
apicd->cpu);
/*
* If there is no vector associated or if the associated vector is
* the shutdown vector, which is associated to make PCI/MSI
* shutdown mode work, then there is nothing to release. Clear out
* prev_vector for this and the offlined target case.
*/
apicd->prev_vector = 0;
if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
goto setnew;
/*
* If the target CPU of the previous vector is online, then mark
* the vector as move in progress and store it for cleanup when the
* first interrupt on the new vector arrives. If the target CPU is
* offline then the regular release mechanism via the cleanup
* vector is not possible and the vector can be immediately freed
* in the underlying matrix allocator.
*/
if (cpu_online(apicd->cpu)) {
apicd->move_in_progress = true;
apicd->prev_vector = apicd->vector;
apicd->prev_cpu = apicd->cpu;
} else {
irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
managed);
}
setnew:
apicd->vector = newvec;
apicd->cpu = newcpu;
BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
per_cpu(vector_irq, newcpu)[newvec] = desc;
}
static void vector_assign_managed_shutdown(struct irq_data *irqd)
{
unsigned int cpu = cpumask_first(cpu_online_mask);
apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
}
static int reserve_managed_vector(struct irq_data *irqd)
{
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
struct apic_chip_data *apicd = apic_chip_data(irqd);
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&vector_lock, flags);
apicd->is_managed = true;
ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
raw_spin_unlock_irqrestore(&vector_lock, flags);
trace_vector_reserve_managed(irqd->irq, ret);
return ret;
}
static void reserve_irq_vector_locked(struct irq_data *irqd)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
irq_matrix_reserve(vector_matrix);
apicd->can_reserve = true;
apicd->has_reserved = true;
irqd_set_can_reserve(irqd);
trace_vector_reserve(irqd->irq, 0);
vector_assign_managed_shutdown(irqd);
}
static int reserve_irq_vector(struct irq_data *irqd)
{
unsigned long flags;
raw_spin_lock_irqsave(&vector_lock, flags);
reserve_irq_vector_locked(irqd);
raw_spin_unlock_irqrestore(&vector_lock, flags);
return 0;
}
static int
assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
bool resvd = apicd->has_reserved;
unsigned int cpu = apicd->cpu;
int vector = apicd->vector;
lockdep_assert_held(&vector_lock);
/*
* If the current target CPU is online and in the new requested
* affinity mask, there is no point in moving the interrupt from
* one CPU to another.
*/
if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
return 0;
/*
* Careful here. @apicd might either have move_in_progress set or
* be enqueued for cleanup. Assigning a new vector would either
* leave a stale vector on some CPU around or in case of a pending
* cleanup corrupt the hlist.
*/
if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
return -EBUSY;
vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
trace_vector_alloc(irqd->irq, vector, resvd, vector);
if (vector < 0)
return vector;
apic_update_vector(irqd, vector, cpu);
apic_update_irq_cfg(irqd, vector, cpu);
return 0;
}
static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
{
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&vector_lock, flags);
cpumask_and(vector_searchmask, dest, cpu_online_mask);
ret = assign_vector_locked(irqd, vector_searchmask);
raw_spin_unlock_irqrestore(&vector_lock, flags);
return ret;
}
static int assign_irq_vector_any_locked(struct irq_data *irqd)
{
/* Get the affinity mask - either irq_default_affinity or (user) set */
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
int node = irq_data_get_node(irqd);
if (node == NUMA_NO_NODE)
goto all;
/* Try the intersection of @affmsk and node mask */
cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
if (!assign_vector_locked(irqd, vector_searchmask))
return 0;
/* Try the node mask */
if (!assign_vector_locked(irqd, cpumask_of_node(node)))
return 0;
all:
/* Try the full affinity mask */
cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
if (!assign_vector_locked(irqd, vector_searchmask))
return 0;
/* Try the full online mask */
return assign_vector_locked(irqd, cpu_online_mask);
}
static int
assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
{
if (irqd_affinity_is_managed(irqd))
return reserve_managed_vector(irqd);
if (info->mask)
return assign_irq_vector(irqd, info->mask);
/*
* Make only a global reservation with no guarantee. A real vector
* is associated at activation time.
