453 lines
10 KiB
C
453 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Large capacity key type
|
|
*
|
|
* Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
* Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "big_key: "fmt
|
|
#include <linux/init.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/file.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/err.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/random.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <keys/user-type.h>
|
|
#include <keys/big_key-type.h>
|
|
#include <crypto/aead.h>
|
|
#include <crypto/gcm.h>
|
|
|
|
struct big_key_buf {
|
|
unsigned int nr_pages;
|
|
void *virt;
|
|
struct scatterlist *sg;
|
|
struct page *pages[];
|
|
};
|
|
|
|
/*
|
|
* Layout of key payload words.
|
|
*/
|
|
enum {
|
|
big_key_data,
|
|
big_key_path,
|
|
big_key_path_2nd_part,
|
|
big_key_len,
|
|
};
|
|
|
|
/*
|
|
* Crypto operation with big_key data
|
|
*/
|
|
enum big_key_op {
|
|
BIG_KEY_ENC,
|
|
BIG_KEY_DEC,
|
|
};
|
|
|
|
/*
|
|
* If the data is under this limit, there's no point creating a shm file to
|
|
* hold it as the permanently resident metadata for the shmem fs will be at
|
|
* least as large as the data.
|
|
*/
|
|
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
|
|
|
|
/*
|
|
* Key size for big_key data encryption
|
|
*/
|
|
#define ENC_KEY_SIZE 32
|
|
|
|
/*
|
|
* Authentication tag length
|
|
*/
|
|
#define ENC_AUTHTAG_SIZE 16
|
|
|
|
/*
|
|
* big_key defined keys take an arbitrary string as the description and an
|
|
* arbitrary blob of data as the payload
|
|
*/
|
|
struct key_type key_type_big_key = {
|
|
.name = "big_key",
|
|
.preparse = big_key_preparse,
|
|
.free_preparse = big_key_free_preparse,
|
|
.instantiate = generic_key_instantiate,
|
|
.revoke = big_key_revoke,
|
|
.destroy = big_key_destroy,
|
|
.describe = big_key_describe,
|
|
.read = big_key_read,
|
|
/* no ->update(); don't add it without changing big_key_crypt() nonce */
|
|
};
|
|
|
|
/*
|
|
* Crypto names for big_key data authenticated encryption
|
|
*/
|
|
static const char big_key_alg_name[] = "gcm(aes)";
|
|
#define BIG_KEY_IV_SIZE GCM_AES_IV_SIZE
|
|
|
|
/*
|
|
* Crypto algorithms for big_key data authenticated encryption
|
|
*/
|
|
static struct crypto_aead *big_key_aead;
|
|
|
|
/*
|
|
* Since changing the key affects the entire object, we need a mutex.
|
|
*/
|
|
static DEFINE_MUTEX(big_key_aead_lock);
|
|
|
|
/*
|
|
* Encrypt/decrypt big_key data
|
|
*/
|
|
static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
|
|
{
|
|
int ret;
|
|
struct aead_request *aead_req;
|
|
/* We always use a zero nonce. The reason we can get away with this is
|
|
* because we're using a different randomly generated key for every
|
|
* different encryption. Notably, too, key_type_big_key doesn't define
|
|
* an .update function, so there's no chance we'll wind up reusing the
|
|
* key to encrypt updated data. Simply put: one key, one encryption.
|
|
*/
|
|
u8 zero_nonce[BIG_KEY_IV_SIZE];
|
|
|
|
aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
|
|
if (!aead_req)
|
|
return -ENOMEM;
|
|
|
|
memset(zero_nonce, 0, sizeof(zero_nonce));
|
|
aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
|
aead_request_set_ad(aead_req, 0);
|
|
|
|
mutex_lock(&big_key_aead_lock);
|
|
if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
|
|
ret = -EAGAIN;
|
|
goto error;
|
|
}
|
|
if (op == BIG_KEY_ENC)
|
|
ret = crypto_aead_encrypt(aead_req);
|
|
else
|
|
ret = crypto_aead_decrypt(aead_req);
|
|
error:
|
|
mutex_unlock(&big_key_aead_lock);
|
|
aead_request_free(aead_req);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free up the buffer.
