3982 lines
107 KiB
C
3982 lines
107 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Support PCI/PCIe on PowerNV platforms
|
|
*
|
|
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/msi_bitmap.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/tce.h>
|
|
#include <asm/xics.h>
|
|
#include <asm/debugfs.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/pnv-pci.h>
|
|
#include <asm/mmzone.h>
|
|
|
|
#include <misc/cxl-base.h>
|
|
|
|
#include "powernv.h"
|
|
#include "pci.h"
|
|
#include "../../../../drivers/pci/pci.h"
|
|
|
|
#define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
|
|
#define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
|
|
#define PNV_IODA1_DMA32_SEGSIZE 0x10000000
|
|
|
|
static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
|
|
"NPU_OCAPI" };
|
|
|
|
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
|
|
|
|
void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
|
|
const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
char pfix[32];
|
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
if (pe->flags & PNV_IODA_PE_DEV)
|
|
strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
|
|
else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
|
|
sprintf(pfix, "%04x:%02x ",
|
|
pci_domain_nr(pe->pbus), pe->pbus->number);
|
|
#ifdef CONFIG_PCI_IOV
|
|
else if (pe->flags & PNV_IODA_PE_VF)
|
|
sprintf(pfix, "%04x:%02x:%2x.%d",
|
|
pci_domain_nr(pe->parent_dev->bus),
|
|
(pe->rid & 0xff00) >> 8,
|
|
PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
|
|
#endif /* CONFIG_PCI_IOV*/
|
|
|
|
printk("%spci %s: [PE# %.2x] %pV",
|
|
level, pfix, pe->pe_number, &vaf);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
static bool pnv_iommu_bypass_disabled __read_mostly;
|
|
static bool pci_reset_phbs __read_mostly;
|
|
|
|
static int __init iommu_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
while (*str) {
|
|
if (!strncmp(str, "nobypass", 8)) {
|
|
pnv_iommu_bypass_disabled = true;
|
|
pr_info("PowerNV: IOMMU bypass window disabled.\n");
|
|
break;
|
|
}
|
|
str += strcspn(str, ",");
|
|
if (*str == ',')
|
|
str++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("iommu", iommu_setup);
|
|
|
|
static int __init pci_reset_phbs_setup(char *str)
|
|
{
|
|
pci_reset_phbs = true;
|
|
return 0;
|
|
}
|
|
|
|
early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
|
|
|
|
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
|
|
{
|
|
/*
|
|
* WARNING: We cannot rely on the resource flags. The Linux PCI
|
|
* allocation code sometimes decides to put a 64-bit prefetchable
|
|
* BAR in the 32-bit window, so we have to compare the addresses.
|
|
*
|
|
* For simplicity we only test resource start.
|
|
*/
|
|
return (r->start >= phb->ioda.m64_base &&
|
|
r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
|
|
}
|
|
|
|
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
|
|
{
|
|
unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
|
|
|
|
return (resource_flags & flags) == flags;
|
|
}
|
|
|
|
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
|
|
{
|
|
s64 rc;
|
|
|
|
phb->ioda.pe_array[pe_no].phb = phb;
|
|
phb->ioda.pe_array[pe_no].pe_number = pe_no;
|
|
|
|
/*
|
|
* Clear the PE frozen state as it might be put into frozen state
|
|
* in the last PCI remove path. It's not harmful to do so when the
|
|
* PE is already in unfrozen state.
|
|
*/
|
|
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
|
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
|
if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
|
|
pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
|
|
__func__, rc, phb->hose->global_number, pe_no);
|
|
|
|
return &phb->ioda.pe_array[pe_no];
|
|
}
|
|
|
|
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
|
|
{
|
|
if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
|
|
pr_warn("%s: Invalid PE %x on PHB#%x\n",
|
|
__func__, pe_no, phb->hose->global_number);
|
|
return;
|
|
}
|
|
|
|
if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
|
|
pr_debug("%s: PE %x was reserved on PHB#%x\n",
|
|
__func__, pe_no, phb->hose->global_number);
|
|
|
|
pnv_ioda_init_pe(phb, pe_no);
|
|
}
|
|
|
|
static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
|
|
{
|
|
long pe;
|
|
|
|
for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
|
|
if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
|
|
return pnv_ioda_init_pe(phb, pe);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb;
|
|
unsigned int pe_num = pe->pe_number;
|
|
|
|
WARN_ON(pe->pdev);
|
|
WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
|
|
kfree(pe->npucomp);
|
|
memset(pe, 0, sizeof(struct pnv_ioda_pe));
|
|
clear_bit(pe_num, phb->ioda.pe_alloc);
|
|
}
|
|
|
|
/* The default M64 BAR is shared by all PEs */
|
|
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
|
|
{
|
|
const char *desc;
|
|
struct resource *r;
|
|
s64 rc;
|
|
|
|
/* Configure the default M64 BAR */
|
|
rc = opal_pci_set_phb_mem_window(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE,
|
|
phb->ioda.m64_bar_idx,
|
|
phb->ioda.m64_base,
|
|
0, /* unused */
|
|
phb->ioda.m64_size);
|
|
if (rc != OPAL_SUCCESS) {
|
|
desc = "configuring";
|
|
goto fail;
|
|
}
|
|
|
|
/* Enable the default M64 BAR */
|
|
rc = opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE,
|
|
phb->ioda.m64_bar_idx,
|
|
OPAL_ENABLE_M64_SPLIT);
|
|
if (rc != OPAL_SUCCESS) {
|
|
desc = "enabling";
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Exclude the segments for reserved and root bus PE, which
|
|
* are first or last two PEs.
|
|
*/
|
|
r = &phb->hose->mem_resources[1];
|
|
if (phb->ioda.reserved_pe_idx == 0)
|
|
r->start += (2 * phb->ioda.m64_segsize);
|
|
else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
|
|
r->end -= (2 * phb->ioda.m64_segsize);
|
|
else
|
|
pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
|
|
phb->ioda.reserved_pe_idx);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
pr_warn(" Failure %lld %s M64 BAR#%d\n",
|
|
rc, desc, phb->ioda.m64_bar_idx);
|
|
opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE,
|
|
phb->ioda.m64_bar_idx,
|
|
OPAL_DISABLE_M64);
|
|
return -EIO;
|
|
}
|
|
|
|
static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
|
|
unsigned long *pe_bitmap)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct resource *r;
|
|
resource_size_t base, sgsz, start, end;
|
|
int segno, i;
|
|
|
|
base = phb->ioda.m64_base;
|
|
sgsz = phb->ioda.m64_segsize;
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
|
|
r = &pdev->resource[i];
|
|
if (!r->parent || !pnv_pci_is_m64(phb, r))
|
|
continue;
|
|
|
|
start = _ALIGN_DOWN(r->start - base, sgsz);
|
|
end = _ALIGN_UP(r->end - base, sgsz);
|
|
for (segno = start / sgsz; segno < end / sgsz; segno++) {
|
|
if (pe_bitmap)
|
|
set_bit(segno, pe_bitmap);
|
|
else
|
|
pnv_ioda_reserve_pe(phb, segno);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int pnv_ioda1_init_m64(struct pnv_phb *phb)
|
|
{
|
|
struct resource *r;
|
|
int index;
|
|
|
|
/*
|
|
* There are 16 M64 BARs, each of which has 8 segments. So
|
|
* there are as many M64 segments as the maximum number of
|
|
* PEs, which is 128.
|
|
*/
|
|
for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
|
|
unsigned long base, segsz = phb->ioda.m64_segsize;
|
|
int64_t rc;
|
|
|
|
base = phb->ioda.m64_base +
|
|
index * PNV_IODA1_M64_SEGS * segsz;
|
|
rc = opal_pci_set_phb_mem_window(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE, index, base, 0,
|
|
PNV_IODA1_M64_SEGS * segsz);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
|
|
rc, phb->hose->global_number, index);
|
|
goto fail;
|
|
}
|
|
|
|
rc = opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE, index,
|
|
OPAL_ENABLE_M64_SPLIT);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
|
|
rc, phb->hose->global_number, index);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Exclude the segments for reserved and root bus PE, which
|
|
* are first or last two PEs.
|
|
*/
|
|
r = &phb->hose->mem_resources[1];
|
|
if (phb->ioda.reserved_pe_idx == 0)
|
|
r->start += (2 * phb->ioda.m64_segsize);
|
|
else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
|
|
r->end -= (2 * phb->ioda.m64_segsize);
|
|
else
|
|
WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
|
|
phb->ioda.reserved_pe_idx, phb->hose->global_number);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
for ( ; index >= 0; index--)
|
|
opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
|
|
unsigned long *pe_bitmap,
|
|
bool all)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
list_for_each_entry(pdev, &bus->devices, bus_list) {
|
|
pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
|
|
|
|
if (all && pdev->subordinate)
|
|
pnv_ioda_reserve_m64_pe(pdev->subordinate,
|
|
pe_bitmap, all);
|
|
}
|
|
}
|
|
|
|
static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pnv_ioda_pe *master_pe, *pe;
|
|
unsigned long size, *pe_alloc;
|
|
int i;
|
|
|
|
/* Root bus shouldn't use M64 */
|
|
if (pci_is_root_bus(bus))
|
|
return NULL;
|
|
|
|
/* Allocate bitmap */
|
|
size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
|
|
pe_alloc = kzalloc(size, GFP_KERNEL);
|
|
if (!pe_alloc) {
|
|
pr_warn("%s: Out of memory !\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
/* Figure out reserved PE numbers by the PE */
|
|
pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
|
|
|
|
/*
|
|
* the current bus might not own M64 window and that's all
|
|
* contributed by its child buses. For the case, we needn't
|
|
* pick M64 dependent PE#.
|
|
*/
|
|
if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
|
|
kfree(pe_alloc);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Figure out the master PE and put all slave PEs to master
|
|
* PE's list to form compound PE.
|
|
*/
|
|
master_pe = NULL;
|
|
i = -1;
|
|
while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
|
|
phb->ioda.total_pe_num) {
|
|
pe = &phb->ioda.pe_array[i];
|
|
|
|
phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
|
|
if (!master_pe) {
|
|
pe->flags |= PNV_IODA_PE_MASTER;
|
|
INIT_LIST_HEAD(&pe->slaves);
|
|
master_pe = pe;
|
|
} else {
|
|
pe->flags |= PNV_IODA_PE_SLAVE;
|
|
pe->master = master_pe;
|
|
list_add_tail(&pe->list, &master_pe->slaves);
|
|
}
|
|
|
|
/*
|
|
* P7IOC supports M64DT, which helps mapping M64 segment
|
|
* to one particular PE#. However, PHB3 has fixed mapping
|
|
* between M64 segment and PE#. In order to have same logic
|
|
* for P7IOC and PHB3, we enforce fixed mapping between M64
|
|
* segment and PE# on P7IOC.
|
|
*/
|
|
if (phb->type == PNV_PHB_IODA1) {
|
|
int64_t rc;
|
|
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
pe->pe_number, OPAL_M64_WINDOW_TYPE,
|
|
pe->pe_number / PNV_IODA1_M64_SEGS,
|
|
pe->pe_number % PNV_IODA1_M64_SEGS);
|
|
if (rc != OPAL_SUCCESS)
|
|
pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
|
|
__func__, rc, phb->hose->global_number,
|
|
pe->pe_number);
|
|
}
|
|
}
|
|
|
|
kfree(pe_alloc);
|
|
return master_pe;
|
|
}
|
|
|
|
static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
|
|
{
|
|
struct pci_controller *hose = phb->hose;
|
|
struct device_node *dn = hose->dn;
|
|
struct resource *res;
|
|
u32 m64_range[2], i;
|
|
const __be32 *r;
|
|
u64 pci_addr;
|
|
|
|
if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
|
|
pr_info(" Not support M64 window\n");
|
|
return;
|
|
}
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
|
|
pr_info(" Firmware too old to support M64 window\n");
|
|
return;
|
|
}
|
|
|
|
r = of_get_property(dn, "ibm,opal-m64-window", NULL);
|
|
if (!r) {
|
|
pr_info(" No <ibm,opal-m64-window> on %pOF\n",
|
|
dn);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find the available M64 BAR range and pickup the last one for
|
|
* covering the whole 64-bits space. We support only one range.
|
|
*/
|
|
if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
|
|
m64_range, 2)) {
|
|
/* In absence of the property, assume 0..15 */
|
|
m64_range[0] = 0;
|
|
m64_range[1] = 16;
|
|
}
|
|
/* We only support 64 bits in our allocator */
|
|
if (m64_range[1] > 63) {
|
|
pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
|
|
__func__, m64_range[1], phb->hose->global_number);
|
|
m64_range[1] = 63;
|
|
}
|
|
/* Empty range, no m64 */
|
|
if (m64_range[1] <= m64_range[0]) {
|
|
pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
|
|
__func__, phb->hose->global_number);
|
|
return;
|
|
}
|
|
|
|
/* Configure M64 informations */
|
|
res = &hose->mem_resources[1];
|
|
res->name = dn->full_name;
|
|
res->start = of_translate_address(dn, r + 2);
|
|
res->end = res->start + of_read_number(r + 4, 2) - 1;
|
|
res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
|
|
pci_addr = of_read_number(r, 2);
|
|
hose->mem_offset[1] = res->start - pci_addr;
|
|
|
|
phb->ioda.m64_size = resource_size(res);
|
|
phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
|
|
phb->ioda.m64_base = pci_addr;
|
|
|
|
/* This lines up nicely with the display from processing OF ranges */
|
|
pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
|
|
res->start, res->end, pci_addr, m64_range[0],
|
|
m64_range[0] + m64_range[1] - 1);
|
|
|
|
/* Mark all M64 used up by default */
|
|
phb->ioda.m64_bar_alloc = (unsigned long)-1;
|
|
|
|
/* Use last M64 BAR to cover M64 window */
|
|
m64_range[1]--;
|
|
phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
|
|
|
|
pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
|
|
|
|
/* Mark remaining ones free */
|
|
for (i = m64_range[0]; i < m64_range[1]; i++)
|
|
clear_bit(i, &phb->ioda.m64_bar_alloc);
|
|
|
|
/*
|
|
* Setup init functions for M64 based on IODA version, IODA3 uses
|
|
* the IODA2 code.