*/
return reserve_irq_vector(irqd);
}
static int
assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
{
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
struct apic_chip_data *apicd = apic_chip_data(irqd);
int vector, cpu;
cpumask_and(vector_searchmask, dest, affmsk);
/* set_affinity might call here for nothing */
if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
return 0;
vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
&cpu);
trace_vector_alloc_managed(irqd->irq, vector, vector);
if (vector < 0)
return vector;
apic_update_vector(irqd, vector, cpu);
apic_update_irq_cfg(irqd, vector, cpu);
return 0;
}
static void clear_irq_vector(struct irq_data *irqd)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
bool managed = irqd_affinity_is_managed(irqd);
unsigned int vector = apicd->vector;
lockdep_assert_held(&vector_lock);
if (!vector)
return;
trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
apicd->prev_cpu);
per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
apicd->vector = 0;
/* Clean up move in progress */
vector = apicd->prev_vector;
if (!vector)
return;
per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
apicd->prev_vector = 0;
apicd->move_in_progress = 0;
hlist_del_init(&apicd->clist);
}
static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
unsigned long flags;
trace_vector_deactivate(irqd->irq, apicd->is_managed,
apicd->can_reserve, false);
/* Regular fixed assigned interrupt */
if (!apicd->is_managed && !apicd->can_reserve)
return;
/* If the interrupt has a global reservation, nothing to do */
if (apicd->has_reserved)
return;
raw_spin_lock_irqsave(&vector_lock, flags);
clear_irq_vector(irqd);
if (apicd->can_reserve)
reserve_irq_vector_locked(irqd);
else
vector_assign_managed_shutdown(irqd);
raw_spin_unlock_irqrestore(&vector_lock, flags);
}
static int activate_reserved(struct irq_data *irqd)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
int ret;
ret = assign_irq_vector_any_locked(irqd);
if (!ret) {
apicd->has_reserved = false;
/*
* Core might have disabled reservation mode after
* allocating the irq descriptor. Ideally this should
* happen before allocation time, but that would require
* completely convoluted ways of transporting that
* information.
*/
if (!irqd_can_reserve(irqd))
apicd->can_reserve = false;
}
/*
* Check to ensure that the effective affinity mask is a subset
* the user supplied affinity mask, and warn the user if it is not
*/
if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
irq_data_get_affinity_mask(irqd))) {
pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
irqd->irq);
}
return ret;
}
static int activate_managed(struct irq_data *irqd)
{
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
int ret;
cpumask_and(vector_searchmask, dest, cpu_online_mask);
if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
/* Something in the core code broke! Survive gracefully */
pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
return -EINVAL;
}
ret = assign_managed_vector(irqd, vector_searchmask);
/*
* This should not happen. The vector reservation got buggered. Handle
* it gracefully.
*/
if (WARN_ON_ONCE(ret < 0)) {
pr_err("Managed startup irq %u, no vector available\n",
irqd->irq);
}
return ret;
}
static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
bool reserve)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
unsigned long flags;
int ret = 0;
trace_vector_activate(irqd->irq, apicd->is_managed,
apicd->can_reserve, reserve);
/* Nothing to do for fixed assigned vectors */
if (!apicd->can_reserve && !apicd->is_managed)
return 0;
raw_spin_lock_irqsave(&vector_lock, flags);
if (reserve || irqd_is_managed_and_shutdown(irqd))
vector_assign_managed_shutdown(irqd);
else if (apicd->is_managed)
ret = activate_managed(irqd);
else if (apicd->has_reserved)
ret = activate_reserved(irqd);
raw_spin_unlock_irqrestore(&vector_lock, flags);
return ret;
}
static void vector_free_reserved_and_managed(struct irq_data *irqd)
{
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
struct apic_chip_data *apicd = apic_chip_data(irqd);
trace_vector_teardown(irqd->irq, apicd->is_managed,
apicd->has_reserved);
if (apicd->has_reserved)
irq_matrix_remove_reserved(vector_matrix);
if (apicd->is_managed)
irq_matrix_remove_managed(vector_matrix, dest);
}
static void x86_vector_free_irqs(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct apic_chip_data *apicd;
struct irq_data *irqd;
unsigned long flags;
int i;
for (i = 0; i < nr_irqs; i++) {
irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
if (irqd && irqd->chip_data) {
raw_spin_lock_irqsave(&vector_lock, flags);
clear_irq_vector(irqd);
vector_free_reserved_and_managed(irqd);
apicd = irqd->chip_data;
irq_domain_reset_irq_data(irqd);
raw_spin_unlock_irqrestore(&vector_lock, flags);
free_apic_chip_data(apicd);
}
}
}
static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
struct apic_chip_data *apicd)
{
unsigned long flags;
bool realloc = false;
apicd->vector = ISA_IRQ_VECTOR(virq);
apicd->cpu = 0;
raw_spin_lock_irqsave(&vector_lock, flags);
/*
* If the interrupt is activated, then it must stay at this vector
* position. That's usually the timer interrupt (0).
