linux/linux-5.4.31/drivers/media/i2c/et8ek8/et8ek8_driver.c

1516 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* et8ek8_driver.c
*
* Copyright (C) 2008 Nokia Corporation
*
* Contact: Sakari Ailus <sakari.ailus@iki.fi>
* Tuukka Toivonen <tuukkat76@gmail.com>
* Pavel Machek <pavel@ucw.cz>
*
* Based on code from Toni Leinonen <toni.leinonen@offcode.fi>.
*
* This driver is based on the Micron MT9T012 camera imager driver
* (C) Texas Instruments.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/v4l2-mediabus.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-subdev.h>
#include "et8ek8_reg.h"
#define ET8EK8_NAME "et8ek8"
#define ET8EK8_PRIV_MEM_SIZE 128
#define ET8EK8_MAX_MSG 8
struct et8ek8_sensor {
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_mbus_framefmt format;
struct gpio_desc *reset;
struct regulator *vana;
struct clk *ext_clk;
u32 xclk_freq;
u16 version;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *pixel_rate;
struct et8ek8_reglist *current_reglist;
u8 priv_mem[ET8EK8_PRIV_MEM_SIZE];
struct mutex power_lock;
int power_count;
};
#define to_et8ek8_sensor(sd) container_of(sd, struct et8ek8_sensor, subdev)
enum et8ek8_versions {
ET8EK8_REV_1 = 0x0001,
ET8EK8_REV_2,
};
/*
* This table describes what should be written to the sensor register
* for each gain value. The gain(index in the table) is in terms of
* 0.1EV, i.e. 10 indexes in the table give 2 time more gain [0] in
* the *analog gain, [1] in the digital gain
*
* Analog gain [dB] = 20*log10(regvalue/32); 0x20..0x100
*/
static struct et8ek8_gain {
u16 analog;
u16 digital;
} const et8ek8_gain_table[] = {
{ 32, 0}, /* x1 */
{ 34, 0},
{ 37, 0},
{ 39, 0},
{ 42, 0},
{ 45, 0},
{ 49, 0},
{ 52, 0},
{ 56, 0},
{ 60, 0},
{ 64, 0}, /* x2 */
{ 69, 0},
{ 74, 0},
{ 79, 0},
{ 84, 0},
{ 91, 0},
{ 97, 0},
{104, 0},
{111, 0},
{119, 0},
{128, 0}, /* x4 */
{137, 0},
{147, 0},
{158, 0},
{169, 0},
{181, 0},
{194, 0},
{208, 0},
{223, 0},
{239, 0},
{256, 0}, /* x8 */
{256, 73},
{256, 152},
{256, 236},
{256, 327},
{256, 424},
{256, 528},
{256, 639},
{256, 758},
{256, 886},
{256, 1023}, /* x16 */
};
/* Register definitions */
#define REG_REVISION_NUMBER_L 0x1200
#define REG_REVISION_NUMBER_H 0x1201
#define PRIV_MEM_START_REG 0x0008
#define PRIV_MEM_WIN_SIZE 8
#define ET8EK8_I2C_DELAY 3 /* msec delay b/w accesses */
#define USE_CRC 1
/*
* Register access helpers
*
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
* Returns zero if successful, or non-zero otherwise.
*/
static int et8ek8_i2c_read_reg(struct i2c_client *client, u16 data_length,
u16 reg, u32 *val)
{
int r;
struct i2c_msg msg;
unsigned char data[4];
if (!client->adapter)
return -ENODEV;
if (data_length != ET8EK8_REG_8BIT && data_length != ET8EK8_REG_16BIT)
return -EINVAL;
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2;
msg.buf = data;
/* high byte goes out first */
data[0] = (u8) (reg >> 8);
data[1] = (u8) (reg & 0xff);
r = i2c_transfer(client->adapter, &msg, 1);
if (r < 0)
goto err;
msg.len = data_length;
msg.flags = I2C_M_RD;
r = i2c_transfer(client->adapter, &msg, 1);
if (r < 0)
goto err;
*val = 0;
/* high byte comes first */
if (data_length == ET8EK8_REG_8BIT)
*val = data[0];
else
*val = (data[1] << 8) + data[0];
return 0;
err:
dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
return r;
}
static void et8ek8_i2c_create_msg(struct i2c_client *client, u16 len, u16 reg,
u32 val, struct i2c_msg *msg,
unsigned char *buf)
{
msg->addr = client->addr;
msg->flags = 0; /* Write */
msg->len = 2 + len;
msg->buf = buf;
/* high byte goes out first */
buf[0] = (u8) (reg >> 8);
buf[1] = (u8) (reg & 0xff);
switch (len) {
case ET8EK8_REG_8BIT:
buf[2] = (u8) (val) & 0xff;
break;
case ET8EK8_REG_16BIT:
buf[2] = (u8) (val) & 0xff;
buf[3] = (u8) (val >> 8) & 0xff;
break;
default:
WARN_ONCE(1, ET8EK8_NAME ": %s: invalid message length.\n",
__func__);
}
}
/*
* A buffered write method that puts the wanted register write
* commands in smaller number of message lists and passes the lists to
* the i2c framework
*/
static int et8ek8_i2c_buffered_write_regs(struct i2c_client *client,
const struct et8ek8_reg *wnext,
int cnt)
{
struct i2c_msg msg[ET8EK8_MAX_MSG];
unsigned char data[ET8EK8_MAX_MSG][6];
int wcnt = 0;
u16 reg, data_length;
u32 val;
int rval;
/* Create new write messages for all writes */
while (wcnt < cnt) {
data_length = wnext->type;
reg = wnext->reg;
val = wnext->val;
wnext++;
et8ek8_i2c_create_msg(client, data_length, reg,
val, &msg[wcnt], &data[wcnt][0]);
/* Update write count */
wcnt++;
if (wcnt < ET8EK8_MAX_MSG)
continue;
rval = i2c_transfer(client->adapter, msg, wcnt);
if (rval < 0)
return rval;
cnt -= wcnt;
wcnt = 0;
}
rval = i2c_transfer(client->adapter, msg, wcnt);
return rval < 0 ? rval : 0;
}
/*
* Write a list of registers to i2c device.
