linux/linux-5.4.31/arch/m68k/mac/misc.c

667 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Miscellaneous Mac68K-specific stuff
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/rtc.h>
#include <linux/mm.h>
#include <linux/adb.h>
#include <linux/cuda.h>
#include <linux/pmu.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <asm/setup.h>
#include <asm/macintosh.h>
#include <asm/mac_via.h>
#include <asm/mac_oss.h>
#include <asm/machdep.h>
/*
* Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
* times wrap in 2040. If we need to handle later times, the read_time functions
* need to be changed to interpret wrapped times as post-2040.
*/
#define RTC_OFFSET 2082844800
static void (*rom_reset)(void);
#if IS_ENABLED(CONFIG_NVRAM)
#ifdef CONFIG_ADB_CUDA
static unsigned char cuda_pram_read_byte(int offset)
{
struct adb_request req;
if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
(offset >> 8) & 0xFF, offset & 0xFF) < 0)
return 0;
while (!req.complete)
cuda_poll();
return req.reply[3];
}
static void cuda_pram_write_byte(unsigned char data, int offset)
{
struct adb_request req;
if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
(offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
return;
while (!req.complete)
cuda_poll();
}
#endif /* CONFIG_ADB_CUDA */
#ifdef CONFIG_ADB_PMU
static unsigned char pmu_pram_read_byte(int offset)
{
struct adb_request req;
if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM,
offset & 0xFF, 1) < 0)
return 0;
pmu_wait_complete(&req);
return req.reply[0];
}
static void pmu_pram_write_byte(unsigned char data, int offset)
{
struct adb_request req;
if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM,
offset & 0xFF, 1, data) < 0)
return;
pmu_wait_complete(&req);
}
#endif /* CONFIG_ADB_PMU */
#endif /* CONFIG_NVRAM */
/*
* VIA PRAM/RTC access routines
*
* Must be called with interrupts disabled and
* the RTC should be enabled.
*/
static __u8 via_rtc_recv(void)
{
int i, reg;
__u8 data;
reg = via1[vBufB] & ~VIA1B_vRTCClk;
/* Set the RTC data line to be an input. */
via1[vDirB] &= ~VIA1B_vRTCData;
/* The bits of the byte come out in MSB order */
data = 0;
for (i = 0 ; i < 8 ; i++) {
via1[vBufB] = reg;
via1[vBufB] = reg | VIA1B_vRTCClk;
data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
}
/* Return RTC data line to output state */
via1[vDirB] |= VIA1B_vRTCData;
return data;
}
static void via_rtc_send(__u8 data)
{
int i, reg, bit;
reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
/* The bits of the byte go in in MSB order */
for (i = 0 ; i < 8 ; i++) {
bit = data & 0x80? 1 : 0;
data <<= 1;
via1[vBufB] = reg | bit;
via1[vBufB] = reg | bit | VIA1B_vRTCClk;
}
}
/*
* These values can be found in Inside Macintosh vol. III ch. 2
* which has a description of the RTC chip in the original Mac.
*/
#define RTC_FLG_READ BIT(7)
#define RTC_FLG_WRITE_PROTECT BIT(7)
#define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2))
#define RTC_CMD_WRITE(r) (r << 2)
#define RTC_REG_SECONDS_0 0
#define RTC_REG_SECONDS_1 1
#define RTC_REG_SECONDS_2 2
#define RTC_REG_SECONDS_3 3
#define RTC_REG_WRITE_PROTECT 13
/*
* Inside Mac has no information about two-byte RTC commands but
* the MAME/MESS source code has the essentials.
*/
#define RTC_REG_XPRAM 14
#define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8)
#define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8)
#define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2))
/*
* Execute a VIA PRAM/RTC command. For read commands
* data should point to a one-byte buffer for the
* resulting data. For write commands it should point
* to the data byte to for the command.
*
* This function disables all interrupts while running.