|
|
*/
|
|
if (phb->type == PNV_PHB_IODA1)
|
|
phb->init_m64 = pnv_ioda1_init_m64;
|
|
else
|
|
phb->init_m64 = pnv_ioda2_init_m64;
|
|
}
|
|
|
|
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
|
|
{
|
|
struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
|
|
struct pnv_ioda_pe *slave;
|
|
s64 rc;
|
|
|
|
/* Fetch master PE */
|
|
if (pe->flags & PNV_IODA_PE_SLAVE) {
|
|
pe = pe->master;
|
|
if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
|
|
return;
|
|
|
|
pe_no = pe->pe_number;
|
|
}
|
|
|
|
/* Freeze master PE */
|
|
rc = opal_pci_eeh_freeze_set(phb->opal_id,
|
|
pe_no,
|
|
OPAL_EEH_ACTION_SET_FREEZE_ALL);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
|
|
__func__, rc, phb->hose->global_number, pe_no);
|
|
return;
|
|
}
|
|
|
|
/* Freeze slave PEs */
|
|
if (!(pe->flags & PNV_IODA_PE_MASTER))
|
|
return;
|
|
|
|
list_for_each_entry(slave, &pe->slaves, list) {
|
|
rc = opal_pci_eeh_freeze_set(phb->opal_id,
|
|
slave->pe_number,
|
|
OPAL_EEH_ACTION_SET_FREEZE_ALL);
|
|
if (rc != OPAL_SUCCESS)
|
|
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
|
|
__func__, rc, phb->hose->global_number,
|
|
slave->pe_number);
|
|
}
|
|
}
|
|
|
|
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
|
|
{
|
|
struct pnv_ioda_pe *pe, *slave;
|
|
s64 rc;
|
|
|
|
/* Find master PE */
|
|
pe = &phb->ioda.pe_array[pe_no];
|
|
if (pe->flags & PNV_IODA_PE_SLAVE) {
|
|
pe = pe->master;
|
|
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
|
|
pe_no = pe->pe_number;
|
|
}
|
|
|
|
/* Clear frozen state for master PE */
|
|
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
|
|
__func__, rc, opt, phb->hose->global_number, pe_no);
|
|
return -EIO;
|
|
}
|
|
|
|
if (!(pe->flags & PNV_IODA_PE_MASTER))
|
|
return 0;
|
|
|
|
/* Clear frozen state for slave PEs */
|
|
list_for_each_entry(slave, &pe->slaves, list) {
|
|
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
|
|
slave->pe_number,
|
|
opt);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
|
|
__func__, rc, opt, phb->hose->global_number,
|
|
slave->pe_number);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
|
|
{
|
|
struct pnv_ioda_pe *slave, *pe;
|
|
u8 fstate = 0, state;
|
|
__be16 pcierr = 0;
|
|
s64 rc;
|
|
|
|
/* Sanity check on PE number */
|
|
if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
|
|
return OPAL_EEH_STOPPED_PERM_UNAVAIL;
|
|
|
|
/*
|
|
* Fetch the master PE and the PE instance might be
|
|
* not initialized yet.
|
|
*/
|
|
pe = &phb->ioda.pe_array[pe_no];
|
|
if (pe->flags & PNV_IODA_PE_SLAVE) {
|
|
pe = pe->master;
|
|
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
|
|
pe_no = pe->pe_number;
|
|
}
|
|
|
|
/* Check the master PE */
|
|
rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
|
|
&state, &pcierr, NULL);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld getting "
|
|
"PHB#%x-PE#%x state\n",
|
|
__func__, rc,
|
|
phb->hose->global_number, pe_no);
|
|
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
|
|
}
|
|
|
|
/* Check the slave PE */
|
|
if (!(pe->flags & PNV_IODA_PE_MASTER))
|
|
return state;
|
|
|
|
list_for_each_entry(slave, &pe->slaves, list) {
|
|
rc = opal_pci_eeh_freeze_status(phb->opal_id,
|
|
slave->pe_number,
|
|
&fstate,
|
|
&pcierr,
|
|
NULL);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld getting "
|
|
"PHB#%x-PE#%x state\n",
|
|
__func__, rc,
|
|
phb->hose->global_number, slave->pe_number);
|
|
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
|
|
}
|
|
|
|
/*
|
|
* Override the result based on the ascending
|
|
* priority.
|
|
*/
|
|
if (fstate > state)
|
|
state = fstate;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
|
|
if (!pdn)
|
|
return NULL;
|
|
if (pdn->pe_number == IODA_INVALID_PE)
|
|
return NULL;
|
|
return &phb->ioda.pe_array[pdn->pe_number];
|
|
}
|
|
|
|
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *parent,
|
|
struct pnv_ioda_pe *child,
|
|
bool is_add)
|
|
{
|
|
const char *desc = is_add ? "adding" : "removing";
|
|
uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
|
|
OPAL_REMOVE_PE_FROM_DOMAIN;
|
|
struct pnv_ioda_pe *slave;
|
|
long rc;
|
|
|
|
/* Parent PE affects child PE */
|
|
rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
|
|
child->pe_number, op);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
|
|
rc, desc);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (!(child->flags & PNV_IODA_PE_MASTER))
|
|
return 0;
|
|
|
|
/* Compound case: parent PE affects slave PEs */
|
|
list_for_each_entry(slave, &child->slaves, list) {
|
|
rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
|
|
slave->pe_number, op);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
|
|
rc, desc);
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_ioda_set_peltv(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe,
|
|
bool is_add)
|
|
{
|
|
struct pnv_ioda_pe *slave;
|
|
struct pci_dev *pdev = NULL;
|
|
int ret;
|
|
|
|
/*
|
|
* Clear PE frozen state. If it's master PE, we need
|
|
* clear slave PE frozen state as well.
|
|
*/
|
|
if (is_add) {
|
|
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
|
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
|
if (pe->flags & PNV_IODA_PE_MASTER) {
|
|
list_for_each_entry(slave, &pe->slaves, list)
|
|
opal_pci_eeh_freeze_clear(phb->opal_id,
|
|
slave->pe_number,
|
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Associate PE in PELT. We need add the PE into the
|
|
* corresponding PELT-V as well. Otherwise, the error
|
|
* originated from the PE might contribute to other
|
|
* PEs.
|
|
*/
|
|
ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* For compound PEs, any one affects all of them */
|
|
if (pe->flags & PNV_IODA_PE_MASTER) {
|
|
list_for_each_entry(slave, &pe->slaves, list) {
|
|
ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
|
|
pdev = pe->pbus->self;
|
|
else if (pe->flags & PNV_IODA_PE_DEV)
|
|
pdev = pe->pdev->bus->self;
|
|
#ifdef CONFIG_PCI_IOV
|
|
else if (pe->flags & PNV_IODA_PE_VF)
|
|
pdev = pe->parent_dev;
|
|
#endif /* CONFIG_PCI_IOV */
|
|
while (pdev) {
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
struct pnv_ioda_pe *parent;
|
|
|
|
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
|
|
parent = &phb->ioda.pe_array[pdn->pe_number];
|
|
ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
pdev = pdev->bus->self;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pci_dev *parent;
|
|
uint8_t bcomp, dcomp, fcomp;
|
|
int64_t rc;
|
|
long rid_end, rid;
|
|
|
|
/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
|
|
if (pe->pbus) {
|
|
int count;
|
|
|
|
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
|
|
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
|
|
parent = pe->pbus->self;
|
|
if (pe->flags & PNV_IODA_PE_BUS_ALL)
|
|
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
|
|
else
|
|
count = 1;
|
|
|
|
switch(count) {
|
|
case 1: bcomp = OpalPciBusAll; break;
|
|
case 2: bcomp = OpalPciBus7Bits; break;
|
|
case 4: bcomp = OpalPciBus6Bits; break;
|
|
case 8: bcomp = OpalPciBus5Bits; break;
|
|
case 16: bcomp = OpalPciBus4Bits; break;
|
|
case 32: bcomp = OpalPciBus3Bits; break;
|
|
default:
|
|
dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
|
|
count);
|
|
/* Do an exact match only */
|
|
bcomp = OpalPciBusAll;
|
|
}
|
|
rid_end = pe->rid + (count << 8);
|
|
} else {
|
|
#ifdef CONFIG_PCI_IOV
|
|
if (pe->flags & PNV_IODA_PE_VF)
|
|
parent = pe->parent_dev;
|
|
else
|
|
#endif
|
|
parent = pe->pdev->bus->self;
|
|
bcomp = OpalPciBusAll;
|
|
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
|
|
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
|
|
rid_end = pe->rid + 1;
|
|
}
|
|
|
|
/* Clear the reverse map */
|
|
for (rid = pe->rid; rid < rid_end; rid++)
|
|
phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
|
|
|
|
/* Release from all parents PELT-V */
|
|
while (parent) {
|
|
struct pci_dn *pdn = pci_get_pdn(parent);
|
|
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
|
|
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
|
|
pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
|
|
/* XXX What to do in case of error ? */
|
|
}
|
|
parent = parent->bus->self;
|
|
}
|
|
|
|
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
|
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
|
|
|
/* Disassociate PE in PELT */
|
|
rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
|
|
pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
|
|
if (rc)
|
|
pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
|
|
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
|
|
bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
|
|
if (rc)
|
|
pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
|
|
|
|
pe->pbus = NULL;
|
|
pe->pdev = NULL;
|
|
#ifdef CONFIG_PCI_IOV
|
|
pe->parent_dev = NULL;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pci_dev *parent;
|
|
uint8_t bcomp, dcomp, fcomp;
|
|
long rc, rid_end, rid;
|
|
|
|
/* Bus validation ? */
|
|
if (pe->pbus) {
|
|
int count;
|
|
|
|
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
|
|
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
|
|
parent = pe->pbus->self;
|
|
if (pe->flags & PNV_IODA_PE_BUS_ALL)
|
|
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
|
|
else
|
|
count = 1;
|
|
|
|
switch(count) {
|
|
case 1: bcomp = OpalPciBusAll; break;
|
|
case 2: bcomp = OpalPciBus7Bits; break;
|
|
case 4: bcomp = OpalPciBus6Bits; break;
|
|
case 8: bcomp = OpalPciBus5Bits; break;
|
|
case 16: bcomp = OpalPciBus4Bits; break;
|
|
case 32: bcomp = OpalPciBus3Bits; break;
|
|
default:
|
|
dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
|
|
count);
|
|
/* Do an exact match only */
|
|
bcomp = OpalPciBusAll;
|
|
}
|
|
rid_end = pe->rid + (count << 8);
|
|
} else {
|
|
#ifdef CONFIG_PCI_IOV
|
|
if (pe->flags & PNV_IODA_PE_VF)
|
|
parent = pe->parent_dev;
|
|
else
|
|
#endif /* CONFIG_PCI_IOV */
|
|
parent = pe->pdev->bus->self;
|
|
bcomp = OpalPciBusAll;
|
|
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
|
|
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
|
|
rid_end = pe->rid + 1;
|
|
}
|
|
|
|
/*
|
|
* Associate PE in PELT. We need add the PE into the
|
|
* corresponding PELT-V as well. Otherwise, the error
|
|
* originated from the PE might contribute to other
|
|
* PEs.
|
|
*/
|
|
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
|
|
bcomp, dcomp, fcomp, OPAL_MAP_PE);
|
|
if (rc) {
|
|
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Configure PELTV. NPUs don't have a PELTV table so skip
|
|
* configuration on them.
|
|
*/
|
|
if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
|
|
pnv_ioda_set_peltv(phb, pe, true);
|
|
|
|
/* Setup reverse map */
|
|
for (rid = pe->rid; rid < rid_end; rid++)
|
|
phb->ioda.pe_rmap[rid] = pe->pe_number;
|
|
|
|
/* Setup one MVTs on IODA1 */
|
|
if (phb->type != PNV_PHB_IODA1) {
|
|
pe->mve_number = 0;
|
|
goto out;
|
|
}
|
|
|
|
pe->mve_number = pe->pe_number;
|
|
rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pe_err(pe, "OPAL error %ld setting up MVE %x\n",
|
|
rc, pe->mve_number);
|
|
pe->mve_number = -1;
|
|
} else {
|
|
rc = opal_pci_set_mve_enable(phb->opal_id,
|
|
pe->mve_number, OPAL_ENABLE_MVE);
|
|
if (rc) {
|
|
pe_err(pe, "OPAL error %ld enabling MVE %x\n",
|
|
rc, pe->mve_number);
|
|
pe->mve_number = -1;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
|
|
{
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
int i;
|
|
struct resource *res, res2;
|
|
resource_size_t size;
|
|
u16 num_vfs;
|
|
|
|
if (!dev->is_physfn)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* "offset" is in VFs. The M64 windows are sized so that when they
|
|
* are segmented, each segment is the same size as the IOV BAR.
|
|
* Each segment is in a separate PE, and the high order bits of the
|
|
* address are the PE number. Therefore, each VF's BAR is in a
|
|
* separate PE, and changing the IOV BAR start address changes the
|
|
* range of PEs the VFs are in.
|
|
*/
|
|
num_vfs = pdn->num_vfs;
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
|
|
res = &dev->resource[i + PCI_IOV_RESOURCES];
|
|
if (!res->flags || !res->parent)
|
|
continue;
|
|
|
|
/*
|
|
* The actual IOV BAR range is determined by the start address
|
|
* and the actual size for num_vfs VFs BAR. This check is to
|
|
* make sure that after shifting, the range will not overlap
|
|
* with another device.
|
|
*/
|
|
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
|
|
res2.flags = res->flags;
|
|
res2.start = res->start + (size * offset);
|
|
res2.end = res2.start + (size * num_vfs) - 1;
|
|
|
|
if (res2.end > res->end) {
|
|
dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
|
|
i, &res2, res, num_vfs, offset);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since M64 BAR shares segments among all possible 256 PEs,
|
|
* we have to shift the beginning of PF IOV BAR to make it start from
|
|
* the segment which belongs to the PE number assigned to the first VF.
|
|
* This creates a "hole" in the /proc/iomem which could be used for
|
|
* allocating other resources so we reserve this area below and
|
|
* release when IOV is released.
|
|
*/
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
|
|
res = &dev->resource[i + PCI_IOV_RESOURCES];
|
|
if (!res->flags || !res->parent)
|
|
continue;
|
|
|
|
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
|
|
res2 = *res;
|
|
res->start += size * offset;
|
|
|
|
dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
|
|
i, &res2, res, (offset > 0) ? "En" : "Dis",
|
|
num_vfs, offset);
|
|
|
|
if (offset < 0) {
|
|
devm_release_resource(&dev->dev, &pdn->holes[i]);
|
|
memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
|
|
}
|
|
|
|
pci_update_resource(dev, i + PCI_IOV_RESOURCES);
|
|
|
|
if (offset > 0) {
|
|
pdn->holes[i].start = res2.start;
|
|
pdn->holes[i].end = res2.start + size * offset - 1;
|
|
pdn->holes[i].flags = IORESOURCE_BUS;
|
|
pdn->holes[i].name = "pnv_iov_reserved";
|
|
devm_request_resource(&dev->dev, res->parent,
|
|
&pdn->holes[i]);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
if (!pdn) {
|
|
pr_err("%s: Device tree node not associated properly\n",
|
|
pci_name(dev));
|
|
return NULL;
|
|
}
|
|
if (pdn->pe_number != IODA_INVALID_PE)
|
|
return NULL;
|
|
|
|
pe = pnv_ioda_alloc_pe(phb);
|
|
if (!pe) {
|
|
pr_warn("%s: Not enough PE# available, disabling device\n",
|
|
pci_name(dev));
|
|
return NULL;
|
|
}
|
|
|
|
/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
|
|
* pointer in the PE data structure, both should be destroyed at the
|
|
* same time. However, this needs to be looked at more closely again
|
|
* once we actually start removing things (Hotplug, SR-IOV, ...)