*
* The list of registers is terminated by ET8EK8_REG_TERM.
* Returns zero if successful, or non-zero otherwise.
*/
static int et8ek8_i2c_write_regs(struct i2c_client *client,
const struct et8ek8_reg *regs)
{
int r, cnt = 0;
const struct et8ek8_reg *next;
if (!client->adapter)
return -ENODEV;
if (!regs)
return -EINVAL;
/* Initialize list pointers to the start of the list */
next = regs;
do {
/*
* We have to go through the list to figure out how
* many regular writes we have in a row
*/
while (next->type != ET8EK8_REG_TERM &&
next->type != ET8EK8_REG_DELAY) {
/*
* Here we check that the actual length fields
* are valid
*/
if (WARN(next->type != ET8EK8_REG_8BIT &&
next->type != ET8EK8_REG_16BIT,
"Invalid type = %d", next->type)) {
return -EINVAL;
}
/*
* Increment count of successive writes and
* read pointer
*/
cnt++;
next++;
}
/* Now we start writing ... */
r = et8ek8_i2c_buffered_write_regs(client, regs, cnt);
/* ... and then check that everything was OK */
if (r < 0) {
dev_err(&client->dev, "i2c transfer error!\n");
return r;
}
/*
* If we ran into a sleep statement when going through
* the list, this is where we snooze for the required time
*/
if (next->type == ET8EK8_REG_DELAY) {
msleep(next->val);
/*
* ZZZ ...
* Update list pointers and cnt and start over ...
*/
next++;
regs = next;
cnt = 0;
}
} while (next->type != ET8EK8_REG_TERM);
return 0;
}
/*
* Write to a 8/16-bit register.
* Returns zero if successful, or non-zero otherwise.
*/
static int et8ek8_i2c_write_reg(struct i2c_client *client, u16 data_length,
u16 reg, u32 val)
{
int r;
struct i2c_msg msg;
unsigned char data[6];
if (!client->adapter)
return -ENODEV;
if (data_length != ET8EK8_REG_8BIT && data_length != ET8EK8_REG_16BIT)
return -EINVAL;
et8ek8_i2c_create_msg(client, data_length, reg, val, &msg, data);
r = i2c_transfer(client->adapter, &msg, 1);
if (r < 0) {
dev_err(&client->dev,
"wrote 0x%x to offset 0x%x error %d\n", val, reg, r);
return r;
}
return 0;
}
static struct et8ek8_reglist *et8ek8_reglist_find_type(
struct et8ek8_meta_reglist *meta,
u16 type)
{
struct et8ek8_reglist **next = &meta->reglist[0].ptr;
while (*next) {
if ((*next)->type == type)
return *next;
next++;
}
return NULL;
}
static int et8ek8_i2c_reglist_find_write(struct i2c_client *client,
struct et8ek8_meta_reglist *meta,
u16 type)
{
struct et8ek8_reglist *reglist;
reglist = et8ek8_reglist_find_type(meta, type);
if (!reglist)
return -EINVAL;
return et8ek8_i2c_write_regs(client, reglist->regs);
}
static struct et8ek8_reglist **et8ek8_reglist_first(
struct et8ek8_meta_reglist *meta)
{
return &meta->reglist[0].ptr;
}
static void et8ek8_reglist_to_mbus(const struct et8ek8_reglist *reglist,
struct v4l2_mbus_framefmt *fmt)
{
fmt->width = reglist->mode.window_width;
fmt->height = reglist->mode.window_height;
fmt->code = reglist->mode.bus_format;
}
static struct et8ek8_reglist *et8ek8_reglist_find_mode_fmt(
struct et8ek8_meta_reglist *meta,
struct v4l2_mbus_framefmt *fmt)
{
struct et8ek8_reglist **list = et8ek8_reglist_first(meta);
struct et8ek8_reglist *best_match = NULL;
struct et8ek8_reglist *best_other = NULL;
struct v4l2_mbus_framefmt format;
unsigned int max_dist_match = (unsigned int)-1;
unsigned int max_dist_other = (unsigned int)-1;
/*
* Find the mode with the closest image size. The distance between
* image sizes is the size in pixels of the non-overlapping regions
* between the requested size and the frame-specified size.