*/
if (irqd_is_activated(irqd)) {
trace_vector_setup(virq, true, 0);
apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
} else {
/* Release the vector */
apicd->can_reserve = true;
irqd_set_can_reserve(irqd);
clear_irq_vector(irqd);
realloc = true;
}
raw_spin_unlock_irqrestore(&vector_lock, flags);
return realloc;
}
static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
struct apic_chip_data *apicd;
struct irq_data *irqd;
int i, err, node;
if (disable_apic)
return -ENXIO;
/* Currently vector allocator can't guarantee contiguous allocations */
if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
return -ENOSYS;
for (i = 0; i < nr_irqs; i++) {
irqd = irq_domain_get_irq_data(domain, virq + i);
BUG_ON(!irqd);
node = irq_data_get_node(irqd);
WARN_ON_ONCE(irqd->chip_data);
apicd = alloc_apic_chip_data(node);
if (!apicd) {
err = -ENOMEM;
goto error;
}
apicd->irq = virq + i;
irqd->chip = &lapic_controller;
irqd->chip_data = apicd;
irqd->hwirq = virq + i;
irqd_set_single_target(irqd);
/*
* Legacy vectors are already assigned when the IOAPIC
* takes them over. They stay on the same vector. This is
* required for check_timer() to work correctly as it might
* switch back to legacy mode. Only update the hardware
* config.
*/
if (info->flags & X86_IRQ_ALLOC_LEGACY) {
if (!vector_configure_legacy(virq + i, irqd, apicd))
continue;
}
err = assign_irq_vector_policy(irqd, info);
trace_vector_setup(virq + i, false, err);
if (err) {
irqd->chip_data = NULL;
free_apic_chip_data(apicd);
goto error;
}
}
return 0;
error:
x86_vector_free_irqs(domain, virq, i);
return err;
}
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
struct irq_data *irqd, int ind)
{
struct apic_chip_data apicd;
unsigned long flags;
int irq;
if (!irqd) {
irq_matrix_debug_show(m, vector_matrix, ind);
return;
}
irq = irqd->irq;
if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
return;
}
if (!irqd->chip_data) {
seq_printf(m, "%*sVector: Not assigned\n", ind, "");
return;
}
raw_spin_lock_irqsave(&vector_lock, flags);
memcpy(&apicd, irqd->chip_data, sizeof(apicd));
raw_spin_unlock_irqrestore(&vector_lock, flags);
seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
if (apicd.prev_vector) {
seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
}
seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0);
seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0);
seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0);
seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist));
}
#endif
static const struct irq_domain_ops x86_vector_domain_ops = {
.alloc = x86_vector_alloc_irqs,
.free = x86_vector_free_irqs,
.activate = x86_vector_activate,
.deactivate = x86_vector_deactivate,
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
.debug_show = x86_vector_debug_show,
#endif
};
int __init arch_probe_nr_irqs(void)
{
int nr;
if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
nr_irqs = NR_VECTORS * nr_cpu_ids;
nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
#if defined(CONFIG_PCI_MSI)
/*
* for MSI and HT dyn irq
*/
if (gsi_top <= NR_IRQS_LEGACY)
nr += 8 * nr_cpu_ids;
else
nr += gsi_top * 16;
#endif
if (nr < nr_irqs)
nr_irqs = nr;
/*
* We don't know if PIC is present at this point so we need to do
* probe() to get the right number of legacy IRQs.