|
|
*
|
|
* At some point we want to remove the PDN completely anyways
|
|
*/
|
|
pci_dev_get(dev);
|
|
pdn->pe_number = pe->pe_number;
|
|
pe->flags = PNV_IODA_PE_DEV;
|
|
pe->pdev = dev;
|
|
pe->pbus = NULL;
|
|
pe->mve_number = -1;
|
|
pe->rid = dev->bus->number << 8 | pdn->devfn;
|
|
|
|
pe_info(pe, "Associated device to PE\n");
|
|
|
|
if (pnv_ioda_configure_pe(phb, pe)) {
|
|
/* XXX What do we do here ? */
|
|
pnv_ioda_free_pe(pe);
|
|
pdn->pe_number = IODA_INVALID_PE;
|
|
pe->pdev = NULL;
|
|
pci_dev_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
/* Put PE to the list */
|
|
list_add_tail(&pe->list, &phb->ioda.pe_list);
|
|
|
|
return pe;
|
|
}
|
|
|
|
static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
|
|
if (pdn == NULL) {
|
|
pr_warn("%s: No device node associated with device !\n",
|
|
pci_name(dev));
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* In partial hotplug case, the PCI device might be still
|
|
* associated with the PE and needn't attach it to the PE
|
|
* again.
|
|
*/
|
|
if (pdn->pe_number != IODA_INVALID_PE)
|
|
continue;
|
|
|
|
pe->device_count++;
|
|
pdn->pe_number = pe->pe_number;
|
|
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
|
|
pnv_ioda_setup_same_PE(dev->subordinate, pe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There're 2 types of PCI bus sensitive PEs: One that is compromised of
|
|
* single PCI bus. Another one that contains the primary PCI bus and its
|
|
* subordinate PCI devices and buses. The second type of PE is normally
|
|
* orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
|
|
*/
|
|
static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pnv_ioda_pe *pe = NULL;
|
|
unsigned int pe_num;
|
|
|
|
/*
|
|
* In partial hotplug case, the PE instance might be still alive.
|
|
* We should reuse it instead of allocating a new one.
|
|
*/
|
|
pe_num = phb->ioda.pe_rmap[bus->number << 8];
|
|
if (pe_num != IODA_INVALID_PE) {
|
|
pe = &phb->ioda.pe_array[pe_num];
|
|
pnv_ioda_setup_same_PE(bus, pe);
|
|
return NULL;
|
|
}
|
|
|
|
/* PE number for root bus should have been reserved */
|
|
if (pci_is_root_bus(bus) &&
|
|
phb->ioda.root_pe_idx != IODA_INVALID_PE)
|
|
pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
|
|
|
|
/* Check if PE is determined by M64 */
|
|
if (!pe)
|
|
pe = pnv_ioda_pick_m64_pe(bus, all);
|
|
|
|
/* The PE number isn't pinned by M64 */
|
|
if (!pe)
|
|
pe = pnv_ioda_alloc_pe(phb);
|
|
|
|
if (!pe) {
|
|
pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
|
|
__func__, pci_domain_nr(bus), bus->number);
|
|
return NULL;
|
|
}
|
|
|
|
pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
|
|
pe->pbus = bus;
|
|
pe->pdev = NULL;
|
|
pe->mve_number = -1;
|
|
pe->rid = bus->busn_res.start << 8;
|
|
|
|
if (all)
|
|
pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
|
|
&bus->busn_res.start, &bus->busn_res.end,
|
|
pe->pe_number);
|
|
else
|
|
pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
|
|
&bus->busn_res.start, pe->pe_number);
|
|
|
|
if (pnv_ioda_configure_pe(phb, pe)) {
|
|
/* XXX What do we do here ? */
|
|
pnv_ioda_free_pe(pe);
|
|
pe->pbus = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/* Associate it with all child devices */
|
|
pnv_ioda_setup_same_PE(bus, pe);
|
|
|
|
/* Put PE to the list */
|
|
list_add_tail(&pe->list, &phb->ioda.pe_list);
|
|
|
|
return pe;
|
|
}
|
|
|
|
static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
|
|
{
|
|
int pe_num, found_pe = false, rc;
|
|
long rid;
|
|
struct pnv_ioda_pe *pe;
|
|
struct pci_dev *gpu_pdev;
|
|
struct pci_dn *npu_pdn;
|
|
struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
|
|
/*
|
|
* Due to a hardware errata PE#0 on the NPU is reserved for
|
|
* error handling. This means we only have three PEs remaining
|
|
* which need to be assigned to four links, implying some
|
|
* links must share PEs.
|
|
*
|
|
* To achieve this we assign PEs such that NPUs linking the
|
|
* same GPU get assigned the same PE.
|
|
*/
|
|
gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
|
|
for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
|
|
pe = &phb->ioda.pe_array[pe_num];
|
|
if (!pe->pdev)
|
|
continue;
|
|
|
|
if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
|
|
/*
|
|
* This device has the same peer GPU so should
|
|
* be assigned the same PE as the existing
|
|
* peer NPU.
|
|
*/
|
|
dev_info(&npu_pdev->dev,
|
|
"Associating to existing PE %x\n", pe_num);
|
|
pci_dev_get(npu_pdev);
|
|
npu_pdn = pci_get_pdn(npu_pdev);
|
|
rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
|
|
npu_pdn->pe_number = pe_num;
|
|
phb->ioda.pe_rmap[rid] = pe->pe_number;
|
|
|
|
/* Map the PE to this link */
|
|
rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
|
|
OpalPciBusAll,
|
|
OPAL_COMPARE_RID_DEVICE_NUMBER,
|
|
OPAL_COMPARE_RID_FUNCTION_NUMBER,
|
|
OPAL_MAP_PE);
|
|
WARN_ON(rc != OPAL_SUCCESS);
|
|
found_pe = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found_pe)
|
|
/*
|
|
* Could not find an existing PE so allocate a new
|
|
* one.
|
|
*/
|
|
return pnv_ioda_setup_dev_PE(npu_pdev);
|
|
else
|
|
return pe;
|
|
}
|
|
|
|
static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
list_for_each_entry(pdev, &bus->devices, bus_list)
|
|
pnv_ioda_setup_npu_PE(pdev);
|
|
}
|
|
|
|
static void pnv_pci_ioda_setup_PEs(void)
|
|
{
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pci_bus *bus;
|
|
struct pci_dev *pdev;
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
phb = hose->private_data;
|
|
if (phb->type == PNV_PHB_NPU_NVLINK) {
|
|
/* PE#0 is needed for error reporting */
|
|
pnv_ioda_reserve_pe(phb, 0);
|
|
pnv_ioda_setup_npu_PEs(hose->bus);
|
|
if (phb->model == PNV_PHB_MODEL_NPU2)
|
|
WARN_ON_ONCE(pnv_npu2_init(hose));
|
|
}
|
|
if (phb->type == PNV_PHB_NPU_OCAPI) {
|
|
bus = hose->bus;
|
|
list_for_each_entry(pdev, &bus->devices, bus_list)
|
|
pnv_ioda_setup_dev_PE(pdev);
|
|
}
|
|
}
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
phb = hose->private_data;
|
|
if (phb->type != PNV_PHB_IODA2)
|
|
continue;
|
|
|
|
list_for_each_entry(pe, &phb->ioda.pe_list, list)
|
|
pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pci_dn *pdn;
|
|
int i, j;
|
|
int m64_bars;
|
|
|
|
bus = pdev->bus;
|
|
hose = pci_bus_to_host(bus);
|
|
phb = hose->private_data;
|
|
pdn = pci_get_pdn(pdev);
|
|
|
|
if (pdn->m64_single_mode)
|
|
m64_bars = num_vfs;
|
|
else
|
|
m64_bars = 1;
|
|
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
|
|
for (j = 0; j < m64_bars; j++) {
|
|
if (pdn->m64_map[j][i] == IODA_INVALID_M64)
|
|
continue;
|
|
opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
|
|
clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
|
|
pdn->m64_map[j][i] = IODA_INVALID_M64;
|
|
}
|
|
|
|
kfree(pdn->m64_map);
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pci_dn *pdn;
|
|
unsigned int win;
|
|
struct resource *res;
|
|
int i, j;
|
|
int64_t rc;
|
|
int total_vfs;
|
|
resource_size_t size, start;
|
|
int pe_num;
|
|
int m64_bars;
|
|
|
|
bus = pdev->bus;
|
|
hose = pci_bus_to_host(bus);
|
|
phb = hose->private_data;
|
|
pdn = pci_get_pdn(pdev);
|
|
total_vfs = pci_sriov_get_totalvfs(pdev);
|
|
|
|
if (pdn->m64_single_mode)
|
|
m64_bars = num_vfs;
|
|
else
|
|
m64_bars = 1;
|
|
|
|
pdn->m64_map = kmalloc_array(m64_bars,
|
|
sizeof(*pdn->m64_map),
|
|
GFP_KERNEL);
|
|
if (!pdn->m64_map)
|
|
return -ENOMEM;
|
|
/* Initialize the m64_map to IODA_INVALID_M64 */
|
|
for (i = 0; i < m64_bars ; i++)
|
|
for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
|
|
pdn->m64_map[i][j] = IODA_INVALID_M64;
|
|
|
|
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
|
|
res = &pdev->resource[i + PCI_IOV_RESOURCES];
|
|
if (!res->flags || !res->parent)
|
|
continue;
|
|
|
|
for (j = 0; j < m64_bars; j++) {
|
|
do {
|
|
win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
|
|
phb->ioda.m64_bar_idx + 1, 0);
|
|
|
|
if (win >= phb->ioda.m64_bar_idx + 1)
|
|
goto m64_failed;
|
|
} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
|
|
|
|
pdn->m64_map[j][i] = win;
|
|
|
|
if (pdn->m64_single_mode) {
|
|
size = pci_iov_resource_size(pdev,
|
|
PCI_IOV_RESOURCES + i);
|
|
start = res->start + size * j;
|
|
} else {
|
|
size = resource_size(res);
|
|
start = res->start;
|
|
}
|
|
|
|
/* Map the M64 here */
|
|
if (pdn->m64_single_mode) {
|
|
pe_num = pdn->pe_num_map[j];
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
pe_num, OPAL_M64_WINDOW_TYPE,
|
|
pdn->m64_map[j][i], 0);
|
|
}
|
|
|
|
rc = opal_pci_set_phb_mem_window(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE,
|
|
pdn->m64_map[j][i],
|
|
start,
|
|
0, /* unused */
|
|
size);
|
|
|
|
|
|
if (rc != OPAL_SUCCESS) {
|
|
dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
|
|
win, rc);
|
|
goto m64_failed;
|
|
}
|
|
|
|
if (pdn->m64_single_mode)
|
|
rc = opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
|
|
else
|
|
rc = opal_pci_phb_mmio_enable(phb->opal_id,
|
|
OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
|
|
|
|
if (rc != OPAL_SUCCESS) {
|
|
dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
|
|
win, rc);
|
|
goto m64_failed;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
m64_failed:
|
|
pnv_pci_vf_release_m64(pdev, num_vfs);
|
|
return -EBUSY;
|
|
}
|
|
|
|
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
|
|
int num);
|
|
|
|
static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
|
|
{
|
|
struct iommu_table *tbl;
|
|
int64_t rc;
|
|
|
|
tbl = pe->table_group.tables[0];
|
|
rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
|
|
if (rc)
|
|
pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
|
|
|
|
pnv_pci_ioda2_set_bypass(pe, false);
|
|
if (pe->table_group.group) {
|
|
iommu_group_put(pe->table_group.group);
|
|
BUG_ON(pe->table_group.group);
|
|
}
|
|
iommu_tce_table_put(tbl);
|
|
}
|
|
|
|
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pnv_ioda_pe *pe, *pe_n;
|
|
struct pci_dn *pdn;
|
|
|
|
bus = pdev->bus;
|
|
hose = pci_bus_to_host(bus);
|
|
phb = hose->private_data;
|
|
pdn = pci_get_pdn(pdev);
|
|
|
|
if (!pdev->is_physfn)
|
|
return;
|
|
|
|
list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
|
|
if (pe->parent_dev != pdev)
|
|
continue;
|
|
|
|
pnv_pci_ioda2_release_dma_pe(pdev, pe);
|
|
|
|
/* Remove from list */
|
|
mutex_lock(&phb->ioda.pe_list_mutex);
|
|
list_del(&pe->list);
|
|
mutex_unlock(&phb->ioda.pe_list_mutex);
|
|
|
|
pnv_ioda_deconfigure_pe(phb, pe);
|
|
|
|
pnv_ioda_free_pe(pe);
|
|
}
|
|
}
|
|
|
|
void pnv_pci_sriov_disable(struct pci_dev *pdev)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pnv_ioda_pe *pe;
|
|
struct pci_dn *pdn;
|
|
u16 num_vfs, i;
|
|
|
|
bus = pdev->bus;
|
|
hose = pci_bus_to_host(bus);
|
|
phb = hose->private_data;
|
|
pdn = pci_get_pdn(pdev);
|
|
num_vfs = pdn->num_vfs;
|
|
|
|
/* Release VF PEs */
|
|
pnv_ioda_release_vf_PE(pdev);
|
|
|
|
if (phb->type == PNV_PHB_IODA2) {
|
|
if (!pdn->m64_single_mode)
|
|
pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
|
|
|
|
/* Release M64 windows */
|
|
pnv_pci_vf_release_m64(pdev, num_vfs);
|
|
|
|
/* Release PE numbers */
|
|
if (pdn->m64_single_mode) {
|
|
for (i = 0; i < num_vfs; i++) {
|
|
if (pdn->pe_num_map[i] == IODA_INVALID_PE)
|
|
continue;
|
|
|
|
pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
|
|
pnv_ioda_free_pe(pe);
|
|
}
|
|
} else
|
|
bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
|
|
/* Releasing pe_num_map */
|
|
kfree(pdn->pe_num_map);
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe);
|
|
#ifdef CONFIG_IOMMU_API
|
|
static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
|
|
struct iommu_table_group *table_group, struct pci_bus *bus);
|
|
|
|
#endif
|
|
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pnv_ioda_pe *pe;
|
|
int pe_num;
|
|
u16 vf_index;
|
|
struct pci_dn *pdn;
|
|
|
|
bus = pdev->bus;
|
|
hose = pci_bus_to_host(bus);
|
|
phb = hose->private_data;
|
|
pdn = pci_get_pdn(pdev);
|
|
|
|
if (!pdev->is_physfn)
|
|
return;
|
|
|
|
/* Reserve PE for each VF */
|
|
for (vf_index = 0; vf_index < num_vfs; vf_index++) {
|
|
int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
|
|
int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
|
|
struct pci_dn *vf_pdn;
|
|
|
|
if (pdn->m64_single_mode)
|
|
pe_num = pdn->pe_num_map[vf_index];
|
|
else
|
|
pe_num = *pdn->pe_num_map + vf_index;
|
|
|
|
pe = &phb->ioda.pe_array[pe_num];
|
|
pe->pe_number = pe_num;
|
|
pe->phb = phb;
|
|
pe->flags = PNV_IODA_PE_VF;
|
|
pe->pbus = NULL;
|
|
pe->parent_dev = pdev;
|
|
pe->mve_number = -1;
|
|
pe->rid = (vf_bus << 8) | vf_devfn;
|
|
|
|
pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
|
|
hose->global_number, pdev->bus->number,
|
|
PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
|
|
|
|
if (pnv_ioda_configure_pe(phb, pe)) {
|
|
/* XXX What do we do here ? */
|
|
pnv_ioda_free_pe(pe);
|
|
pe->pdev = NULL;
|
|
continue;
|
|
}
|
|
|
|
/* Put PE to the list */
|
|
mutex_lock(&phb->ioda.pe_list_mutex);
|
|
list_add_tail(&pe->list, &phb->ioda.pe_list);
|
|
mutex_unlock(&phb->ioda.pe_list_mutex);
|
|
|
|
/* associate this pe to it's pdn */
|
|
list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
|
|
if (vf_pdn->busno == vf_bus &&
|
|
vf_pdn->devfn == vf_devfn) {
|
|
vf_pdn->pe_number = pe_num;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pnv_pci_ioda2_setup_dma_pe(phb, pe);
|
|
#ifdef CONFIG_IOMMU_API
|
|
iommu_register_group(&pe->table_group,
|
|
pe->phb->hose->global_number, pe->pe_number);
|
|
pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pnv_ioda_pe *pe;
|
|
struct pci_dn *pdn;
|
|
int ret;
|
|
u16 i;
|
|
|
|
bus = pdev->bus;
|
|
hose = pci_bus_to_host(bus);
|
|
phb = hose->private_data;
|
|
pdn = pci_get_pdn(pdev);
|
|
|
|
if (phb->type == PNV_PHB_IODA2) {
|
|
if (!pdn->vfs_expanded) {
|
|
dev_info(&pdev->dev, "don't support this SRIOV device"
|
|
" with non 64bit-prefetchable IOV BAR\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* When M64 BARs functions in Single PE mode, the number of VFs
|
|
* could be enabled must be less than the number of M64 BARs.
