linux/linux-5.4.31/arch/mips/math-emu/ieee754sp.h

78 lines
1.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* IEEE754 floating point
* double precision internal header file
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*/
#include <linux/compiler.h>
#include "ieee754int.h"
#define assert(expr) ((void)0)
#define SP_EBIAS 127
#define SP_EMIN (-126)
#define SP_EMAX 127
#define SP_FBITS 23
#define SP_MBITS 23
#define SP_MBIT(x) ((u32)1 << (x))
#define SP_HIDDEN_BIT SP_MBIT(SP_FBITS)
#define SP_SIGN_BIT SP_MBIT(31)
#define SPSIGN(sp) (sp.sign)
#define SPBEXP(sp) (sp.bexp)
#define SPMANT(sp) (sp.mant)
static inline int ieee754sp_finite(union ieee754sp x)
{
return SPBEXP(x) != SP_EMAX + 1 + SP_EBIAS;
}
/* 64 bit right shift with rounding */
#define XSPSRS64(v, rs) \
(((rs) >= 64) ? ((v) != 0) : ((v) >> (rs)) | ((v) << (64-(rs)) != 0))
/* 3bit extended single precision sticky right shift */
#define XSPSRS(v, rs) \
((rs > (SP_FBITS+3))?1:((v) >> (rs)) | ((v) << (32-(rs)) != 0))
#define XSPSRS1(m) \
((m >> 1) | (m & 1))
#define SPXSRSX1() \
(xe++, (xm = XSPSRS1(xm)))
#define SPXSRSY1() \
(ye++, (ym = XSPSRS1(ym)))
/* convert denormal to normalized with extended exponent */
#define SPDNORMx(m,e) \
while ((m >> SP_FBITS) == 0) { m <<= 1; e--; }
#define SPDNORMX SPDNORMx(xm, xe)
#define SPDNORMY SPDNORMx(ym, ye)
#define SPDNORMZ SPDNORMx(zm, ze)
static inline union ieee754sp buildsp(int s, int bx, unsigned int m)
{
union ieee754sp r;
assert((s) == 0 || (s) == 1);
assert((bx) >= SP_EMIN - 1 + SP_EBIAS
&& (bx) <= SP_EMAX + 1 + SP_EBIAS);
assert(((m) >> SP_FBITS) == 0);
r.sign = s;
r.bexp = bx;
r.mant = m;
return r;
}
extern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp);
extern union ieee754sp ieee754sp_format(int, int, unsigned);