*/
return legacy_pic->probe();
}
void lapic_assign_legacy_vector(unsigned int irq, bool replace)
{
/*
* Use assign system here so it wont get accounted as allocated
* and moveable in the cpu hotplug check and it prevents managed
* irq reservation from touching it.
*/
irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
}
void __init lapic_assign_system_vectors(void)
{
unsigned int i, vector = 0;
for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
irq_matrix_assign_system(vector_matrix, vector, false);
if (nr_legacy_irqs() > 1)
lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
/* System vectors are reserved, online it */
irq_matrix_online(vector_matrix);
/* Mark the preallocated legacy interrupts */
for (i = 0; i < nr_legacy_irqs(); i++) {
if (i != PIC_CASCADE_IR)
irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
}
}
int __init arch_early_irq_init(void)
{
struct fwnode_handle *fn;
fn = irq_domain_alloc_named_fwnode("VECTOR");
BUG_ON(!fn);
x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
NULL);
BUG_ON(x86_vector_domain == NULL);
irq_domain_free_fwnode(fn);
irq_set_default_host(x86_vector_domain);
arch_init_msi_domain(x86_vector_domain);
BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
/*
* Allocate the vector matrix allocator data structure and limit the
* search area.
*/
vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
FIRST_SYSTEM_VECTOR);
BUG_ON(!vector_matrix);
return arch_early_ioapic_init();
}
#ifdef CONFIG_SMP
static struct irq_desc *__setup_vector_irq(int vector)
{
int isairq = vector - ISA_IRQ_VECTOR(0);
/* Check whether the irq is in the legacy space */
if (isairq < 0 || isairq >= nr_legacy_irqs())
return VECTOR_UNUSED;
/* Check whether the irq is handled by the IOAPIC */
if (test_bit(isairq, &io_apic_irqs))
return VECTOR_UNUSED;
return irq_to_desc(isairq);
}
/* Online the local APIC infrastructure and initialize the vectors */
void lapic_online(void)
{
unsigned int vector;
lockdep_assert_held(&vector_lock);
/* Online the vector matrix array for this CPU */
irq_matrix_online(vector_matrix);
/*
* The interrupt affinity logic never targets interrupts to offline
* CPUs. The exception are the legacy PIC interrupts. In general
* they are only targeted to CPU0, but depending on the platform
* they can be distributed to any online CPU in hardware. The
* kernel has no influence on that. So all active legacy vectors
* must be installed on all CPUs. All non legacy interrupts can be
* cleared.
*/
for (vector = 0; vector < NR_VECTORS; vector++)
this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
}
void lapic_offline(void)
{
lock_vector_lock();
irq_matrix_offline(vector_matrix);
unlock_vector_lock();
}
static int apic_set_affinity(struct irq_data *irqd,
const struct cpumask *dest, bool force)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
int err;
/*
* Core code can call here for inactive interrupts. For inactive
* interrupts which use managed or reservation mode there is no
* point in going through the vector assignment right now as the
* activation will assign a vector which fits the destination
* cpumask. Let the core code store the destination mask and be
* done with it.