|
|
*/
|
|
if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
|
|
dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Allocating pe_num_map */
|
|
if (pdn->m64_single_mode)
|
|
pdn->pe_num_map = kmalloc_array(num_vfs,
|
|
sizeof(*pdn->pe_num_map),
|
|
GFP_KERNEL);
|
|
else
|
|
pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
|
|
|
|
if (!pdn->pe_num_map)
|
|
return -ENOMEM;
|
|
|
|
if (pdn->m64_single_mode)
|
|
for (i = 0; i < num_vfs; i++)
|
|
pdn->pe_num_map[i] = IODA_INVALID_PE;
|
|
|
|
/* Calculate available PE for required VFs */
|
|
if (pdn->m64_single_mode) {
|
|
for (i = 0; i < num_vfs; i++) {
|
|
pe = pnv_ioda_alloc_pe(phb);
|
|
if (!pe) {
|
|
ret = -EBUSY;
|
|
goto m64_failed;
|
|
}
|
|
|
|
pdn->pe_num_map[i] = pe->pe_number;
|
|
}
|
|
} else {
|
|
mutex_lock(&phb->ioda.pe_alloc_mutex);
|
|
*pdn->pe_num_map = bitmap_find_next_zero_area(
|
|
phb->ioda.pe_alloc, phb->ioda.total_pe_num,
|
|
0, num_vfs, 0);
|
|
if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
|
|
mutex_unlock(&phb->ioda.pe_alloc_mutex);
|
|
dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
|
|
kfree(pdn->pe_num_map);
|
|
return -EBUSY;
|
|
}
|
|
bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
|
|
mutex_unlock(&phb->ioda.pe_alloc_mutex);
|
|
}
|
|
pdn->num_vfs = num_vfs;
|
|
|
|
/* Assign M64 window accordingly */
|
|
ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
|
|
if (ret) {
|
|
dev_info(&pdev->dev, "Not enough M64 window resources\n");
|
|
goto m64_failed;
|
|
}
|
|
|
|
/*
|
|
* When using one M64 BAR to map one IOV BAR, we need to shift
|
|
* the IOV BAR according to the PE# allocated to the VFs.
|
|
* Otherwise, the PE# for the VF will conflict with others.
|
|
*/
|
|
if (!pdn->m64_single_mode) {
|
|
ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
|
|
if (ret)
|
|
goto m64_failed;
|
|
}
|
|
}
|
|
|
|
/* Setup VF PEs */
|
|
pnv_ioda_setup_vf_PE(pdev, num_vfs);
|
|
|
|
return 0;
|
|
|
|
m64_failed:
|
|
if (pdn->m64_single_mode) {
|
|
for (i = 0; i < num_vfs; i++) {
|
|
if (pdn->pe_num_map[i] == IODA_INVALID_PE)
|
|
continue;
|
|
|
|
pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
|
|
pnv_ioda_free_pe(pe);
|
|
}
|
|
} else
|
|
bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
|
|
|
|
/* Releasing pe_num_map */
|
|
kfree(pdn->pe_num_map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
|
|
{
|
|
pnv_pci_sriov_disable(pdev);
|
|
|
|
/* Release PCI data */
|
|
remove_dev_pci_data(pdev);
|
|
return 0;
|
|
}
|
|
|
|
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
|
|
{
|
|
/* Allocate PCI data */
|
|
add_dev_pci_data(pdev);
|
|
|
|
return pnv_pci_sriov_enable(pdev, num_vfs);
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
|
|
{
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
/*
|
|
* The function can be called while the PE#
|
|
* hasn't been assigned. Do nothing for the
|
|
* case.
|
|
*/
|
|
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
|
|
return;
|
|
|
|
pe = &phb->ioda.pe_array[pdn->pe_number];
|
|
WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
|
|
pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
|
|
set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
|
|
/*
|
|
* Note: iommu_add_device() will fail here as
|
|
* for physical PE: the device is already added by now;
|
|
* for virtual PE: sysfs entries are not ready yet and
|
|
* tce_iommu_bus_notifier will add the device to a group later.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Reconfigure TVE#0 to be usable as 64-bit DMA space.
|
|
*
|
|
* The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
|
|
* Devices can only access more than that if bit 59 of the PCI address is set
|
|
* by hardware, which indicates TVE#1 should be used instead of TVE#0.
|
|
* Many PCI devices are not capable of addressing that many bits, and as a
|
|
* result are limited to the 4GB of virtual memory made available to 32-bit
|
|
* devices in TVE#0.
|
|
*
|
|
* In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
|
|
* devices by configuring the virtual memory past the first 4GB inaccessible
|
|
* by 64-bit DMAs. This should only be used by devices that want more than
|
|
* 4GB, and only on PEs that have no 32-bit devices.
|
|
*
|
|
* Currently this will only work on PHB3 (POWER8).
|
|
*/
|
|
static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
|
|
{
|
|
u64 window_size, table_size, tce_count, addr;
|
|
struct page *table_pages;
|
|
u64 tce_order = 28; /* 256MB TCEs */
|
|
__be64 *tces;
|
|
s64 rc;
|
|
|
|
/*
|
|
* Window size needs to be a power of two, but needs to account for
|
|
* shifting memory by the 4GB offset required to skip 32bit space.
|
|
*/
|
|
window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
|
|
tce_count = window_size >> tce_order;
|
|
table_size = tce_count << 3;
|
|
|
|
if (table_size < PAGE_SIZE)
|
|
table_size = PAGE_SIZE;
|
|
|
|
table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
|
|
get_order(table_size));
|
|
if (!table_pages)
|
|
goto err;
|
|
|
|
tces = page_address(table_pages);
|
|
if (!tces)
|
|
goto err;
|
|
|
|
memset(tces, 0, table_size);
|
|
|
|
for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
|
|
tces[(addr + (1ULL << 32)) >> tce_order] =
|
|
cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
|
|
}
|
|
|
|
rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
|
|
pe->pe_number,
|
|
/* reconfigure window 0 */
|
|
(pe->pe_number << 1) + 0,
|
|
1,
|
|
__pa(tces),
|
|
table_size,
|
|
1 << tce_order);
|
|
if (rc == OPAL_SUCCESS) {
|
|
pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
|
|
return 0;
|
|
}
|
|
err:
|
|
pe_err(pe, "Error configuring 64-bit DMA bypass\n");
|
|
return -EIO;
|
|
}
|
|
|
|
static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
|
|
u64 dma_mask)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
|
|
return false;
|
|
|
|
pe = &phb->ioda.pe_array[pdn->pe_number];
|
|
if (pe->tce_bypass_enabled) {
|
|
u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
|
|
if (dma_mask >= top)
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If the device can't set the TCE bypass bit but still wants
|
|
* to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
|
|
* bypass the 32-bit region and be usable for 64-bit DMAs.
|
|
* The device needs to be able to address all of this space.
|
|
*/
|
|
if (dma_mask >> 32 &&
|
|
dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
|
|
/* pe->pdev should be set if it's a single device, pe->pbus if not */
|
|
(pe->device_count == 1 || !pe->pbus) &&
|
|
phb->model == PNV_PHB_MODEL_PHB3) {
|
|
/* Configure the bypass mode */
|
|
s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
|
|
if (rc)
|
|
return false;
|
|
/* 4GB offset bypasses 32-bit space */
|
|
pdev->dev.archdata.dma_offset = (1ULL << 32);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
|
|
dev->dev.archdata.dma_offset = pe->tce_bypass_base;
|
|
|
|
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
|
|
pnv_ioda_setup_bus_dma(pe, dev->subordinate);
|
|
}
|
|
}
|
|
|
|
static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
|
|
bool real_mode)
|
|
{
|
|
return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
|
|
(phb->regs + 0x210);
|
|
}
|
|
|
|
static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
|
|
unsigned long index, unsigned long npages, bool rm)
|
|
{
|
|
struct iommu_table_group_link *tgl = list_first_entry_or_null(
|
|
&tbl->it_group_list, struct iommu_table_group_link,
|
|
next);
|
|
struct pnv_ioda_pe *pe = container_of(tgl->table_group,
|
|
struct pnv_ioda_pe, table_group);
|
|
__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
|
|
unsigned long start, end, inc;
|
|
|
|
start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
|
|
end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
|
|
npages - 1);
|
|
|
|
/* p7ioc-style invalidation, 2 TCEs per write */
|
|
start |= (1ull << 63);
|
|
end |= (1ull << 63);
|
|
inc = 16;
|
|
end |= inc - 1; /* round up end to be different than start */
|
|
|
|
mb(); /* Ensure above stores are visible */
|
|
while (start <= end) {
|
|
if (rm)
|
|
__raw_rm_writeq_be(start, invalidate);
|
|
else
|
|
__raw_writeq_be(start, invalidate);
|
|
|
|
start += inc;
|
|
}
|
|
|
|
/*
|
|
* The iommu layer will do another mb() for us on build()
|
|
* and we don't care on free()
|
|
*/
|
|
}
|
|
|
|
static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
|
|
long npages, unsigned long uaddr,
|
|
enum dma_data_direction direction,
|
|
unsigned long attrs)
|
|
{
|
|
int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
|
|
attrs);
|
|
|
|
if (!ret)
|
|
pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_IOMMU_API
|
|
/* Common for IODA1 and IODA2 */
|
|
static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
|
|
unsigned long *hpa, enum dma_data_direction *direction,
|
|
bool realmode)
|
|
{
|
|
return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
|
|
}
|
|
#endif
|
|
|
|
static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
|
|
long npages)
|
|
{
|
|
pnv_tce_free(tbl, index, npages);
|
|
|
|
pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
|
|
}
|
|
|
|
static struct iommu_table_ops pnv_ioda1_iommu_ops = {
|
|
.set = pnv_ioda1_tce_build,
|
|
#ifdef CONFIG_IOMMU_API
|
|
.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
|
|
.tce_kill = pnv_pci_p7ioc_tce_invalidate,
|
|
.useraddrptr = pnv_tce_useraddrptr,
|
|
#endif
|
|
.clear = pnv_ioda1_tce_free,
|
|
.get = pnv_tce_get,
|
|
};
|
|
|
|
#define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
|
|
#define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
|
|
#define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
|
|
|
|
static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
|
|
{
|
|
__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
|
|
const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
|
|
|
|
mb(); /* Ensure previous TCE table stores are visible */
|
|
if (rm)
|
|
__raw_rm_writeq_be(val, invalidate);
|
|
else
|
|
__raw_writeq_be(val, invalidate);
|
|
}
|
|
|
|
static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
|
|
{
|
|
/* 01xb - invalidate TCEs that match the specified PE# */
|
|
__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
|
|
unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
|
|
|
|
mb(); /* Ensure above stores are visible */
|
|
__raw_writeq_be(val, invalidate);
|
|
}
|
|
|
|
static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
|
|
unsigned shift, unsigned long index,
|
|
unsigned long npages)
|
|
{
|
|
__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
|
|
unsigned long start, end, inc;
|
|
|
|
/* We'll invalidate DMA address in PE scope */
|
|
start = PHB3_TCE_KILL_INVAL_ONE;
|
|
start |= (pe->pe_number & 0xFF);
|
|
end = start;
|
|
|
|
/* Figure out the start, end and step */
|
|
start |= (index << shift);
|
|
end |= ((index + npages - 1) << shift);
|
|
inc = (0x1ull << shift);
|
|
mb();
|
|
|
|
while (start <= end) {
|
|
if (rm)
|
|
__raw_rm_writeq_be(start, invalidate);
|
|
else
|
|
__raw_writeq_be(start, invalidate);
|
|
start += inc;
|
|
}
|
|
}
|
|
|
|
static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb;
|
|
|
|
if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
|
|
pnv_pci_phb3_tce_invalidate_pe(pe);
|
|
else
|
|
opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
|
|
pe->pe_number, 0, 0, 0);
|
|
}
|
|
|
|
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
|
|
unsigned long index, unsigned long npages, bool rm)
|
|
{
|
|
struct iommu_table_group_link *tgl;
|
|
|
|
list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
|
|
struct pnv_ioda_pe *pe = container_of(tgl->table_group,
|
|
struct pnv_ioda_pe, table_group);
|
|
struct pnv_phb *phb = pe->phb;
|
|
unsigned int shift = tbl->it_page_shift;
|
|
|
|
/*
|
|
* NVLink1 can use the TCE kill register directly as
|
|
* it's the same as PHB3. NVLink2 is different and
|
|
* should go via the OPAL call.