*
* Store both the closest mode that matches the requested format, and
* the closest mode for all other formats. The best match is returned
* if found, otherwise the best mode with a non-matching format is
* returned.
*/
for (; *list; list++) {
unsigned int dist;
if ((*list)->type != ET8EK8_REGLIST_MODE)
continue;
et8ek8_reglist_to_mbus(*list, &format);
dist = min(fmt->width, format.width)
* min(fmt->height, format.height);
dist = format.width * format.height
+ fmt->width * fmt->height - 2 * dist;
if (fmt->code == format.code) {
if (dist < max_dist_match || !best_match) {
best_match = *list;
max_dist_match = dist;
}
} else {
if (dist < max_dist_other || !best_other) {
best_other = *list;
max_dist_other = dist;
}
}
}
return best_match ? best_match : best_other;
}
#define TIMEPERFRAME_AVG_FPS(t) \
(((t).denominator + ((t).numerator >> 1)) / (t).numerator)
static struct et8ek8_reglist *et8ek8_reglist_find_mode_ival(
struct et8ek8_meta_reglist *meta,
struct et8ek8_reglist *current_reglist,
struct v4l2_fract *timeperframe)
{
int fps = TIMEPERFRAME_AVG_FPS(*timeperframe);
struct et8ek8_reglist **list = et8ek8_reglist_first(meta);
struct et8ek8_mode *current_mode = &current_reglist->mode;
for (; *list; list++) {
struct et8ek8_mode *mode = &(*list)->mode;
if ((*list)->type != ET8EK8_REGLIST_MODE)
continue;
if (mode->window_width != current_mode->window_width ||
mode->window_height != current_mode->window_height)
continue;
if (TIMEPERFRAME_AVG_FPS(mode->timeperframe) == fps)
return *list;
}
return NULL;
}
static int et8ek8_reglist_cmp(const void *a, const void *b)
{
const struct et8ek8_reglist **list1 = (const struct et8ek8_reglist **)a,
**list2 = (const struct et8ek8_reglist **)b;
/* Put real modes in the beginning. */
if ((*list1)->type == ET8EK8_REGLIST_MODE &&
(*list2)->type != ET8EK8_REGLIST_MODE)
return -1;
if ((*list1)->type != ET8EK8_REGLIST_MODE &&
(*list2)->type == ET8EK8_REGLIST_MODE)
return 1;
/* Descending width. */
if ((*list1)->mode.window_width > (*list2)->mode.window_width)
return -1;
if ((*list1)->mode.window_width < (*list2)->mode.window_width)
return 1;
if ((*list1)->mode.window_height > (*list2)->mode.window_height)
return -1;
if ((*list1)->mode.window_height < (*list2)->mode.window_height)
return 1;
return 0;
}
static int et8ek8_reglist_import(struct i2c_client *client,
struct et8ek8_meta_reglist *meta)
{
int nlists = 0, i;
dev_info(&client->dev, "meta_reglist version %s\n", meta->version);
while (meta->reglist[nlists].ptr)
nlists++;
if (!nlists)
return -EINVAL;
sort(&meta->reglist[0].ptr, nlists, sizeof(meta->reglist[0].ptr),
et8ek8_reglist_cmp, NULL);
i = nlists;
nlists = 0;
while (i--) {
struct et8ek8_reglist *list;
list = meta->reglist[nlists].ptr;
dev_dbg(&client->dev,
"%s: type %d\tw %d\th %d\tfmt %x\tival %d/%d\tptr %p\n",
__func__,
list->type,
list->mode.window_width, list->mode.window_height,
list->mode.bus_format,
list->mode.timeperframe.numerator,
list->mode.timeperframe.denominator,
(void *)meta->reglist[nlists].ptr);
nlists++;
}
return 0;
}
/* Called to change the V4L2 gain control value. This function
* rounds and clamps the given value and updates the V4L2 control value.
* If power is on, also updates the sensor analog and digital gains.
* gain is in 0.1 EV (exposure value) units.