*/
if (!irqd_is_activated(irqd) &&
(apicd->is_managed || apicd->can_reserve))
return IRQ_SET_MASK_OK;
raw_spin_lock(&vector_lock);
cpumask_and(vector_searchmask, dest, cpu_online_mask);
if (irqd_affinity_is_managed(irqd))
err = assign_managed_vector(irqd, vector_searchmask);
else
err = assign_vector_locked(irqd, vector_searchmask);
raw_spin_unlock(&vector_lock);
return err ? err : IRQ_SET_MASK_OK;
}
#else
# define apic_set_affinity NULL
#endif
static int apic_retrigger_irq(struct irq_data *irqd)
{
struct apic_chip_data *apicd = apic_chip_data(irqd);
unsigned long flags;
raw_spin_lock_irqsave(&vector_lock, flags);
apic->send_IPI(apicd->cpu, apicd->vector);
raw_spin_unlock_irqrestore(&vector_lock, flags);
return 1;
}
void apic_ack_irq(struct irq_data *irqd)
{
irq_move_irq(irqd);
ack_APIC_irq();
}
void apic_ack_edge(struct irq_data *irqd)
{
irq_complete_move(irqd_cfg(irqd));
apic_ack_irq(irqd);
}
static struct irq_chip lapic_controller = {
.name = "APIC",
.irq_ack = apic_ack_edge,
.irq_set_affinity = apic_set_affinity,
.irq_retrigger = apic_retrigger_irq,
};
#ifdef CONFIG_SMP
static void free_moved_vector(struct apic_chip_data *apicd)
{
unsigned int vector = apicd->prev_vector;
unsigned int cpu = apicd->prev_cpu;
bool managed = apicd->is_managed;
/*
* This should never happen. Managed interrupts are not
* migrated except on CPU down, which does not involve the
* cleanup vector. But try to keep the accounting correct
* nevertheless.
*/
WARN_ON_ONCE(managed);
trace_vector_free_moved(apicd->irq, cpu, vector, managed);
irq_matrix_free(vector_matrix, cpu, vector, managed);
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
hlist_del_init(&apicd->clist);
apicd->prev_vector = 0;
apicd->move_in_progress = 0;
}
asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
{
struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
struct apic_chip_data *apicd;
struct hlist_node *tmp;
entering_ack_irq();
/* Prevent vectors vanishing under us */
raw_spin_lock(&vector_lock);
hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
unsigned int irr, vector = apicd->prev_vector;
/*
* Paranoia: Check if the vector that needs to be cleaned
* up is registered at the APICs IRR. If so, then this is
* not the best time to clean it up. Clean it up in the
* next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
* to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
* priority external vector, so on return from this
* interrupt the device interrupt will happen first.
*/
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
if (irr & (1U << (vector % 32))) {
apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
continue;
}
free_moved_vector(apicd);
}
raw_spin_unlock(&vector_lock);
exiting_irq();
}
static void __send_cleanup_vector(struct apic_chip_data *apicd)
{
unsigned int cpu;
raw_spin_lock(&vector_lock);
apicd->move_in_progress = 0;
cpu = apicd->prev_cpu;
if (cpu_online(cpu)) {
hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
} else {
apicd->prev_vector = 0;
}
raw_spin_unlock(&vector_lock);
}
void send_cleanup_vector(struct irq_cfg *cfg)
{
struct apic_chip_data *apicd;
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
if (apicd->move_in_progress)
__send_cleanup_vector(apicd);
}
static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
{
struct apic_chip_data *apicd;
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
if (likely(!apicd->move_in_progress))
return;
if (vector == apicd->vector && apicd->cpu == smp_processor_id())
__send_cleanup_vector(apicd);
}
void irq_complete_move(struct irq_cfg *cfg)
{
__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
}
/*
* Called from fixup_irqs() with @desc->lock held and interrupts disabled.
*/
void irq_force_complete_move(struct irq_desc *desc)
{
struct apic_chip_data *apicd;
struct irq_data *irqd;
unsigned int vector;
/*
* The function is called for all descriptors regardless of which
* irqdomain they belong to. For example if an IRQ is provided by
* an irq_chip as part of a GPIO driver, the chip data for that
* descriptor is specific to the irq_chip in question.
*
* Check first that the chip_data is what we expect
* (apic_chip_data) before touching it any further.
*/
irqd = irq_domain_get_irq_data(x86_vector_domain,
irq_desc_get_irq(desc));
if (!irqd)
return;
raw_spin_lock(&vector_lock);
apicd = apic_chip_data(irqd);
if (!apicd)
goto unlock;
/*
* If prev_vector is empty, no action required.
*/
vector = apicd->prev_vector;
if (!vector)
goto unlock;
/*
* This is tricky. If the cleanup of the old vector has not been
* done yet, then the following setaffinity call will fail with
* -EBUSY. This can leave the interrupt in a stale state.