|
|
*/
|
|
if (phb->model == PNV_PHB_MODEL_NPU) {
|
|
/*
|
|
* The NVLink hardware does not support TCE kill
|
|
* per TCE entry so we have to invalidate
|
|
* the entire cache for it.
|
|
*/
|
|
pnv_pci_phb3_tce_invalidate_entire(phb, rm);
|
|
continue;
|
|
}
|
|
if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
|
|
pnv_pci_phb3_tce_invalidate(pe, rm, shift,
|
|
index, npages);
|
|
else
|
|
opal_pci_tce_kill(phb->opal_id,
|
|
OPAL_PCI_TCE_KILL_PAGES,
|
|
pe->pe_number, 1u << shift,
|
|
index << shift, npages);
|
|
}
|
|
}
|
|
|
|
void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
|
|
{
|
|
if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
|
|
pnv_pci_phb3_tce_invalidate_entire(phb, rm);
|
|
else
|
|
opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
|
|
}
|
|
|
|
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
|
|
long npages, unsigned long uaddr,
|
|
enum dma_data_direction direction,
|
|
unsigned long attrs)
|
|
{
|
|
int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
|
|
attrs);
|
|
|
|
if (!ret)
|
|
pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
|
|
long npages)
|
|
{
|
|
pnv_tce_free(tbl, index, npages);
|
|
|
|
pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
|
|
}
|
|
|
|
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
|
|
.set = pnv_ioda2_tce_build,
|
|
#ifdef CONFIG_IOMMU_API
|
|
.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
|
|
.tce_kill = pnv_pci_ioda2_tce_invalidate,
|
|
.useraddrptr = pnv_tce_useraddrptr,
|
|
#endif
|
|
.clear = pnv_ioda2_tce_free,
|
|
.get = pnv_tce_get,
|
|
.free = pnv_pci_ioda2_table_free_pages,
|
|
};
|
|
|
|
static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
|
|
{
|
|
unsigned int *weight = (unsigned int *)data;
|
|
|
|
/* This is quite simplistic. The "base" weight of a device
|
|
* is 10. 0 means no DMA is to be accounted for it.
|
|
*/
|
|
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
|
|
return 0;
|
|
|
|
if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
|
|
dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
|
|
dev->class == PCI_CLASS_SERIAL_USB_EHCI)
|
|
*weight += 3;
|
|
else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
|
|
*weight += 15;
|
|
else
|
|
*weight += 10;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
|
|
{
|
|
unsigned int weight = 0;
|
|
|
|
/* SRIOV VF has same DMA32 weight as its PF */
|
|
#ifdef CONFIG_PCI_IOV
|
|
if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
|
|
pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
|
|
return weight;
|
|
}
|
|
#endif
|
|
|
|
if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
|
|
pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
|
|
} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
|
|
struct pci_dev *pdev;
|
|
|
|
list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
|
|
pnv_pci_ioda_dev_dma_weight(pdev, &weight);
|
|
} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
|
|
pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
|
|
}
|
|
|
|
return weight;
|
|
}
|
|
|
|
static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe)
|
|
{
|
|
|
|
struct page *tce_mem = NULL;
|
|
struct iommu_table *tbl;
|
|
unsigned int weight, total_weight = 0;
|
|
unsigned int tce32_segsz, base, segs, avail, i;
|
|
int64_t rc;
|
|
void *addr;
|
|
|
|
/* XXX FIXME: Handle 64-bit only DMA devices */
|
|
/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
|
|
/* XXX FIXME: Allocate multi-level tables on PHB3 */
|
|
weight = pnv_pci_ioda_pe_dma_weight(pe);
|
|
if (!weight)
|
|
return;
|
|
|
|
pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
|
|
&total_weight);
|
|
segs = (weight * phb->ioda.dma32_count) / total_weight;
|
|
if (!segs)
|
|
segs = 1;
|
|
|
|
/*
|
|
* Allocate contiguous DMA32 segments. We begin with the expected
|
|
* number of segments. With one more attempt, the number of DMA32
|
|
* segments to be allocated is decreased by one until one segment
|
|
* is allocated successfully.
|
|
*/
|
|
do {
|
|
for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
|
|
for (avail = 0, i = base; i < base + segs; i++) {
|
|
if (phb->ioda.dma32_segmap[i] ==
|
|
IODA_INVALID_PE)
|
|
avail++;
|
|
}
|
|
|
|
if (avail == segs)
|
|
goto found;
|
|
}
|
|
} while (--segs);
|
|
|
|
if (!segs) {
|
|
pe_warn(pe, "No available DMA32 segments\n");
|
|
return;
|
|
}
|
|
|
|
found:
|
|
tbl = pnv_pci_table_alloc(phb->hose->node);
|
|
if (WARN_ON(!tbl))
|
|
return;
|
|
|
|
iommu_register_group(&pe->table_group, phb->hose->global_number,
|
|
pe->pe_number);
|
|
pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
|
|
|
|
/* Grab a 32-bit TCE table */
|
|
pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
|
|
weight, total_weight, base, segs);
|
|
pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
|
|
base * PNV_IODA1_DMA32_SEGSIZE,
|
|
(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
|
|
|
|
/* XXX Currently, we allocate one big contiguous table for the
|
|
* TCEs. We only really need one chunk per 256M of TCE space
|
|
* (ie per segment) but that's an optimization for later, it
|
|
* requires some added smarts with our get/put_tce implementation
|
|
*
|
|
* Each TCE page is 4KB in size and each TCE entry occupies 8
|
|
* bytes
|
|
*/
|
|
tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
|
|
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
|
|
get_order(tce32_segsz * segs));
|
|
if (!tce_mem) {
|
|
pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
|
|
goto fail;
|
|
}
|
|
addr = page_address(tce_mem);
|
|
memset(addr, 0, tce32_segsz * segs);
|
|
|
|
/* Configure HW */
|
|
for (i = 0; i < segs; i++) {
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id,
|
|
pe->pe_number,
|
|
base + i, 1,
|
|
__pa(addr) + tce32_segsz * i,
|
|
tce32_segsz, IOMMU_PAGE_SIZE_4K);
|
|
if (rc) {
|
|
pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
|
|
rc);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Setup DMA32 segment mapping */
|
|
for (i = base; i < base + segs; i++)
|
|
phb->ioda.dma32_segmap[i] = pe->pe_number;
|
|
|
|
/* Setup linux iommu table */
|
|
pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
|
|
base * PNV_IODA1_DMA32_SEGSIZE,
|
|
IOMMU_PAGE_SHIFT_4K);
|
|
|
|
tbl->it_ops = &pnv_ioda1_iommu_ops;
|
|
pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
|
|
pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
|
|
iommu_init_table(tbl, phb->hose->node, 0, 0);
|
|
|
|
if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
|
|
pnv_ioda_setup_bus_dma(pe, pe->pbus);
|
|
|
|
return;
|
|
fail:
|
|
/* XXX Failure: Try to fallback to 64-bit only ? */
|
|
if (tce_mem)
|
|
__free_pages(tce_mem, get_order(tce32_segsz * segs));
|
|
if (tbl) {
|
|
pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
|
|
iommu_tce_table_put(tbl);
|
|
}
|
|
}
|
|
|
|
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
|
|
int num, struct iommu_table *tbl)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
|
|
table_group);
|
|
struct pnv_phb *phb = pe->phb;
|
|
int64_t rc;
|
|
const unsigned long size = tbl->it_indirect_levels ?
|
|
tbl->it_level_size : tbl->it_size;
|
|
const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
|
|
const __u64 win_size = tbl->it_size << tbl->it_page_shift;
|
|
|
|
pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
|
|
num, start_addr, start_addr + win_size - 1,
|
|
IOMMU_PAGE_SIZE(tbl));
|
|
|
|
/*
|
|
* Map TCE table through TVT. The TVE index is the PE number
|
|
* shifted by 1 bit for 32-bits DMA space.
|
|
*/
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id,
|
|
pe->pe_number,
|
|
(pe->pe_number << 1) + num,
|
|
tbl->it_indirect_levels + 1,
|
|
__pa(tbl->it_base),
|
|
size << 3,
|
|
IOMMU_PAGE_SIZE(tbl));
|
|
if (rc) {
|
|
pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
pnv_pci_link_table_and_group(phb->hose->node, num,
|
|
tbl, &pe->table_group);
|
|
pnv_pci_ioda2_tce_invalidate_pe(pe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
|
|
{
|
|
uint16_t window_id = (pe->pe_number << 1 ) + 1;
|
|
int64_t rc;
|
|
|
|
pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
|
|
if (enable) {
|
|
phys_addr_t top = memblock_end_of_DRAM();
|
|
|
|
top = roundup_pow_of_two(top);
|
|
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
|
|
pe->pe_number,
|
|
window_id,
|
|
pe->tce_bypass_base,
|
|
top);
|
|
} else {
|
|
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
|
|
pe->pe_number,
|
|
window_id,
|
|
pe->tce_bypass_base,
|
|
0);
|
|
}
|
|
if (rc)
|
|
pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
|
|
else
|
|
pe->tce_bypass_enabled = enable;
|
|
}
|
|
|
|
static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
|
|
int num, __u32 page_shift, __u64 window_size, __u32 levels,
|
|
bool alloc_userspace_copy, struct iommu_table **ptbl)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
|
|
table_group);
|
|
int nid = pe->phb->hose->node;
|
|
__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
|
|
long ret;
|
|
struct iommu_table *tbl;
|
|
|
|
tbl = pnv_pci_table_alloc(nid);
|
|
if (!tbl)
|
|
return -ENOMEM;
|
|
|
|
tbl->it_ops = &pnv_ioda2_iommu_ops;
|
|
|
|
ret = pnv_pci_ioda2_table_alloc_pages(nid,
|
|
bus_offset, page_shift, window_size,
|
|
levels, alloc_userspace_copy, tbl);
|
|
if (ret) {
|
|
iommu_tce_table_put(tbl);
|
|
return ret;
|
|
}
|
|
|
|
*ptbl = tbl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct iommu_table *tbl = NULL;
|
|
long rc;
|
|
unsigned long res_start, res_end;
|
|
|
|
/*
|
|
* crashkernel= specifies the kdump kernel's maximum memory at
|
|
* some offset and there is no guaranteed the result is a power
|
|
* of 2, which will cause errors later.
|
|
*/
|
|
const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
|
|
|
|
/*
|
|
* In memory constrained environments, e.g. kdump kernel, the
|
|
* DMA window can be larger than available memory, which will
|
|
* cause errors later.
|
|
*/
|
|
const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
|
|
|
|
/*
|
|
* We create the default window as big as we can. The constraint is
|
|
* the max order of allocation possible. The TCE table is likely to
|
|
* end up being multilevel and with on-demand allocation in place,
|
|
* the initial use is not going to be huge as the default window aims
|
|
* to support crippled devices (i.e. not fully 64bit DMAble) only.
|
|
*/
|
|
/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
|
|
const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
|
|
/* Each TCE level cannot exceed maxblock so go multilevel if needed */
|
|
unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
|
|
unsigned long tcelevel_order = ilog2(maxblock >> 3);
|
|
unsigned int levels = tces_order / tcelevel_order;
|
|
|
|
if (tces_order % tcelevel_order)
|
|
levels += 1;
|
|
/*
|
|
* We try to stick to default levels (which is >1 at the moment) in
|
|
* order to save memory by relying on on-demain TCE level allocation.
|
|
*/
|
|
levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
|
|
|
|
rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
|
|
window_size, levels, false, &tbl);
|
|
if (rc) {
|
|
pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
/* We use top part of 32bit space for MMIO so exclude it from DMA */
|
|
res_start = 0;
|
|
res_end = 0;
|
|
if (window_size > pe->phb->ioda.m32_pci_base) {
|
|
res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
|
|
res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
|
|
}
|
|
iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
|
|
|
|
rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
|
|
if (rc) {
|
|
pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
|
|
rc);
|
|
iommu_tce_table_put(tbl);
|
|
return rc;
|
|
}
|
|
|
|
if (!pnv_iommu_bypass_disabled)
|
|
pnv_pci_ioda2_set_bypass(pe, true);
|
|
|
|
/*
|
|
* Set table base for the case of IOMMU DMA use. Usually this is done
|
|
* from dma_dev_setup() which is not called when a device is returned
|
|
* from VFIO so do it here.
|
|
*/
|
|
if (pe->pdev)
|
|
set_iommu_table_base(&pe->pdev->dev, tbl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
|
|
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
|
|
int num)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
|
|
table_group);
|
|
struct pnv_phb *phb = pe->phb;
|
|
long ret;
|
|
|
|
pe_info(pe, "Removing DMA window #%d\n", num);
|
|
|
|
ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
|
|
(pe->pe_number << 1) + num,
|
|
0/* levels */, 0/* table address */,
|
|
0/* table size */, 0/* page size */);
|
|
if (ret)
|
|
pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
|
|
else
|
|
pnv_pci_ioda2_tce_invalidate_pe(pe);
|
|
|
|
pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IOMMU_API
|
|
unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
|
|
__u64 window_size, __u32 levels)
|
|
{
|
|
unsigned long bytes = 0;
|
|
const unsigned window_shift = ilog2(window_size);
|
|
unsigned entries_shift = window_shift - page_shift;
|
|
unsigned table_shift = entries_shift + 3;
|
|
unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
|
|
unsigned long direct_table_size;
|
|
|
|
if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
|
|
!is_power_of_2(window_size))
|
|
return 0;
|
|
|
|
/* Calculate a direct table size from window_size and levels */
|
|
entries_shift = (entries_shift + levels - 1) / levels;
|
|
table_shift = entries_shift + 3;
|
|
table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
|
|
direct_table_size = 1UL << table_shift;
|
|
|
|
for ( ; levels; --levels) {
|
|
bytes += _ALIGN_UP(tce_table_size, direct_table_size);
|
|
|
|
tce_table_size /= direct_table_size;
|
|
tce_table_size <<= 3;
|
|
tce_table_size = max_t(unsigned long,
|
|
tce_table_size, direct_table_size);
|
|
}
|
|
|
|
return bytes + bytes; /* one for HW table, one for userspace copy */
|
|
}
|
|
|
|
static long pnv_pci_ioda2_create_table_userspace(
|
|
struct iommu_table_group *table_group,
|
|
int num, __u32 page_shift, __u64 window_size, __u32 levels,
|
|
struct iommu_table **ptbl)
|
|
{
|
|
long ret = pnv_pci_ioda2_create_table(table_group,
|
|
num, page_shift, window_size, levels, true, ptbl);
|
|
|
|
if (!ret)
|
|
(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
|
|
page_shift, window_size, levels);
|
|
return ret;
|
|
}
|
|
|
|
static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
|
|
table_group);
|
|
/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
|
|
struct iommu_table *tbl = pe->table_group.tables[0];
|
|
|
|
pnv_pci_ioda2_set_bypass(pe, false);
|
|
pnv_pci_ioda2_unset_window(&pe->table_group, 0);
|
|
if (pe->pbus)
|
|
pnv_ioda_setup_bus_dma(pe, pe->pbus);
|
|
else if (pe->pdev)
|
|
set_iommu_table_base(&pe->pdev->dev, NULL);
|
|
iommu_tce_table_put(tbl);
|
|
}
|
|
|
|
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
|
|
table_group);
|
|
|
|
pnv_pci_ioda2_setup_default_config(pe);
|
|
if (pe->pbus)
|
|
pnv_ioda_setup_bus_dma(pe, pe->pbus);
|
|
}
|
|
|
|
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
|
|
.get_table_size = pnv_pci_ioda2_get_table_size,
|
|
.create_table = pnv_pci_ioda2_create_table_userspace,
|
|
.set_window = pnv_pci_ioda2_set_window,
|
|
.unset_window = pnv_pci_ioda2_unset_window,
|
|
.take_ownership = pnv_ioda2_take_ownership,
|
|
.release_ownership = pnv_ioda2_release_ownership,
|
|
};
|
|
|
|
static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
|
|
struct iommu_table_group *table_group,
|
|
struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
iommu_add_device(table_group, &dev->dev);
|
|
|
|
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
|
|
pnv_ioda_setup_bus_iommu_group_add_devices(pe,
|
|
table_group, dev->subordinate);
|
|
}
|
|
}
|
|
|
|
static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
|
|
struct iommu_table_group *table_group, struct pci_bus *bus)
|
|
{
|
|
|
|
if (pe->flags & PNV_IODA_PE_DEV)
|
|
iommu_add_device(table_group, &pe->pdev->dev);
|
|
|
|
if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
|
|
pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
|
|
bus);
|
|
}
|
|
|
|
static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
|
|
|
|
static void pnv_pci_ioda_setup_iommu_api(void)
|
|
{
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
/*
|
|
* There are 4 types of PEs:
|
|
* - PNV_IODA_PE_BUS: a downstream port with an adapter,
|
|
* created from pnv_pci_setup_bridge();
|
|
* - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
|
|
* created from pnv_pci_setup_bridge();
|
|
* - PNV_IODA_PE_VF: a SRIOV virtual function,
|
|
* created from pnv_pcibios_sriov_enable();
|
|
* - PNV_IODA_PE_DEV: an NPU or OCAPI device,
|
|
* created from pnv_pci_ioda_fixup().