*/
static void via_rtc_command(int command, __u8 *data)
{
unsigned long flags;
int is_read;
local_irq_save(flags);
/* The least significant bits must be 0b01 according to Inside Mac */
command = (command & ~3) | 1;
/* Enable the RTC and make sure the strobe line is high */
via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
if (command & 0xFF00) { /* extended (two-byte) command */
via_rtc_send((command & 0xFF00) >> 8);
via_rtc_send(command & 0xFF);
is_read = command & (RTC_FLG_READ << 8);
} else { /* one-byte command */
via_rtc_send(command);
is_read = command & RTC_FLG_READ;
}
if (is_read) {
*data = via_rtc_recv();
} else {
via_rtc_send(*data);
}
/* All done, disable the RTC */
via1[vBufB] |= VIA1B_vRTCEnb;
local_irq_restore(flags);
}
#if IS_ENABLED(CONFIG_NVRAM)
static unsigned char via_pram_read_byte(int offset)
{
unsigned char temp;
via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp);
return temp;
}
static void via_pram_write_byte(unsigned char data, int offset)
{
unsigned char temp;
temp = 0x55;
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
temp = data;
via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp);
temp = 0x55 | RTC_FLG_WRITE_PROTECT;
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
}
#endif /* CONFIG_NVRAM */
/*
* Return the current time in seconds since January 1, 1904.
*
* This only works on machines with the VIA-based PRAM/RTC, which
* is basically any machine with Mac II-style ADB.
*/
static time64_t via_read_time(void)
{
union {
__u8 cdata[4];
__u32 idata;
} result, last_result;
int count = 1;
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]);
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]);
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]);
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]);
/*
* The NetBSD guys say to loop until you get the same reading
* twice in a row.
*/
while (1) {
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0),
&result.cdata[3]);
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1),
&result.cdata[2]);
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2),
&result.cdata[1]);
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3),
&result.cdata[0]);
if (result.idata == last_result.idata)
return (time64_t)result.idata - RTC_OFFSET;
if (++count > 10)
break;
last_result.idata = result.idata;
}
pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n",
__func__, last_result.idata, result.idata);
return 0;
}
/*
* Set the current time to a number of seconds since January 1, 1904.
*
* This only works on machines with the VIA-based PRAM/RTC, which
* is basically any machine with Mac II-style ADB.
*/
static void via_set_rtc_time(struct rtc_time *tm)
{
union {
__u8 cdata[4];
__u32 idata;
} data;
__u8 temp;
time64_t time;
time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
/* Clear the write protect bit */
temp = 0x55;
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
data.idata = lower_32_bits(time + RTC_OFFSET);
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]);
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]);
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]);
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]);
/* Set the write protect bit */
temp = 0x55 | RTC_FLG_WRITE_PROTECT;
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
}
static void via_shutdown(void)
{
if (rbv_present) {
via2[rBufB] &= ~0x04;
} else {
/* Direction of vDirB is output */
via2[vDirB] |= 0x04;
/* Send a value of 0 on that line */
via2[vBufB] &= ~0x04;
mdelay(1000);
}
}
static void oss_shutdown(void)
{
oss->rom_ctrl = OSS_POWEROFF;
}
#ifdef CONFIG_ADB_CUDA
static void cuda_restart(void)
{
struct adb_request req;
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
return;
while (!req.complete)
cuda_poll();
}
static void cuda_shutdown(void)
{
struct adb_request req;
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
return;
/* Avoid infinite polling loop when PSU is not under Cuda control */
switch (macintosh_config->ident) {
case MAC_MODEL_C660:
case MAC_MODEL_Q605:
case MAC_MODEL_Q605_ACC:
case MAC_MODEL_P475:
case MAC_MODEL_P475F:
return;
}
while (!req.complete)
cuda_poll();
}
#endif /* CONFIG_ADB_CUDA */
/*
*-------------------------------------------------------------------
* Below this point are the generic routines; they'll dispatch to the
* correct routine for the hardware on which we're running.