*/
static int et8ek8_set_gain(struct et8ek8_sensor *sensor, s32 gain)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev);
struct et8ek8_gain new;
int r;
new = et8ek8_gain_table[gain];
/* FIXME: optimise I2C writes! */
r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT,
0x124a, new.analog >> 8);
if (r)
return r;
r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT,
0x1249, new.analog & 0xff);
if (r)
return r;
r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT,
0x124d, new.digital >> 8);
if (r)
return r;
r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT,
0x124c, new.digital & 0xff);
return r;
}
static int et8ek8_set_test_pattern(struct et8ek8_sensor *sensor, s32 mode)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev);
int cbh_mode, cbv_mode, tp_mode, din_sw, r1420, rval;
/* Values for normal mode */
cbh_mode = 0;
cbv_mode = 0;
tp_mode = 0;
din_sw = 0x00;
r1420 = 0xF0;
if (mode) {
/* Test pattern mode */
if (mode < 5) {
cbh_mode = 1;
cbv_mode = 1;
tp_mode = mode + 3;
} else {
cbh_mode = 0;
cbv_mode = 0;
tp_mode = mode - 4 + 3;
}
din_sw = 0x01;
r1420 = 0xE0;
}
rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x111B,
tp_mode << 4);
if (rval)
return rval;
rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1121,
cbh_mode << 7);
if (rval)
return rval;
rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1124,
cbv_mode << 7);
if (rval)
return rval;
rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x112C, din_sw);
if (rval)
return rval;
return et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1420, r1420);
}
/* -----------------------------------------------------------------------------
* V4L2 controls
*/
static int et8ek8_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct et8ek8_sensor *sensor =
container_of(ctrl->handler, struct et8ek8_sensor, ctrl_handler);
switch (ctrl->id) {
case V4L2_CID_GAIN:
return et8ek8_set_gain(sensor, ctrl->val);
case V4L2_CID_EXPOSURE:
{
struct i2c_client *client =
v4l2_get_subdevdata(&sensor->subdev);
return et8ek8_i2c_write_reg(client, ET8EK8_REG_16BIT, 0x1243,
ctrl->val);
}
case V4L2_CID_TEST_PATTERN:
return et8ek8_set_test_pattern(sensor, ctrl->val);
case V4L2_CID_PIXEL_RATE:
return 0;
default:
return -EINVAL;
}
}
static const struct v4l2_ctrl_ops et8ek8_ctrl_ops = {
.s_ctrl = et8ek8_set_ctrl,
};
static const char * const et8ek8_test_pattern_menu[] = {
"Normal",
"Vertical colorbar",
"Horizontal colorbar",
"Scale",
"Ramp",
"Small vertical colorbar",
"Small horizontal colorbar",
"Small scale",
"Small ramp",
};
static int et8ek8_init_controls(struct et8ek8_sensor *sensor)
{
s32 max_rows;
v4l2_ctrl_handler_init(&sensor->ctrl_handler, 4);
/* V4L2_CID_GAIN */
v4l2_ctrl_new_std(&sensor->ctrl_handler, &et8ek8_ctrl_ops,
V4L2_CID_GAIN, 0, ARRAY_SIZE(et8ek8_gain_table) - 1,
1, 0);
max_rows = sensor->current_reglist->mode.max_exp;
{
u32 min = 1, max = max_rows;
sensor->exposure =
v4l2_ctrl_new_std(&sensor->ctrl_handler,
&et8ek8_ctrl_ops, V4L2_CID_EXPOSURE,
min, max, min, max);
}
/* V4L2_CID_PIXEL_RATE */
sensor->pixel_rate =
v4l2_ctrl_new_std(&sensor->ctrl_handler, &et8ek8_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
/* V4L2_CID_TEST_PATTERN */
v4l2_ctrl_new_std_menu_items(&sensor->ctrl_handler,
&et8ek8_ctrl_ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(et8ek8_test_pattern_menu) - 1,
0, 0, et8ek8_test_pattern_menu);
if (sensor->ctrl_handler.error)
return sensor->ctrl_handler.error;
sensor->subdev.ctrl_handler = &sensor->ctrl_handler;
return 0;
}
static void et8ek8_update_controls(struct et8ek8_sensor *sensor)
{
struct v4l2_ctrl *ctrl;
struct et8ek8_mode *mode = &sensor->current_reglist->mode;
u32 min, max, pixel_rate;
static const int S = 8;
ctrl = sensor->exposure;
min = 1;
max = mode->max_exp;
/*
* Calculate average pixel clock per line. Assume buffers can spread
* the data over horizontal blanking time. Rounding upwards.
* Formula taken from stock Nokia N900 kernel.