|
|
*
|
|
* Normally a PE is represented by an IOMMU group, however for
|
|
* devices with side channels the groups need to be more strict.
|
|
*/
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
phb = hose->private_data;
|
|
|
|
if (phb->type == PNV_PHB_NPU_NVLINK ||
|
|
phb->type == PNV_PHB_NPU_OCAPI)
|
|
continue;
|
|
|
|
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
|
|
struct iommu_table_group *table_group;
|
|
|
|
table_group = pnv_try_setup_npu_table_group(pe);
|
|
if (!table_group) {
|
|
if (!pnv_pci_ioda_pe_dma_weight(pe))
|
|
continue;
|
|
|
|
table_group = &pe->table_group;
|
|
iommu_register_group(&pe->table_group,
|
|
pe->phb->hose->global_number,
|
|
pe->pe_number);
|
|
}
|
|
pnv_ioda_setup_bus_iommu_group(pe, table_group,
|
|
pe->pbus);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we have all PHBs discovered, time to add NPU devices to
|
|
* the corresponding IOMMU groups.
|
|
*/
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
unsigned long pgsizes;
|
|
|
|
phb = hose->private_data;
|
|
|
|
if (phb->type != PNV_PHB_NPU_NVLINK)
|
|
continue;
|
|
|
|
pgsizes = pnv_ioda_parse_tce_sizes(phb);
|
|
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
|
|
/*
|
|
* IODA2 bridges get this set up from
|
|
* pci_controller_ops::setup_bridge but NPU bridges
|
|
* do not have this hook defined so we do it here.
|
|
*/
|
|
pe->table_group.pgsizes = pgsizes;
|
|
pnv_npu_compound_attach(pe);
|
|
}
|
|
}
|
|
}
|
|
#else /* !CONFIG_IOMMU_API */
|
|
static void pnv_pci_ioda_setup_iommu_api(void) { };
|
|
#endif
|
|
|
|
static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
|
|
{
|
|
struct pci_controller *hose = phb->hose;
|
|
struct device_node *dn = hose->dn;
|
|
unsigned long mask = 0;
|
|
int i, rc, count;
|
|
u32 val;
|
|
|
|
count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
|
|
if (count <= 0) {
|
|
mask = SZ_4K | SZ_64K;
|
|
/* Add 16M for POWER8 by default */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
|
|
!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
mask |= SZ_16M | SZ_256M;
|
|
return mask;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
|
|
i, &val);
|
|
if (rc == 0)
|
|
mask |= 1ULL << val;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe)
|
|
{
|
|
int64_t rc;
|
|
|
|
if (!pnv_pci_ioda_pe_dma_weight(pe))
|
|
return;
|
|
|
|
/* TVE #1 is selected by PCI address bit 59 */
|
|
pe->tce_bypass_base = 1ull << 59;
|
|
|
|
/* The PE will reserve all possible 32-bits space */
|
|
pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
|
|
phb->ioda.m32_pci_base);
|
|
|
|
/* Setup linux iommu table */
|
|
pe->table_group.tce32_start = 0;
|
|
pe->table_group.tce32_size = phb->ioda.m32_pci_base;
|
|
pe->table_group.max_dynamic_windows_supported =
|
|
IOMMU_TABLE_GROUP_MAX_TABLES;
|
|
pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
|
|
pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
|
|
#ifdef CONFIG_IOMMU_API
|
|
pe->table_group.ops = &pnv_pci_ioda2_ops;
|
|
#endif
|
|
|
|
rc = pnv_pci_ioda2_setup_default_config(pe);
|
|
if (rc)
|
|
return;
|
|
|
|
if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
|
|
pnv_ioda_setup_bus_dma(pe, pe->pbus);
|
|
}
|
|
|
|
int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
|
|
{
|
|
struct pnv_phb *phb = container_of(chip, struct pnv_phb,
|
|
ioda.irq_chip);
|
|
|
|
return opal_pci_msi_eoi(phb->opal_id, hw_irq);
|
|
}
|
|
|
|
static void pnv_ioda2_msi_eoi(struct irq_data *d)
|
|
{
|
|
int64_t rc;
|
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
|
struct irq_chip *chip = irq_data_get_irq_chip(d);
|
|
|
|
rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
|
|
WARN_ON_ONCE(rc);
|
|
|
|
icp_native_eoi(d);
|
|
}
|
|
|
|
|
|
void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
|
|
{
|
|
struct irq_data *idata;
|
|
struct irq_chip *ichip;
|
|
|
|
/* The MSI EOI OPAL call is only needed on PHB3 */
|
|
if (phb->model != PNV_PHB_MODEL_PHB3)
|
|
return;
|
|
|
|
if (!phb->ioda.irq_chip_init) {
|
|
/*
|
|
* First time we setup an MSI IRQ, we need to setup the
|
|
* corresponding IRQ chip to route correctly.
|
|
*/
|
|
idata = irq_get_irq_data(virq);
|
|
ichip = irq_data_get_irq_chip(idata);
|
|
phb->ioda.irq_chip_init = 1;
|
|
phb->ioda.irq_chip = *ichip;
|
|
phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
|
|
}
|
|
irq_set_chip(virq, &phb->ioda.irq_chip);
|
|
}
|
|
|
|
/*
|
|
* Returns true iff chip is something that we could call
|
|
* pnv_opal_pci_msi_eoi for.
|
|
*/
|
|
bool is_pnv_opal_msi(struct irq_chip *chip)
|
|
{
|
|
return chip->irq_eoi == pnv_ioda2_msi_eoi;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
|
|
|
|
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
|
|
unsigned int hwirq, unsigned int virq,
|
|
unsigned int is_64, struct msi_msg *msg)
|
|
{
|
|
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
|
|
unsigned int xive_num = hwirq - phb->msi_base;
|
|
__be32 data;
|
|
int rc;
|
|
|
|
/* No PE assigned ? bail out ... no MSI for you ! */
|
|
if (pe == NULL)
|
|
return -ENXIO;
|
|
|
|
/* Check if we have an MVE */
|
|
if (pe->mve_number < 0)
|
|
return -ENXIO;
|
|
|
|
/* Force 32-bit MSI on some broken devices */
|
|
if (dev->no_64bit_msi)
|
|
is_64 = 0;
|
|
|
|
/* Assign XIVE to PE */
|
|
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
|
|
if (rc) {
|
|
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
|
|
pci_name(dev), rc, xive_num);
|
|
return -EIO;
|
|
}
|
|
|
|
if (is_64) {
|
|
__be64 addr64;
|
|
|
|
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
|
|
&addr64, &data);
|
|
if (rc) {
|
|
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
|
|
pci_name(dev), rc);
|
|
return -EIO;
|
|
}
|
|
msg->address_hi = be64_to_cpu(addr64) >> 32;
|
|
msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
|
|
} else {
|
|
__be32 addr32;
|
|
|
|
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
|
|
&addr32, &data);
|
|
if (rc) {
|
|
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
|
|
pci_name(dev), rc);
|
|
return -EIO;
|
|
}
|
|
msg->address_hi = 0;
|
|
msg->address_lo = be32_to_cpu(addr32);
|
|
}
|
|
msg->data = be32_to_cpu(data);
|
|
|
|
pnv_set_msi_irq_chip(phb, virq);
|
|
|
|
pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
|
|
" address=%x_%08x data=%x PE# %x\n",
|
|
pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
|
|
msg->address_hi, msg->address_lo, data, pe->pe_number);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
|
|
{
|
|
unsigned int count;
|
|
const __be32 *prop = of_get_property(phb->hose->dn,
|
|
"ibm,opal-msi-ranges", NULL);
|
|
if (!prop) {
|
|
/* BML Fallback */
|
|
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
|
|
}
|
|
if (!prop)
|
|
return;
|
|
|
|
phb->msi_base = be32_to_cpup(prop);
|
|
count = be32_to_cpup(prop + 1);
|
|
if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
|
|
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
|
|
phb->hose->global_number);
|
|
return;
|
|
}
|
|
|
|
phb->msi_setup = pnv_pci_ioda_msi_setup;
|
|
phb->msi32_support = 1;
|
|
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
|
|
count, phb->msi_base);
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
const resource_size_t gate = phb->ioda.m64_segsize >> 2;
|
|
struct resource *res;
|
|
int i;
|
|
resource_size_t size, total_vf_bar_sz;
|
|
struct pci_dn *pdn;
|
|
int mul, total_vfs;
|
|
|
|
pdn = pci_get_pdn(pdev);
|
|
pdn->vfs_expanded = 0;
|
|
pdn->m64_single_mode = false;
|
|
|
|
total_vfs = pci_sriov_get_totalvfs(pdev);
|
|
mul = phb->ioda.total_pe_num;
|
|
total_vf_bar_sz = 0;
|
|
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
|
|
res = &pdev->resource[i + PCI_IOV_RESOURCES];
|
|
if (!res->flags || res->parent)
|
|
continue;
|
|
if (!pnv_pci_is_m64_flags(res->flags)) {
|
|
dev_warn(&pdev->dev, "Don't support SR-IOV with"
|
|
" non M64 VF BAR%d: %pR. \n",
|
|
i, res);
|
|
goto truncate_iov;
|
|
}
|
|
|
|
total_vf_bar_sz += pci_iov_resource_size(pdev,
|
|
i + PCI_IOV_RESOURCES);
|
|
|
|
/*
|
|
* If bigger than quarter of M64 segment size, just round up
|
|
* power of two.
|
|
*
|
|
* Generally, one M64 BAR maps one IOV BAR. To avoid conflict
|
|
* with other devices, IOV BAR size is expanded to be
|
|
* (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
|
|
* segment size , the expanded size would equal to half of the
|
|
* whole M64 space size, which will exhaust the M64 Space and
|
|
* limit the system flexibility. This is a design decision to
|
|
* set the boundary to quarter of the M64 segment size.
|
|
*/
|
|
if (total_vf_bar_sz > gate) {
|
|
mul = roundup_pow_of_two(total_vfs);
|
|
dev_info(&pdev->dev,
|
|
"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
|
|
total_vf_bar_sz, gate, mul);
|
|
pdn->m64_single_mode = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
|
|
res = &pdev->resource[i + PCI_IOV_RESOURCES];
|
|
if (!res->flags || res->parent)
|
|
continue;
|
|
|
|
size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
|
|
/*
|
|
* On PHB3, the minimum size alignment of M64 BAR in single
|
|
* mode is 32MB.
|
|
*/
|
|
if (pdn->m64_single_mode && (size < SZ_32M))
|
|
goto truncate_iov;
|
|
dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
|
|
res->end = res->start + size * mul - 1;
|
|
dev_dbg(&pdev->dev, " %pR\n", res);
|
|
dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
|
|
i, res, mul);
|
|
}
|
|
pdn->vfs_expanded = mul;
|
|
|
|
return;
|
|
|
|
truncate_iov:
|
|
/* To save MMIO space, IOV BAR is truncated. */
|
|
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
|
|
res = &pdev->resource[i + PCI_IOV_RESOURCES];
|
|
res->flags = 0;
|
|
res->end = res->start - 1;
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
|
|
{
|
|
if (WARN_ON(pci_dev_is_added(pdev)))
|
|
return;
|
|
|
|
if (pdev->is_virtfn) {
|
|
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
|
|
|
|
/*
|
|
* VF PEs are single-device PEs so their pdev pointer needs to
|
|
* be set. The pdev doesn't exist when the PE is allocated (in
|
|
* (pcibios_sriov_enable()) so we fix it up here.
|
|
*/
|
|
pe->pdev = pdev;
|
|
WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
|
|
} else if (pdev->is_physfn) {
|
|
/*
|
|
* For PFs adjust their allocated IOV resources to match what
|
|
* the PHB can support using it's M64 BAR table.