*
* All CPUs are stuck in stop machine with interrupts disabled so
* calling __irq_complete_move() would be completely pointless.
*
* 1) The interrupt is in move_in_progress state. That means that we
* have not seen an interrupt since the io_apic was reprogrammed to
* the new vector.
*
* 2) The interrupt has fired on the new vector, but the cleanup IPIs
* have not been processed yet.
*/
if (apicd->move_in_progress) {
/*
* In theory there is a race:
*
* set_ioapic(new_vector) <-- Interrupt is raised before update
* is effective, i.e. it's raised on
* the old vector.
*
* So if the target cpu cannot handle that interrupt before
* the old vector is cleaned up, we get a spurious interrupt
* and in the worst case the ioapic irq line becomes stale.
*
* But in case of cpu hotplug this should be a non issue
* because if the affinity update happens right before all
* cpus rendevouz in stop machine, there is no way that the
* interrupt can be blocked on the target cpu because all cpus
* loops first with interrupts enabled in stop machine, so the
* old vector is not yet cleaned up when the interrupt fires.
*
* So the only way to run into this issue is if the delivery
* of the interrupt on the apic/system bus would be delayed
* beyond the point where the target cpu disables interrupts
* in stop machine. I doubt that it can happen, but at least
* there is a theroretical chance. Virtualization might be
* able to expose this, but AFAICT the IOAPIC emulation is not
* as stupid as the real hardware.
*
* Anyway, there is nothing we can do about that at this point
* w/o refactoring the whole fixup_irq() business completely.
* We print at least the irq number and the old vector number,
* so we have the necessary information when a problem in that
* area arises.
*/
pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
irqd->irq, vector);
}
free_moved_vector(apicd);
unlock:
raw_spin_unlock(&vector_lock);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Note, this is not accurate accounting, but at least good enough to
* prevent that the actual interrupt move will run out of vectors.
*/
int lapic_can_unplug_cpu(void)
{
unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
int ret = 0;
raw_spin_lock(&vector_lock);
tomove = irq_matrix_allocated(vector_matrix);
avl = irq_matrix_available(vector_matrix, true);
if (avl < tomove) {
pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
cpu, tomove, avl);
ret = -ENOSPC;
goto out;
}
rsvd = irq_matrix_reserved(vector_matrix);
if (avl < rsvd) {
pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
rsvd, avl);
}
out:
raw_spin_unlock(&vector_lock);
return ret;
}
#endif /* HOTPLUG_CPU */
#endif /* SMP */
static void __init print_APIC_field(int base)
{
int i;
printk(KERN_DEBUG);
for (i = 0; i < 8; i++)
pr_cont("%08x", apic_read(base + i*0x10));
pr_cont("\n");
}
static void __init print_local_APIC(void *dummy)
{
unsigned int i, v, ver, maxlvt;
u64 icr;
pr_debug("printing local APIC contents on CPU#%d/%d:\n",
smp_processor_id(), hard_smp_processor_id());
v = apic_read(APIC_ID);
pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
v = apic_read(APIC_LVR);
pr_info("... APIC VERSION: %08x\n", v);
ver = GET_APIC_VERSION(v);
maxlvt = lapic_get_maxlvt();
v = apic_read(APIC_TASKPRI);
pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
/* !82489DX */
if (APIC_INTEGRATED(ver)) {
if (!APIC_XAPIC(ver)) {
v = apic_read(APIC_ARBPRI);
pr_debug("... APIC ARBPRI: %08x (%02x)\n",
v, v & APIC_ARBPRI_MASK);
}
v = apic_read(APIC_PROCPRI);
pr_debug("... APIC PROCPRI: %08x\n", v);
}
/*
* Remote read supported only in the 82489DX and local APIC for
* Pentium processors.