*-------------------------------------------------------------------
*/
#if IS_ENABLED(CONFIG_NVRAM)
unsigned char mac_pram_read_byte(int addr)
{
switch (macintosh_config->adb_type) {
case MAC_ADB_IOP:
case MAC_ADB_II:
case MAC_ADB_PB1:
return via_pram_read_byte(addr);
#ifdef CONFIG_ADB_CUDA
case MAC_ADB_EGRET:
case MAC_ADB_CUDA:
return cuda_pram_read_byte(addr);
#endif
#ifdef CONFIG_ADB_PMU
case MAC_ADB_PB2:
return pmu_pram_read_byte(addr);
#endif
default:
return 0xFF;
}
}
void mac_pram_write_byte(unsigned char val, int addr)
{
switch (macintosh_config->adb_type) {
case MAC_ADB_IOP:
case MAC_ADB_II:
case MAC_ADB_PB1:
via_pram_write_byte(val, addr);
break;
#ifdef CONFIG_ADB_CUDA
case MAC_ADB_EGRET:
case MAC_ADB_CUDA:
cuda_pram_write_byte(val, addr);
break;
#endif
#ifdef CONFIG_ADB_PMU
case MAC_ADB_PB2:
pmu_pram_write_byte(val, addr);
break;
#endif
default:
break;
}
}
ssize_t mac_pram_get_size(void)
{
return 256;
}
#endif /* CONFIG_NVRAM */
void mac_poweroff(void)
{
if (oss_present) {
oss_shutdown();
} else if (macintosh_config->adb_type == MAC_ADB_II) {
via_shutdown();
#ifdef CONFIG_ADB_CUDA
} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
macintosh_config->adb_type == MAC_ADB_CUDA) {
cuda_shutdown();
#endif
#ifdef CONFIG_ADB_PMU
} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
pmu_shutdown();
#endif
}
pr_crit("It is now safe to turn off your Macintosh.\n");
local_irq_disable();
while(1);
}
void mac_reset(void)
{
if (macintosh_config->adb_type == MAC_ADB_II &&
macintosh_config->ident != MAC_MODEL_SE30) {
/* need ROMBASE in booter */
/* indeed, plus need to MAP THE ROM !! */
if (mac_bi_data.rombase == 0)
mac_bi_data.rombase = 0x40800000;
/* works on some */
rom_reset = (void *) (mac_bi_data.rombase + 0xa);
local_irq_disable();
rom_reset();
#ifdef CONFIG_ADB_CUDA
} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
macintosh_config->adb_type == MAC_ADB_CUDA) {
cuda_restart();
#endif
#ifdef CONFIG_ADB_PMU
} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
pmu_restart();
#endif
} else if (CPU_IS_030) {
/* 030-specific reset routine. The idea is general, but the
* specific registers to reset are '030-specific. Until I
* have a non-030 machine, I can't test anything else.
* -- C. Scott Ananian <cananian@alumni.princeton.edu>
*/
unsigned long rombase = 0x40000000;
/* make a 1-to-1 mapping, using the transparent tran. reg. */
unsigned long virt = (unsigned long) mac_reset;
unsigned long phys = virt_to_phys(mac_reset);
unsigned long addr = (phys&0xFF000000)|0x8777;
unsigned long offset = phys-virt;
local_irq_disable(); /* lets not screw this up, ok? */
__asm__ __volatile__(".chip 68030\n\t"
"pmove %0,%/tt0\n\t"
".chip 68k"
: : "m" (addr));
/* Now jump to physical address so we can disable MMU */
__asm__ __volatile__(
".chip 68030\n\t"
"lea %/pc@(1f),%/a0\n\t"
"addl %0,%/a0\n\t"/* fixup target address and stack ptr */
"addl %0,%/sp\n\t"
"pflusha\n\t"
"jmp %/a0@\n\t" /* jump into physical memory */
"0:.long 0\n\t" /* a constant zero. */
/* OK. Now reset everything and jump to reset vector. */
"1:\n\t"
"lea %/pc@(0b),%/a0\n\t"
"pmove %/a0@, %/tc\n\t" /* disable mmu */
"pmove %/a0@, %/tt0\n\t" /* disable tt0 */
"pmove %/a0@, %/tt1\n\t" /* disable tt1 */
"movel #0, %/a0\n\t"
"movec %/a0, %/vbr\n\t" /* clear vector base register */
"movec %/a0, %/cacr\n\t" /* disable caches */
"movel #0x0808,%/a0\n\t"
"movec %/a0, %/cacr\n\t" /* flush i&d caches */
"movew #0x2700,%/sr\n\t" /* set up status register */
"movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
"movec %/a0, %/isp\n\t"
"movel %1@(0x4),%/a0\n\t" /* load reset vector */
"reset\n\t" /* reset external devices */
"jmp %/a0@\n\t" /* jump to the reset vector */
".chip 68k"
: : "r" (offset), "a" (rombase) : "a0");
}
/* should never get here */
pr_crit("Restart failed. Please restart manually.\n");
local_irq_disable();
while(1);
}
/*
* This function translates seconds since 1970 into a proper date.