*/
pixel_rate = ((mode->pixel_clock + (1 << S) - 1) >> S) + mode->width;
pixel_rate = mode->window_width * (pixel_rate - 1) / mode->width;
__v4l2_ctrl_modify_range(ctrl, min, max, min, max);
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate, pixel_rate << S);
}
static int et8ek8_configure(struct et8ek8_sensor *sensor)
{
struct v4l2_subdev *subdev = &sensor->subdev;
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int rval;
rval = et8ek8_i2c_write_regs(client, sensor->current_reglist->regs);
if (rval)
goto fail;
/* Controls set while the power to the sensor is turned off are saved
* but not applied to the hardware. Now that we're about to start
* streaming apply all the current values to the hardware.
*/
rval = v4l2_ctrl_handler_setup(&sensor->ctrl_handler);
if (rval)
goto fail;
return 0;
fail:
dev_err(&client->dev, "sensor configuration failed\n");
return rval;
}
static int et8ek8_stream_on(struct et8ek8_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev);
return et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1252, 0xb0);
}
static int et8ek8_stream_off(struct et8ek8_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev);
return et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1252, 0x30);
}
static int et8ek8_s_stream(struct v4l2_subdev *subdev, int streaming)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
int ret;
if (!streaming)
return et8ek8_stream_off(sensor);
ret = et8ek8_configure(sensor);
if (ret < 0)
return ret;
return et8ek8_stream_on(sensor);
}
/* --------------------------------------------------------------------------
* V4L2 subdev operations
*/
static int et8ek8_power_off(struct et8ek8_sensor *sensor)
{
gpiod_set_value(sensor->reset, 0);
udelay(1);
clk_disable_unprepare(sensor->ext_clk);
return regulator_disable(sensor->vana);
}
static int et8ek8_power_on(struct et8ek8_sensor *sensor)
{
struct v4l2_subdev *subdev = &sensor->subdev;
struct i2c_client *client = v4l2_get_subdevdata(subdev);
unsigned int xclk_freq;
int val, rval;
rval = regulator_enable(sensor->vana);
if (rval) {
dev_err(&client->dev, "failed to enable vana regulator\n");
return rval;
}
if (sensor->current_reglist)
xclk_freq = sensor->current_reglist->mode.ext_clock;
else
xclk_freq = sensor->xclk_freq;
rval = clk_set_rate(sensor->ext_clk, xclk_freq);
if (rval < 0) {
dev_err(&client->dev, "unable to set extclk clock freq to %u\n",
xclk_freq);
goto out;
}
rval = clk_prepare_enable(sensor->ext_clk);
if (rval < 0) {
dev_err(&client->dev, "failed to enable extclk\n");
goto out;
}
if (rval)
goto out;
udelay(10); /* I wish this is a good value */
gpiod_set_value(sensor->reset, 1);
msleep(5000 * 1000 / xclk_freq + 1); /* Wait 5000 cycles */
rval = et8ek8_i2c_reglist_find_write(client, &meta_reglist,
ET8EK8_REGLIST_POWERON);
if (rval)
goto out;
#ifdef USE_CRC
rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT, 0x1263, &val);
if (rval)
goto out;
#if USE_CRC /* TODO get crc setting from DT */
val |= BIT(4);
#else
val &= ~BIT(4);
#endif
rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1263, val);
if (rval)
goto out;
#endif
out:
if (rval)
et8ek8_power_off(sensor);
return rval;
}
/* --------------------------------------------------------------------------
* V4L2 subdev video operations
*/
#define MAX_FMTS 4
static int et8ek8_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct et8ek8_reglist **list =
et8ek8_reglist_first(&meta_reglist);
u32 pixelformat[MAX_FMTS];
int npixelformat = 0;
if (code->index >= MAX_FMTS)
return -EINVAL;
for (; *list; list++) {
struct et8ek8_mode *mode = &(*list)->mode;
int i;
if ((*list)->type != ET8EK8_REGLIST_MODE)
continue;
for (i = 0; i < npixelformat; i++) {
if (pixelformat[i] == mode->bus_format)
break;
}
if (i != npixelformat)
continue;
if (code->index == npixelformat) {
code->code = mode->bus_format;
return 0;
}
pixelformat[npixelformat] = mode->bus_format;
npixelformat++;
}
return -EINVAL;
}
static int et8ek8_enum_frame_size(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