*/
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
v = apic_read(APIC_RRR);
pr_debug("... APIC RRR: %08x\n", v);
}
v = apic_read(APIC_LDR);
pr_debug("... APIC LDR: %08x\n", v);
if (!x2apic_enabled()) {
v = apic_read(APIC_DFR);
pr_debug("... APIC DFR: %08x\n", v);
}
v = apic_read(APIC_SPIV);
pr_debug("... APIC SPIV: %08x\n", v);
pr_debug("... APIC ISR field:\n");
print_APIC_field(APIC_ISR);
pr_debug("... APIC TMR field:\n");
print_APIC_field(APIC_TMR);
pr_debug("... APIC IRR field:\n");
print_APIC_field(APIC_IRR);
/* !82489DX */
if (APIC_INTEGRATED(ver)) {
/* Due to the Pentium erratum 3AP. */
if (maxlvt > 3)
apic_write(APIC_ESR, 0);
v = apic_read(APIC_ESR);
pr_debug("... APIC ESR: %08x\n", v);
}
icr = apic_icr_read();
pr_debug("... APIC ICR: %08x\n", (u32)icr);
pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
v = apic_read(APIC_LVTT);
pr_debug("... APIC LVTT: %08x\n", v);
if (maxlvt > 3) {
/* PC is LVT#4. */
v = apic_read(APIC_LVTPC);
pr_debug("... APIC LVTPC: %08x\n", v);
}
v = apic_read(APIC_LVT0);
pr_debug("... APIC LVT0: %08x\n", v);
v = apic_read(APIC_LVT1);
pr_debug("... APIC LVT1: %08x\n", v);
if (maxlvt > 2) {
/* ERR is LVT#3. */
v = apic_read(APIC_LVTERR);
pr_debug("... APIC LVTERR: %08x\n", v);
}
v = apic_read(APIC_TMICT);
pr_debug("... APIC TMICT: %08x\n", v);
v = apic_read(APIC_TMCCT);
pr_debug("... APIC TMCCT: %08x\n", v);
v = apic_read(APIC_TDCR);
pr_debug("... APIC TDCR: %08x\n", v);
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
v = apic_read(APIC_EFEAT);
maxlvt = (v >> 16) & 0xff;
pr_debug("... APIC EFEAT: %08x\n", v);
v = apic_read(APIC_ECTRL);
pr_debug("... APIC ECTRL: %08x\n", v);
for (i = 0; i < maxlvt; i++) {
v = apic_read(APIC_EILVTn(i));
pr_debug("... APIC EILVT%d: %08x\n", i, v);
}
}
pr_cont("\n");
}
static void __init print_local_APICs(int maxcpu)
{
int cpu;
if (!maxcpu)
return;
preempt_disable();
for_each_online_cpu(cpu) {
if (cpu >= maxcpu)
break;
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
}
preempt_enable();
}
static void __init print_PIC(void)
{
unsigned int v;
unsigned long flags;
if (!nr_legacy_irqs())
return;
pr_debug("\nprinting PIC contents\n");
raw_spin_lock_irqsave(&i8259A_lock, flags);
v = inb(0xa1) << 8 | inb(0x21);
pr_debug("... PIC IMR: %04x\n", v);
v = inb(0xa0) << 8 | inb(0x20);
pr_debug("... PIC IRR: %04x\n", v);
outb(0x0b, 0xa0);
outb(0x0b, 0x20);
v = inb(0xa0) << 8 | inb(0x20);
outb(0x0a, 0xa0);
outb(0x0a, 0x20);
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
pr_debug("... PIC ISR: %04x\n", v);
v = inb(0x4d1) << 8 | inb(0x4d0);
pr_debug("... PIC ELCR: %04x\n", v);
}
static int show_lapic __initdata = 1;
static __init int setup_show_lapic(char *arg)
{
int num = -1;
if (strcmp(arg, "all") == 0) {
show_lapic = CONFIG_NR_CPUS;
} else {
get_option(&arg, &num);
if (num >= 0)
show_lapic = num;
}
return 1;
}
__setup("show_lapic=", setup_show_lapic);
static int __init print_ICs(void)
{
if (apic_verbosity == APIC_QUIET)
return 0;
print_PIC();
/* don't print out if apic is not there */
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
return 0;
print_local_APICs(show_lapic);
print_IO_APICs();
return 0;
}
late_initcall(print_ICs);