|
|
*/
|
|
pnv_pci_ioda_fixup_iov_resources(pdev);
|
|
}
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
|
|
struct resource *res)
|
|
{
|
|
struct pnv_phb *phb = pe->phb;
|
|
struct pci_bus_region region;
|
|
int index;
|
|
int64_t rc;
|
|
|
|
if (!res || !res->flags || res->start > res->end)
|
|
return;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
region.start = res->start - phb->ioda.io_pci_base;
|
|
region.end = res->end - phb->ioda.io_pci_base;
|
|
index = region.start / phb->ioda.io_segsize;
|
|
|
|
while (index < phb->ioda.total_pe_num &&
|
|
region.start <= region.end) {
|
|
phb->ioda.io_segmap[index] = pe->pe_number;
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
|
|
__func__, rc, index, pe->pe_number);
|
|
break;
|
|
}
|
|
|
|
region.start += phb->ioda.io_segsize;
|
|
index++;
|
|
}
|
|
} else if ((res->flags & IORESOURCE_MEM) &&
|
|
!pnv_pci_is_m64(phb, res)) {
|
|
region.start = res->start -
|
|
phb->hose->mem_offset[0] -
|
|
phb->ioda.m32_pci_base;
|
|
region.end = res->end -
|
|
phb->hose->mem_offset[0] -
|
|
phb->ioda.m32_pci_base;
|
|
index = region.start / phb->ioda.m32_segsize;
|
|
|
|
while (index < phb->ioda.total_pe_num &&
|
|
region.start <= region.end) {
|
|
phb->ioda.m32_segmap[index] = pe->pe_number;
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
|
|
__func__, rc, index, pe->pe_number);
|
|
break;
|
|
}
|
|
|
|
region.start += phb->ioda.m32_segsize;
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is supposed to be called on basis of PE from top
|
|
* to bottom style. So the the I/O or MMIO segment assigned to
|
|
* parent PE could be overridden by its child PEs if necessary.
|
|
*/
|
|
static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int i;
|
|
|
|
/*
|
|
* NOTE: We only care PCI bus based PE for now. For PCI
|
|
* device based PE, for example SRIOV sensitive VF should
|
|
* be figured out later.
|
|
*/
|
|
BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
|
|
|
|
list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++)
|
|
pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
|
|
|
|
/*
|
|
* If the PE contains all subordinate PCI buses, the
|
|
* windows of the child bridges should be mapped to
|
|
* the PE as well.
|
|
*/
|
|
if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
|
|
continue;
|
|
for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
|
|
pnv_ioda_setup_pe_res(pe,
|
|
&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int pnv_pci_diag_data_set(void *data, u64 val)
|
|
{
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
s64 ret;
|
|
|
|
if (val != 1ULL)
|
|
return -EINVAL;
|
|
|
|
hose = (struct pci_controller *)data;
|
|
if (!hose || !hose->private_data)
|
|
return -ENODEV;
|
|
|
|
phb = hose->private_data;
|
|
|
|
/* Retrieve the diag data from firmware */
|
|
ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
|
|
phb->diag_data_size);
|
|
if (ret != OPAL_SUCCESS)
|
|
return -EIO;
|
|
|
|
/* Print the diag data to the kernel log */
|
|
pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
|
|
pnv_pci_diag_data_set, "%llu\n");
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
static void pnv_pci_ioda_create_dbgfs(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct pci_controller *hose, *tmp;
|
|
struct pnv_phb *phb;
|
|
char name[16];
|
|
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
phb = hose->private_data;
|
|
|
|
/* Notify initialization of PHB done */
|
|
phb->initialized = 1;
|
|
|
|
sprintf(name, "PCI%04x", hose->global_number);
|
|
phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
|
|
if (!phb->dbgfs) {
|
|
pr_warn("%s: Error on creating debugfs on PHB#%x\n",
|
|
__func__, hose->global_number);
|
|
continue;
|
|
}
|
|
|
|
debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
|
|
&pnv_pci_diag_data_fops);
|
|
}
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
}
|
|
|
|
static void pnv_pci_enable_bridge(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev = bus->self;
|
|
struct pci_bus *child;
|
|
|
|
/* Empty bus ? bail */
|
|
if (list_empty(&bus->devices))
|
|
return;
|
|
|
|
/*
|
|
* If there's a bridge associated with that bus enable it. This works
|
|
* around races in the generic code if the enabling is done during
|
|
* parallel probing. This can be removed once those races have been
|
|
* fixed.
|
|
*/
|
|
if (dev) {
|
|
int rc = pci_enable_device(dev);
|
|
if (rc)
|
|
pci_err(dev, "Error enabling bridge (%d)\n", rc);
|
|
pci_set_master(dev);
|
|
}
|
|
|
|
/* Perform the same to child busses */
|
|
list_for_each_entry(child, &bus->children, node)
|
|
pnv_pci_enable_bridge(child);
|
|
}
|
|
|
|
static void pnv_pci_enable_bridges(void)
|
|
{
|
|
struct pci_controller *hose;
|
|
|
|
list_for_each_entry(hose, &hose_list, list_node)
|
|
pnv_pci_enable_bridge(hose->bus);
|
|
}
|
|
|
|
static void pnv_pci_ioda_fixup(void)
|
|
{
|
|
pnv_pci_ioda_setup_PEs();
|
|
pnv_pci_ioda_setup_iommu_api();
|
|
pnv_pci_ioda_create_dbgfs();
|
|
|
|
pnv_pci_enable_bridges();
|
|
|
|
#ifdef CONFIG_EEH
|
|
pnv_eeh_post_init();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Returns the alignment for I/O or memory windows for P2P
|
|
* bridges. That actually depends on how PEs are segmented.
|
|
* For now, we return I/O or M32 segment size for PE sensitive
|
|
* P2P bridges. Otherwise, the default values (4KiB for I/O,
|
|
* 1MiB for memory) will be returned.
|
|
*
|
|
* The current PCI bus might be put into one PE, which was
|
|
* create against the parent PCI bridge. For that case, we
|
|
* needn't enlarge the alignment so that we can save some
|
|
* resources.
|
|
*/
|
|
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
|
|
unsigned long type)
|
|
{
|
|
struct pci_dev *bridge;
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
int num_pci_bridges = 0;
|
|
|
|
bridge = bus->self;
|
|
while (bridge) {
|
|
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
|
|
num_pci_bridges++;
|
|
if (num_pci_bridges >= 2)
|
|
return 1;
|
|
}
|
|
|
|
bridge = bridge->bus->self;
|
|
}
|
|
|
|
/*
|
|
* We fall back to M32 if M64 isn't supported. We enforce the M64
|
|
* alignment for any 64-bit resource, PCIe doesn't care and
|
|
* bridges only do 64-bit prefetchable anyway.
|
|
*/
|
|
if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
|
|
return phb->ioda.m64_segsize;
|
|
if (type & IORESOURCE_MEM)
|
|
return phb->ioda.m32_segsize;
|
|
|
|
return phb->ioda.io_segsize;
|
|
}
|
|
|
|
/*
|
|
* We are updating root port or the upstream port of the
|
|
* bridge behind the root port with PHB's windows in order
|
|
* to accommodate the changes on required resources during
|
|
* PCI (slot) hotplug, which is connected to either root
|
|
* port or the downstream ports of PCIe switch behind the
|
|
* root port.
|
|
*/
|
|
static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
|
|
unsigned long type)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dev *bridge = bus->self;
|
|
struct resource *r, *w;
|
|
bool msi_region = false;
|
|
int i;
|
|
|
|
/* Check if we need apply fixup to the bridge's windows */
|
|
if (!pci_is_root_bus(bridge->bus) &&
|
|
!pci_is_root_bus(bridge->bus->self->bus))
|
|
return;
|
|
|
|
/* Fixup the resources */
|
|
for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
|
|
r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
|
|
if (!r->flags || !r->parent)
|
|
continue;
|
|
|
|
w = NULL;
|
|
if (r->flags & type & IORESOURCE_IO)
|
|
w = &hose->io_resource;
|
|
else if (pnv_pci_is_m64(phb, r) &&
|
|
(type & IORESOURCE_PREFETCH) &&
|
|
phb->ioda.m64_segsize)
|
|
w = &hose->mem_resources[1];
|
|
else if (r->flags & type & IORESOURCE_MEM) {
|
|
w = &hose->mem_resources[0];
|
|
msi_region = true;
|
|
}
|
|
|
|
r->start = w->start;
|
|
r->end = w->end;
|
|
|
|
/* The 64KB 32-bits MSI region shouldn't be included in
|
|
* the 32-bits bridge window. Otherwise, we can see strange
|
|
* issues. One of them is EEH error observed on Garrison.
|
|
*
|
|
* Exclude top 1MB region which is the minimal alignment of
|
|
* 32-bits bridge window.
|
|
*/
|
|
if (msi_region) {
|
|
r->end += 0x10000;
|
|
r->end -= 0x100000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dev *bridge = bus->self;
|
|
struct pnv_ioda_pe *pe;
|
|
bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
|
|
|
|
/* Extend bridge's windows if necessary */
|
|
pnv_pci_fixup_bridge_resources(bus, type);
|
|
|
|
/* The PE for root bus should be realized before any one else */
|
|
if (!phb->ioda.root_pe_populated) {
|
|
pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
|
|
if (pe) {
|
|
phb->ioda.root_pe_idx = pe->pe_number;
|
|
phb->ioda.root_pe_populated = true;
|
|
}
|
|
}
|
|
|
|
/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
|
|
if (list_empty(&bus->devices))
|
|
return;
|
|
|
|
/* Reserve PEs according to used M64 resources */
|
|
pnv_ioda_reserve_m64_pe(bus, NULL, all);
|
|
|
|
/*
|
|
* Assign PE. We might run here because of partial hotplug.
|
|
* For the case, we just pick up the existing PE and should
|
|
* not allocate resources again.
|
|
*/
|
|
pe = pnv_ioda_setup_bus_PE(bus, all);
|
|
if (!pe)
|
|
return;
|
|
|
|
pnv_ioda_setup_pe_seg(pe);
|
|
switch (phb->type) {
|
|
case PNV_PHB_IODA1:
|
|
pnv_pci_ioda1_setup_dma_pe(phb, pe);
|
|
break;
|
|
case PNV_PHB_IODA2:
|
|
pnv_pci_ioda2_setup_dma_pe(phb, pe);
|
|
break;
|
|
default:
|
|
pr_warn("%s: No DMA for PHB#%x (type %d)\n",
|
|
__func__, phb->hose->global_number, phb->type);
|
|
}
|
|
}
|
|
|
|
static resource_size_t pnv_pci_default_alignment(void)
|
|
{
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
|
|
int resno)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
resource_size_t align;
|
|
|
|
/*
|
|
* On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
|
|
* SR-IOV. While from hardware perspective, the range mapped by M64
|
|
* BAR should be size aligned.
|
|
*
|
|
* When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
|
|
* powernv-specific hardware restriction is gone. But if just use the
|
|
* VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
|
|
* in one segment of M64 #15, which introduces the PE conflict between
|
|
* PF and VF. Based on this, the minimum alignment of an IOV BAR is
|
|
* m64_segsize.
|
|
*
|
|
* This function returns the total IOV BAR size if M64 BAR is in
|
|
* Shared PE mode or just VF BAR size if not.
|
|
* If the M64 BAR is in Single PE mode, return the VF BAR size or
|
|
* M64 segment size if IOV BAR size is less.
|
|
*/
|
|
align = pci_iov_resource_size(pdev, resno);
|
|
if (!pdn->vfs_expanded)
|
|
return align;
|
|
if (pdn->m64_single_mode)
|
|
return max(align, (resource_size_t)phb->ioda.m64_segsize);
|
|
|
|
return pdn->vfs_expanded * align;
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
/* Prevent enabling devices for which we couldn't properly
|
|
* assign a PE
|
|
*/
|
|
static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn;
|
|
|
|
/* The function is probably called while the PEs have
|
|
* not be created yet. For example, resource reassignment
|
|
* during PCI probe period. We just skip the check if
|
|
* PEs isn't ready.
|
|
*/
|
|
if (!phb->initialized)
|
|
return true;
|
|
|
|
pdn = pci_get_pdn(dev);
|
|
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
|
|
int num)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(table_group,
|
|
struct pnv_ioda_pe, table_group);
|
|
struct pnv_phb *phb = pe->phb;
|
|
unsigned int idx;
|
|
long rc;
|
|
|
|
pe_info(pe, "Removing DMA window #%d\n", num);
|
|
for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
|
|
if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
|
|
continue;
|
|
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
|
|
idx, 0, 0ul, 0ul, 0ul);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
|
|
rc, idx);
|
|
return rc;
|
|
}
|
|
|
|
phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
|
|
}
|
|
|
|
pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
|
|
{
|
|
unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
|
|
struct iommu_table *tbl = pe->table_group.tables[0];
|
|
int64_t rc;
|
|
|
|
if (!weight)
|
|
return;
|
|
|
|
rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
|
|
if (rc != OPAL_SUCCESS)
|
|
return;
|
|
|
|
pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
|
|
if (pe->table_group.group) {
|
|
iommu_group_put(pe->table_group.group);
|
|
WARN_ON(pe->table_group.group);
|
|
}
|
|
|
|
free_pages(tbl->it_base, get_order(tbl->it_size << 3));
|
|
iommu_tce_table_put(tbl);
|
|
}
|
|
|
|
static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct iommu_table *tbl = pe->table_group.tables[0];
|
|
unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
|
|
#ifdef CONFIG_IOMMU_API
|
|
int64_t rc;
|
|
#endif
|
|
|
|
if (!weight)
|
|
return;
|
|
|
|
#ifdef CONFIG_IOMMU_API
|
|
rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
|
|
if (rc)
|
|
pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
|
|
#endif
|
|
|
|
pnv_pci_ioda2_set_bypass(pe, false);
|
|
if (pe->table_group.group) {
|
|
iommu_group_put(pe->table_group.group);
|
|
WARN_ON(pe->table_group.group);
|
|
}
|
|
|
|
iommu_tce_table_put(tbl);
|
|
}
|
|
|
|
static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
|
|
unsigned short win,
|
|
unsigned int *map)
|
|
{
|
|
struct pnv_phb *phb = pe->phb;
|
|
int idx;
|
|
int64_t rc;
|
|
|
|
for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
|
|
if (map[idx] != pe->pe_number)
|
|
continue;
|
|
|
|
if (win == OPAL_M64_WINDOW_TYPE)
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
phb->ioda.reserved_pe_idx, win,
|
|
idx / PNV_IODA1_M64_SEGS,
|
|
idx % PNV_IODA1_M64_SEGS);
|
|
else
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
phb->ioda.reserved_pe_idx, win, 0, idx);
|
|
|
|
if (rc != OPAL_SUCCESS)
|
|
pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
|
|
rc, win, idx);
|
|
|
|
map[idx] = IODA_INVALID_PE;
|
|
}
|
|
}
|
|
|
|
static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb;
|
|
|
|
if (phb->type == PNV_PHB_IODA1) {
|
|
pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
|
|
phb->ioda.io_segmap);
|
|
pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
|
|
phb->ioda.m32_segmap);
|
|
pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
|
|
phb->ioda.m64_segmap);
|
|
} else if (phb->type == PNV_PHB_IODA2) {
|
|
pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
|
|
phb->ioda.m32_segmap);
|
|
}
|
|
}
|
|
|
|
static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb;
|
|
struct pnv_ioda_pe *slave, *tmp;
|
|
|
|
list_del(&pe->list);
|
|
switch (phb->type) {
|
|
case PNV_PHB_IODA1:
|
|
pnv_pci_ioda1_release_pe_dma(pe);
|
|
break;
|
|
case PNV_PHB_IODA2:
|
|
pnv_pci_ioda2_release_pe_dma(pe);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
pnv_ioda_release_pe_seg(pe);
|
|
pnv_ioda_deconfigure_pe(pe->phb, pe);
|
|
|
|
/* Release slave PEs in the compound PE */
|
|
if (pe->flags & PNV_IODA_PE_MASTER) {
|
|
list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
|
|
list_del(&slave->list);
|
|
pnv_ioda_free_pe(slave);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The PE for root bus can be removed because of hotplug in EEH
|
|
* recovery for fenced PHB error. We need to mark the PE dead so
|
|
* that it can be populated again in PCI hot add path. The PE
|
|
* shouldn't be destroyed as it's the global reserved resource.