struct et8ek8_reglist **list =
et8ek8_reglist_first(&meta_reglist);
struct v4l2_mbus_framefmt format;
int cmp_width = INT_MAX;
int cmp_height = INT_MAX;
int index = fse->index;
for (; *list; list++) {
if ((*list)->type != ET8EK8_REGLIST_MODE)
continue;
et8ek8_reglist_to_mbus(*list, &format);
if (fse->code != format.code)
continue;
/* Assume that the modes are grouped by frame size. */
if (format.width == cmp_width && format.height == cmp_height)
continue;
cmp_width = format.width;
cmp_height = format.height;
if (index-- == 0) {
fse->min_width = format.width;
fse->min_height = format.height;
fse->max_width = format.width;
fse->max_height = format.height;
return 0;
}
}
return -EINVAL;
}
static int et8ek8_enum_frame_ival(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct et8ek8_reglist **list =
et8ek8_reglist_first(&meta_reglist);
struct v4l2_mbus_framefmt format;
int index = fie->index;
for (; *list; list++) {
struct et8ek8_mode *mode = &(*list)->mode;
if ((*list)->type != ET8EK8_REGLIST_MODE)
continue;
et8ek8_reglist_to_mbus(*list, &format);
if (fie->code != format.code)
continue;
if (fie->width != format.width || fie->height != format.height)
continue;
if (index-- == 0) {
fie->interval = mode->timeperframe;
return 0;
}
}
return -EINVAL;
}
static struct v4l2_mbus_framefmt *
__et8ek8_get_pad_format(struct et8ek8_sensor *sensor,
struct v4l2_subdev_pad_config *cfg,
unsigned int pad, enum v4l2_subdev_format_whence which)
{
switch (which) {
case V4L2_SUBDEV_FORMAT_TRY:
return v4l2_subdev_get_try_format(&sensor->subdev, cfg, pad);
case V4L2_SUBDEV_FORMAT_ACTIVE:
return &sensor->format;
default:
return NULL;
}
}
static int et8ek8_get_pad_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
struct v4l2_mbus_framefmt *format;
format = __et8ek8_get_pad_format(sensor, cfg, fmt->pad, fmt->which);
if (!format)
return -EINVAL;
fmt->format = *format;
return 0;
}
static int et8ek8_set_pad_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
struct v4l2_mbus_framefmt *format;
struct et8ek8_reglist *reglist;
format = __et8ek8_get_pad_format(sensor, cfg, fmt->pad, fmt->which);
if (!format)
return -EINVAL;
reglist = et8ek8_reglist_find_mode_fmt(&meta_reglist, &fmt->format);
et8ek8_reglist_to_mbus(reglist, &fmt->format);
*format = fmt->format;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->current_reglist = reglist;
et8ek8_update_controls(sensor);
}
return 0;
}
static int et8ek8_get_frame_interval(struct v4l2_subdev *subdev,
struct v4l2_subdev_frame_interval *fi)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
memset(fi, 0, sizeof(*fi));
fi->interval = sensor->current_reglist->mode.timeperframe;
return 0;
}
static int et8ek8_set_frame_interval(struct v4l2_subdev *subdev,
struct v4l2_subdev_frame_interval *fi)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
struct et8ek8_reglist *reglist;
reglist = et8ek8_reglist_find_mode_ival(&meta_reglist,
sensor->current_reglist,
&fi->interval);
if (!reglist)
return -EINVAL;
if (sensor->current_reglist->mode.ext_clock != reglist->mode.ext_clock)
return -EINVAL;
sensor->current_reglist = reglist;
et8ek8_update_controls(sensor);
return 0;
}
static int et8ek8_g_priv_mem(struct v4l2_subdev *subdev)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
unsigned int length = ET8EK8_PRIV_MEM_SIZE;
unsigned int offset = 0;
u8 *ptr = sensor->priv_mem;
int rval = 0;
/* Read the EEPROM window-by-window, each window 8 bytes */
do {
u8 buffer[PRIV_MEM_WIN_SIZE];
struct i2c_msg msg;
int bytes, i;
int ofs;
/* Set the current window */
rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x0001,
0xe0 | (offset >> 3));
if (rval < 0)
return rval;
/* Wait for status bit */
for (i = 0; i < 1000; ++i) {
u32 status;
rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT,
0x0003, &status);
if (rval < 0)
return rval;
if (!(status & 0x08))
break;
usleep_range(1000, 2000);
}
if (i == 1000)
return -EIO;
/* Read window, 8 bytes at once, and copy to user space */
ofs = offset & 0x07; /* Offset within this window */