*
* Algorithm cribbed from glibc2.1, __offtime().
*
* This is roughly same as rtc_time64_to_tm(), which we should probably
* use here, but it's only available when CONFIG_RTC_LIB is enabled.
*/
#define SECS_PER_MINUTE (60)
#define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
static void unmktime(time64_t time, long offset,
int *yearp, int *monp, int *dayp,
int *hourp, int *minp, int *secp)
{
/* How many days come before each month (0-12). */
static const unsigned short int __mon_yday[2][13] =
{
/* Normal years. */
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
/* Leap years. */
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
int days, rem, y, wday, yday;
const unsigned short int *ip;
days = div_u64_rem(time, SECS_PER_DAY, &rem);
rem += offset;
while (rem < 0) {
rem += SECS_PER_DAY;
--days;
}
while (rem >= SECS_PER_DAY) {
rem -= SECS_PER_DAY;
++days;
}
*hourp = rem / SECS_PER_HOUR;
rem %= SECS_PER_HOUR;
*minp = rem / SECS_PER_MINUTE;
*secp = rem % SECS_PER_MINUTE;
/* January 1, 1970 was a Thursday. */
wday = (4 + days) % 7; /* Day in the week. Not currently used */
if (wday < 0) wday += 7;
y = 1970;
#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
#define __isleap(year) \
((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
while (days < 0 || days >= (__isleap (y) ? 366 : 365))
{
/* Guess a corrected year, assuming 365 days per year. */
long int yg = y + days / 365 - (days % 365 < 0);
/* Adjust DAYS and Y to match the guessed year. */
days -= (yg - y) * 365 +
LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1);
y = yg;
}
*yearp = y - 1900;
yday = days; /* day in the year. Not currently used. */
ip = __mon_yday[__isleap(y)];
for (y = 11; days < (long int) ip[y]; --y)
continue;
days -= ip[y];
*monp = y;
*dayp = days + 1; /* day in the month */
return;
}
/*
* Read/write the hardware clock.
*/
int mac_hwclk(int op, struct rtc_time *t)
{
time64_t now;
if (!op) { /* read */
switch (macintosh_config->adb_type) {
case MAC_ADB_IOP:
case MAC_ADB_II:
case MAC_ADB_PB1:
now = via_read_time();
break;
#ifdef CONFIG_ADB_CUDA
case MAC_ADB_EGRET:
case MAC_ADB_CUDA:
now = cuda_get_time();
break;
#endif
#ifdef CONFIG_ADB_PMU
case MAC_ADB_PB2:
now = pmu_get_time();
break;
#endif
default:
now = 0;
}
t->tm_wday = 0;
unmktime(now, 0,
&t->tm_year, &t->tm_mon, &t->tm_mday,
&t->tm_hour, &t->tm_min, &t->tm_sec);
pr_debug("%s: read %ptR\n", __func__, t);
} else { /* write */
pr_debug("%s: tried to write %ptR\n", __func__, t);
switch (macintosh_config->adb_type) {
case MAC_ADB_IOP:
case MAC_ADB_II:
case MAC_ADB_PB1:
via_set_rtc_time(t);
break;
#ifdef CONFIG_ADB_CUDA
case MAC_ADB_EGRET:
case MAC_ADB_CUDA:
cuda_set_rtc_time(t);
break;
#endif
#ifdef CONFIG_ADB_PMU
case MAC_ADB_PB2:
pmu_set_rtc_time(t);
break;
#endif
default:
return -ENODEV;
}
}
return 0;
}