|
|
*/
|
|
if (phb->ioda.root_pe_populated &&
|
|
phb->ioda.root_pe_idx == pe->pe_number)
|
|
phb->ioda.root_pe_populated = false;
|
|
else
|
|
pnv_ioda_free_pe(pe);
|
|
}
|
|
|
|
static void pnv_pci_release_device(struct pci_dev *pdev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
if (pdev->is_virtfn)
|
|
return;
|
|
|
|
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
|
|
return;
|
|
|
|
/*
|
|
* PCI hotplug can happen as part of EEH error recovery. The @pdn
|
|
* isn't removed and added afterwards in this scenario. We should
|
|
* set the PE number in @pdn to an invalid one. Otherwise, the PE's
|
|
* device count is decreased on removing devices while failing to
|
|
* be increased on adding devices. It leads to unbalanced PE's device
|
|
* count and eventually make normal PCI hotplug path broken.
|
|
*/
|
|
pe = &phb->ioda.pe_array[pdn->pe_number];
|
|
pdn->pe_number = IODA_INVALID_PE;
|
|
|
|
WARN_ON(--pe->device_count < 0);
|
|
if (pe->device_count == 0)
|
|
pnv_ioda_release_pe(pe);
|
|
}
|
|
|
|
static void pnv_npu_disable_device(struct pci_dev *pdev)
|
|
{
|
|
struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
|
|
struct eeh_pe *eehpe = edev ? edev->pe : NULL;
|
|
|
|
if (eehpe && eeh_ops && eeh_ops->reset)
|
|
eeh_ops->reset(eehpe, EEH_RESET_HOT);
|
|
}
|
|
|
|
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
|
|
opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
|
|
OPAL_ASSERT_RESET);
|
|
}
|
|
|
|
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
|
|
.dma_dev_setup = pnv_pci_dma_dev_setup,
|
|
.dma_bus_setup = pnv_pci_dma_bus_setup,
|
|
.iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
|
|
.setup_msi_irqs = pnv_setup_msi_irqs,
|
|
.teardown_msi_irqs = pnv_teardown_msi_irqs,
|
|
.enable_device_hook = pnv_pci_enable_device_hook,
|
|
.release_device = pnv_pci_release_device,
|
|
.window_alignment = pnv_pci_window_alignment,
|
|
.setup_bridge = pnv_pci_setup_bridge,
|
|
.reset_secondary_bus = pnv_pci_reset_secondary_bus,
|
|
.shutdown = pnv_pci_ioda_shutdown,
|
|
};
|
|
|
|
static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
|
|
.dma_dev_setup = pnv_pci_dma_dev_setup,
|
|
.setup_msi_irqs = pnv_setup_msi_irqs,
|
|
.teardown_msi_irqs = pnv_teardown_msi_irqs,
|
|
.enable_device_hook = pnv_pci_enable_device_hook,
|
|
.window_alignment = pnv_pci_window_alignment,
|
|
.reset_secondary_bus = pnv_pci_reset_secondary_bus,
|
|
.shutdown = pnv_pci_ioda_shutdown,
|
|
.disable_device = pnv_npu_disable_device,
|
|
};
|
|
|
|
static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
|
|
.enable_device_hook = pnv_pci_enable_device_hook,
|
|
.window_alignment = pnv_pci_window_alignment,
|
|
.reset_secondary_bus = pnv_pci_reset_secondary_bus,
|
|
.shutdown = pnv_pci_ioda_shutdown,
|
|
};
|
|
|
|
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
|
|
u64 hub_id, int ioda_type)
|
|
{
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
unsigned long size, m64map_off, m32map_off, pemap_off;
|
|
unsigned long iomap_off = 0, dma32map_off = 0;
|
|
struct resource r;
|
|
const __be64 *prop64;
|
|
const __be32 *prop32;
|
|
int len;
|
|
unsigned int segno;
|
|
u64 phb_id;
|
|
void *aux;
|
|
long rc;
|
|
|
|
if (!of_device_is_available(np))
|
|
return;
|
|
|
|
pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
|
|
|
|
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
|
|
if (!prop64) {
|
|
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
|
|
return;
|
|
}
|
|
phb_id = be64_to_cpup(prop64);
|
|
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
|
|
|
|
phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
|
|
if (!phb)
|
|
panic("%s: Failed to allocate %zu bytes\n", __func__,
|
|
sizeof(*phb));
|
|
|
|
/* Allocate PCI controller */
|
|
phb->hose = hose = pcibios_alloc_controller(np);
|
|
if (!phb->hose) {
|
|
pr_err(" Can't allocate PCI controller for %pOF\n",
|
|
np);
|
|
memblock_free(__pa(phb), sizeof(struct pnv_phb));
|
|
return;
|
|
}
|
|
|
|
spin_lock_init(&phb->lock);
|
|
prop32 = of_get_property(np, "bus-range", &len);
|
|
if (prop32 && len == 8) {
|
|
hose->first_busno = be32_to_cpu(prop32[0]);
|
|
hose->last_busno = be32_to_cpu(prop32[1]);
|
|
} else {
|
|
pr_warn(" Broken <bus-range> on %pOF\n", np);
|
|
hose->first_busno = 0;
|
|
hose->last_busno = 0xff;
|
|
}
|
|
hose->private_data = phb;
|
|
phb->hub_id = hub_id;
|
|
phb->opal_id = phb_id;
|
|
phb->type = ioda_type;
|
|
mutex_init(&phb->ioda.pe_alloc_mutex);
|
|
|
|
/* Detect specific models for error handling */
|
|
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
|
|
phb->model = PNV_PHB_MODEL_P7IOC;
|
|
else if (of_device_is_compatible(np, "ibm,power8-pciex"))
|
|
phb->model = PNV_PHB_MODEL_PHB3;
|
|
else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
|
|
phb->model = PNV_PHB_MODEL_NPU;
|
|
else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
|
|
phb->model = PNV_PHB_MODEL_NPU2;
|
|
else
|
|
phb->model = PNV_PHB_MODEL_UNKNOWN;
|
|
|
|
/* Initialize diagnostic data buffer */
|
|
prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
|
|
if (prop32)
|
|
phb->diag_data_size = be32_to_cpup(prop32);
|
|
else
|
|
phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
|
|
|
|
phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
|
|
if (!phb->diag_data)
|
|
panic("%s: Failed to allocate %u bytes\n", __func__,
|
|
phb->diag_data_size);
|
|
|
|
/* Parse 32-bit and IO ranges (if any) */
|
|
pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
|
|
|
|
/* Get registers */
|
|
if (!of_address_to_resource(np, 0, &r)) {
|
|
phb->regs_phys = r.start;
|
|
phb->regs = ioremap(r.start, resource_size(&r));
|
|
if (phb->regs == NULL)
|
|
pr_err(" Failed to map registers !\n");
|
|
}
|
|
|
|
/* Initialize more IODA stuff */
|
|
phb->ioda.total_pe_num = 1;
|
|
prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
|
|
if (prop32)
|
|
phb->ioda.total_pe_num = be32_to_cpup(prop32);
|
|
prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
|
|
if (prop32)
|
|
phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
|
|
|
|
/* Invalidate RID to PE# mapping */
|
|
for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
|
|
phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
|
|
|
|
/* Parse 64-bit MMIO range */
|
|
pnv_ioda_parse_m64_window(phb);
|
|
|
|
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
|
|
/* FW Has already off top 64k of M32 space (MSI space) */
|
|
phb->ioda.m32_size += 0x10000;
|
|
|
|
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
|
|
phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
|
|
phb->ioda.io_size = hose->pci_io_size;
|
|
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
|
|
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
|
|
|
|
/* Calculate how many 32-bit TCE segments we have */
|
|
phb->ioda.dma32_count = phb->ioda.m32_pci_base /
|
|
PNV_IODA1_DMA32_SEGSIZE;
|
|
|
|
/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
|
|
size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
|
|
sizeof(unsigned long));
|
|
m64map_off = size;
|
|
size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
|
|
m32map_off = size;
|
|
size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
|
|
if (phb->type == PNV_PHB_IODA1) {
|
|
iomap_off = size;
|
|
size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
|
|
dma32map_off = size;
|
|
size += phb->ioda.dma32_count *
|
|
sizeof(phb->ioda.dma32_segmap[0]);
|
|
}
|
|
pemap_off = size;
|
|
size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
|
|
aux = memblock_alloc(size, SMP_CACHE_BYTES);
|
|
if (!aux)
|
|
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
|
|
phb->ioda.pe_alloc = aux;
|
|
phb->ioda.m64_segmap = aux + m64map_off;
|
|
phb->ioda.m32_segmap = aux + m32map_off;
|
|
for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
|
|
phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
|
|
phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
|
|
}
|
|
if (phb->type == PNV_PHB_IODA1) {
|
|
phb->ioda.io_segmap = aux + iomap_off;
|
|
for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
|
|
phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
|
|
|
|
phb->ioda.dma32_segmap = aux + dma32map_off;
|
|
for (segno = 0; segno < phb->ioda.dma32_count; segno++)
|
|
phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
|
|
}
|
|
phb->ioda.pe_array = aux + pemap_off;
|
|
|
|
/*
|
|
* Choose PE number for root bus, which shouldn't have
|
|
* M64 resources consumed by its child devices. To pick
|
|
* the PE number adjacent to the reserved one if possible.
|
|
*/
|
|
pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
|
|
if (phb->ioda.reserved_pe_idx == 0) {
|
|
phb->ioda.root_pe_idx = 1;
|
|
pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
|
|
} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
|
|
phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
|
|
pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
|
|
} else {
|
|
phb->ioda.root_pe_idx = IODA_INVALID_PE;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&phb->ioda.pe_list);
|
|
mutex_init(&phb->ioda.pe_list_mutex);
|
|
|
|
/* Calculate how many 32-bit TCE segments we have */
|
|
phb->ioda.dma32_count = phb->ioda.m32_pci_base /
|
|
PNV_IODA1_DMA32_SEGSIZE;
|
|
|
|
#if 0 /* We should really do that ... */
|
|
rc = opal_pci_set_phb_mem_window(opal->phb_id,
|
|
window_type,
|
|
window_num,
|
|
starting_real_address,
|
|
starting_pci_address,
|
|
segment_size);
|
|
#endif
|
|
|
|
pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
|
|
phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
|
|
phb->ioda.m32_size, phb->ioda.m32_segsize);
|
|
if (phb->ioda.m64_size)
|
|
pr_info(" M64: 0x%lx [segment=0x%lx]\n",
|
|
phb->ioda.m64_size, phb->ioda.m64_segsize);
|
|
if (phb->ioda.io_size)
|
|
pr_info(" IO: 0x%x [segment=0x%x]\n",
|
|
phb->ioda.io_size, phb->ioda.io_segsize);
|
|
|
|
|
|
phb->hose->ops = &pnv_pci_ops;
|
|
phb->get_pe_state = pnv_ioda_get_pe_state;
|
|
phb->freeze_pe = pnv_ioda_freeze_pe;
|
|
phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
|
|
|
|
/* Setup MSI support */
|
|
pnv_pci_init_ioda_msis(phb);
|
|
|
|
/*
|
|
* We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
|
|
* to let the PCI core do resource assignment. It's supposed
|
|
* that the PCI core will do correct I/O and MMIO alignment
|
|
* for the P2P bridge bars so that each PCI bus (excluding
|
|
* the child P2P bridges) can form individual PE.
|
|
*/
|
|
ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
|
|
|
|
switch (phb->type) {
|
|
case PNV_PHB_NPU_NVLINK:
|
|
hose->controller_ops = pnv_npu_ioda_controller_ops;
|
|
break;
|
|
case PNV_PHB_NPU_OCAPI:
|
|
hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
|
|
break;
|
|
default:
|
|
phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
|
|
hose->controller_ops = pnv_pci_ioda_controller_ops;
|
|
}
|
|
|
|
ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
|
|
ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
|
|
ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
|
|
ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
|
|
#endif
|
|
|
|
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
|
|
|
|
/* Reset IODA tables to a clean state */
|
|
rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
|
|
if (rc)
|
|
pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
|
|
|
|
/*
|
|
* If we're running in kdump kernel, the previous kernel never
|
|
* shutdown PCI devices correctly. We already got IODA table
|
|
* cleaned out. So we have to issue PHB reset to stop all PCI
|
|
* transactions from previous kernel. The ppc_pci_reset_phbs
|
|
* kernel parameter will force this reset too. Additionally,
|
|
* if the IODA reset above failed then use a bigger hammer.
|
|
* This can happen if we get a PHB fatal error in very early
|
|
* boot.
|
|
*/
|
|
if (is_kdump_kernel() || pci_reset_phbs || rc) {
|
|
pr_info(" Issue PHB reset ...\n");
|
|
pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
|
|
pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
|
|
}
|
|
|
|
/* Remove M64 resource if we can't configure it successfully */
|
|
if (!phb->init_m64 || phb->init_m64(phb))
|
|
hose->mem_resources[1].flags = 0;
|
|
}
|
|
|
|
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
|
|
{
|
|
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
|
|
}
|
|
|
|
void __init pnv_pci_init_npu_phb(struct device_node *np)
|
|
{
|
|
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
|
|
}
|
|
|
|
void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
|
|
{
|
|
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
|
|
}
|
|
|
|
static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
|
|
if (!machine_is(powernv))
|
|
return;
|
|
|
|
if (phb->type == PNV_PHB_NPU_OCAPI)
|
|
dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
|
|
}
|
|
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
|
|
|
|
void __init pnv_pci_init_ioda_hub(struct device_node *np)
|
|
{
|
|
struct device_node *phbn;
|
|
const __be64 *prop64;
|
|
u64 hub_id;
|
|
|
|
pr_info("Probing IODA IO-Hub %pOF\n", np);
|
|
|
|
prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
|
|
if (!prop64) {
|
|
pr_err(" Missing \"ibm,opal-hubid\" property !\n");
|
|
return;
|
|
}
|
|
hub_id = be64_to_cpup(prop64);
|
|
pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
|
|
|
|
/* Count child PHBs */
|
|
for_each_child_of_node(np, phbn) {
|
|
/* Look for IODA1 PHBs */
|
|
if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
|
|
pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
|
|
}
|
|
}
|