bytes = length + ofs > 8 ? 8-ofs : length;
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2;
msg.buf = buffer;
ofs += PRIV_MEM_START_REG;
buffer[0] = (u8)(ofs >> 8);
buffer[1] = (u8)(ofs & 0xFF);
rval = i2c_transfer(client->adapter, &msg, 1);
if (rval < 0)
return rval;
mdelay(ET8EK8_I2C_DELAY);
msg.addr = client->addr;
msg.len = bytes;
msg.flags = I2C_M_RD;
msg.buf = buffer;
memset(buffer, 0, sizeof(buffer));
rval = i2c_transfer(client->adapter, &msg, 1);
if (rval < 0)
return rval;
rval = 0;
memcpy(ptr, buffer, bytes);
length -= bytes;
offset += bytes;
ptr += bytes;
} while (length > 0);
return rval;
}
static int et8ek8_dev_init(struct v4l2_subdev *subdev)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int rval, rev_l, rev_h;
rval = et8ek8_power_on(sensor);
if (rval) {
dev_err(&client->dev, "could not power on\n");
return rval;
}
rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT,
REG_REVISION_NUMBER_L, &rev_l);
if (!rval)
rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT,
REG_REVISION_NUMBER_H, &rev_h);
if (rval) {
dev_err(&client->dev, "no et8ek8 sensor detected\n");
goto out_poweroff;
}
sensor->version = (rev_h << 8) + rev_l;
if (sensor->version != ET8EK8_REV_1 && sensor->version != ET8EK8_REV_2)
dev_info(&client->dev,
"unknown version 0x%x detected, continuing anyway\n",
sensor->version);
rval = et8ek8_reglist_import(client, &meta_reglist);
if (rval) {
dev_err(&client->dev,
"invalid register list %s, import failed\n",
ET8EK8_NAME);
goto out_poweroff;
}
sensor->current_reglist = et8ek8_reglist_find_type(&meta_reglist,
ET8EK8_REGLIST_MODE);
if (!sensor->current_reglist) {
dev_err(&client->dev,
"invalid register list %s, no mode found\n",
ET8EK8_NAME);
rval = -ENODEV;
goto out_poweroff;
}
et8ek8_reglist_to_mbus(sensor->current_reglist, &sensor->format);
rval = et8ek8_i2c_reglist_find_write(client, &meta_reglist,
ET8EK8_REGLIST_POWERON);
if (rval) {
dev_err(&client->dev,
"invalid register list %s, no POWERON mode found\n",
ET8EK8_NAME);
goto out_poweroff;
}
rval = et8ek8_stream_on(sensor); /* Needed to be able to read EEPROM */
if (rval)
goto out_poweroff;
rval = et8ek8_g_priv_mem(subdev);
if (rval)
dev_warn(&client->dev,
"can not read OTP (EEPROM) memory from sensor\n");
rval = et8ek8_stream_off(sensor);
if (rval)
goto out_poweroff;
rval = et8ek8_power_off(sensor);
if (rval)
goto out_poweroff;
return 0;
out_poweroff:
et8ek8_power_off(sensor);
return rval;
}
/* --------------------------------------------------------------------------
* sysfs attributes
*/
static ssize_t
et8ek8_priv_mem_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
#if PAGE_SIZE < ET8EK8_PRIV_MEM_SIZE
#error PAGE_SIZE too small!
#endif
memcpy(buf, sensor->priv_mem, ET8EK8_PRIV_MEM_SIZE);
return ET8EK8_PRIV_MEM_SIZE;
}
static DEVICE_ATTR(priv_mem, 0444, et8ek8_priv_mem_read, NULL);
/* --------------------------------------------------------------------------
* V4L2 subdev core operations
*/
static int
et8ek8_registered(struct v4l2_subdev *subdev)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int rval;
dev_dbg(&client->dev, "registered!");
rval = device_create_file(&client->dev, &dev_attr_priv_mem);
if (rval) {
dev_err(&client->dev, "could not register sysfs entry\n");
return rval;
}
rval = et8ek8_dev_init(subdev);
if (rval)
goto err_file;
rval = et8ek8_init_controls(sensor);
if (rval) {
dev_err(&client->dev, "controls initialization failed\n");
goto err_file;
}
__et8ek8_get_pad_format(sensor, NULL, 0, V4L2_SUBDEV_FORMAT_ACTIVE);
return 0;
err_file:
device_remove_file(&client->dev, &dev_attr_priv_mem);
return rval;
}
static int __et8ek8_set_power(struct et8ek8_sensor *sensor, bool on)
{
return on ? et8ek8_power_on(sensor) : et8ek8_power_off(sensor);
}
static int et8ek8_set_power(struct v4l2_subdev *subdev, int on)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
int ret = 0;
mutex_lock(&sensor->power_lock);
/* If the power count is modified from 0 to != 0 or from != 0 to 0,
* update the power state.
*/
if (sensor->power_count == !on) {
ret = __et8ek8_set_power(sensor, !!on);
if (ret < 0)
goto done;
}
/* Update the power count. */
sensor->power_count += on ? 1 : -1;
WARN_ON(sensor->power_count < 0);
done:
mutex_unlock(&sensor->power_lock);
return ret;
}
static int et8ek8_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct et8ek8_sensor *sensor = to_et8ek8_sensor(sd);
struct v4l2_mbus_framefmt *format;
struct et8ek8_reglist *reglist;
reglist = et8ek8_reglist_find_type(&meta_reglist, ET8EK8_REGLIST_MODE);
format = __et8ek8_get_pad_format(sensor, fh->pad, 0,
V4L2_SUBDEV_FORMAT_TRY);
et8ek8_reglist_to_mbus(reglist, format);
return et8ek8_set_power(sd, true);
}
static int et8ek8_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
return et8ek8_set_power(sd, false);
}
static const struct v4l2_subdev_video_ops et8ek8_video_ops = {
.s_stream = et8ek8_s_stream,
.g_frame_interval = et8ek8_get_frame_interval,
.s_frame_interval = et8ek8_set_frame_interval,
};
static const struct v4l2_subdev_core_ops et8ek8_core_ops = {
.s_power = et8ek8_set_power,
};
static const struct v4l2_subdev_pad_ops et8ek8_pad_ops = {
.enum_mbus_code = et8ek8_enum_mbus_code,
.enum_frame_size = et8ek8_enum_frame_size,
.enum_frame_interval = et8ek8_enum_frame_ival,
.get_fmt = et8ek8_get_pad_format,
.set_fmt = et8ek8_set_pad_format,
};
static const struct v4l2_subdev_ops et8ek8_ops = {
.core = &et8ek8_core_ops,
.video = &et8ek8_video_ops,
.pad = &et8ek8_pad_ops,
};
static const struct v4l2_subdev_internal_ops et8ek8_internal_ops = {
.registered = et8ek8_registered,
.open = et8ek8_open,
.close = et8ek8_close,
};
/* --------------------------------------------------------------------------
* I2C driver
*/
static int __maybe_unused et8ek8_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
if (!sensor->power_count)
return 0;
return __et8ek8_set_power(sensor, false);
}
static int __maybe_unused et8ek8_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
if (!sensor->power_count)
return 0;
return __et8ek8_set_power(sensor, true);
}
static int et8ek8_probe(struct i2c_client *client)
{
struct et8ek8_sensor *sensor;
struct device *dev = &client->dev;
int ret;
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(sensor->reset)) {
dev_dbg(&client->dev, "could not request reset gpio\n");
return PTR_ERR(sensor->reset);
}
sensor->vana = devm_regulator_get(dev, "vana");
if (IS_ERR(sensor->vana)) {
dev_err(&client->dev, "could not get regulator for vana\n");
return PTR_ERR(sensor->vana);
}
sensor->ext_clk = devm_clk_get(dev, NULL);
if (IS_ERR(sensor->ext_clk)) {
dev_err(&client->dev, "could not get clock\n");
return PTR_ERR(sensor->ext_clk);
}
ret = of_property_read_u32(dev->of_node, "clock-frequency",
&sensor->xclk_freq);
if (ret) {
dev_warn(dev, "can't get clock-frequency\n");
return ret;
}
mutex_init(&sensor->power_lock);
v4l2_i2c_subdev_init(&sensor->subdev, client, &et8ek8_ops);
sensor->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->subdev.internal_ops = &et8ek8_internal_ops;
sensor->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sensor->subdev.entity, 1, &sensor->pad);
if (ret < 0) {
dev_err(&client->dev, "media entity init failed!\n");
goto err_mutex;
}
ret = v4l2_async_register_subdev_sensor_common(&sensor->subdev);
if (ret < 0)
goto err_entity;
dev_dbg(dev, "initialized!\n");
return 0;
err_entity:
media_entity_cleanup(&sensor->subdev.entity);
err_mutex:
mutex_destroy(&sensor->power_lock);
return ret;
}
static int __exit et8ek8_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev);
if (sensor->power_count) {
WARN_ON(1);
et8ek8_power_off(sensor);
sensor->power_count = 0;
}
v4l2_device_unregister_subdev(&sensor->subdev);
device_remove_file(&client->dev, &dev_attr_priv_mem);
v4l2_ctrl_handler_free(&sensor->ctrl_handler);
v4l2_async_unregister_subdev(&sensor->subdev);
media_entity_cleanup(&sensor->subdev.entity);
mutex_destroy(&sensor->power_lock);
return 0;
}
static const struct of_device_id et8ek8_of_table[] = {
{ .compatible = "toshiba,et8ek8" },
{ },
};
MODULE_DEVICE_TABLE(of, et8ek8_of_table);
static const struct i2c_device_id et8ek8_id_table[] = {
{ ET8EK8_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, et8ek8_id_table);
static const struct dev_pm_ops et8ek8_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(et8ek8_suspend, et8ek8_resume)
};
static struct i2c_driver et8ek8_i2c_driver = {
.driver = {
.name = ET8EK8_NAME,
.pm = &et8ek8_pm_ops,
.of_match_table = et8ek8_of_table,
},
.probe_new = et8ek8_probe,
.remove = __exit_p(et8ek8_remove),
.id_table = et8ek8_id_table,
};
module_i2c_driver(et8ek8_i2c_driver);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>, Pavel Machek <pavel@ucw.cz");
MODULE_DESCRIPTION("Toshiba ET8EK8 camera sensor driver");
MODULE_LICENSE("GPL");