|
|
*/
|
|
static void big_key_free_buffer(struct big_key_buf *buf)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (buf->virt) {
|
|
memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
|
|
vunmap(buf->virt);
|
|
}
|
|
|
|
for (i = 0; i < buf->nr_pages; i++)
|
|
if (buf->pages[i])
|
|
__free_page(buf->pages[i]);
|
|
|
|
kfree(buf);
|
|
}
|
|
|
|
/*
|
|
* Allocate a buffer consisting of a set of pages with a virtual mapping
|
|
* applied over them.
|
|
*/
|
|
static void *big_key_alloc_buffer(size_t len)
|
|
{
|
|
struct big_key_buf *buf;
|
|
unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned int i, l;
|
|
|
|
buf = kzalloc(sizeof(struct big_key_buf) +
|
|
sizeof(struct page) * npg +
|
|
sizeof(struct scatterlist) * npg,
|
|
GFP_KERNEL);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
buf->nr_pages = npg;
|
|
buf->sg = (void *)(buf->pages + npg);
|
|
sg_init_table(buf->sg, npg);
|
|
|
|
for (i = 0; i < buf->nr_pages; i++) {
|
|
buf->pages[i] = alloc_page(GFP_KERNEL);
|
|
if (!buf->pages[i])
|
|
goto nomem;
|
|
|
|
l = min_t(size_t, len, PAGE_SIZE);
|
|
sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
|
|
len -= l;
|
|
}
|
|
|
|
buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
|
|
if (!buf->virt)
|
|
goto nomem;
|
|
|
|
return buf;
|
|
|
|
nomem:
|
|
big_key_free_buffer(buf);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Preparse a big key
|
|
*/
|
|
int big_key_preparse(struct key_preparsed_payload *prep)
|
|
{
|
|
struct big_key_buf *buf;
|
|
struct path *path = (struct path *)&prep->payload.data[big_key_path];
|
|
struct file *file;
|
|
u8 *enckey;
|
|
ssize_t written;
|
|
size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
|
|
int ret;
|
|
|
|
if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
|
|
return -EINVAL;
|
|
|
|
/* Set an arbitrary quota */
|
|
prep->quotalen = 16;
|
|
|
|
prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
|
|
|
|
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
/* Create a shmem file to store the data in. This will permit the data
|
|
* to be swapped out if needed.
|
|
*
|
|
* File content is stored encrypted with randomly generated key.
|
|
*/
|
|
loff_t pos = 0;
|
|
|
|
buf = big_key_alloc_buffer(enclen);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
memcpy(buf->virt, prep->data, datalen);
|
|
|
|
/* generate random key */
|
|
enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
|
|
if (!enckey) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
|
|
if (unlikely(ret))
|
|
goto err_enckey;
|
|
|
|
/* encrypt aligned data */
|
|
ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
|
|
if (ret)
|
|
goto err_enckey;
|
|
|
|
/* save aligned data to file */
|
|
file = shmem_kernel_file_setup("", enclen, 0);
|
|
if (IS_ERR(file)) {
|
|
ret = PTR_ERR(file);
|
|
goto err_enckey;
|
|
}
|
|
|
|
written = kernel_write(file, buf->virt, enclen, &pos);
|
|
if (written != enclen) {
|
|
ret = written;
|
|
if (written >= 0)
|
|
ret = -ENOMEM;
|
|
goto err_fput;
|
|
}
|
|
|
|
/* Pin the mount and dentry to the key so that we can open it again
|
|
* later
|
|
*/
|
|
prep->payload.data[big_key_data] = enckey;
|
|
*path = file->f_path;
|
|
path_get(path);
|
|
fput(file);
|
|
big_key_free_buffer(buf);
|
|
} else {
|
|
/* Just store the data in a buffer */
|
|
void *data = kmalloc(datalen, GFP_KERNEL);
|
|
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
prep->payload.data[big_key_data] = data;
|
|
memcpy(data, prep->data, prep->datalen);
|
|
}
|
|
return 0;
|
|
|
|
err_fput:
|
|
fput(file);
|
|
err_enckey:
|
|
kzfree(enckey);
|
|
error:
|
|
big_key_free_buffer(buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clear preparsement.
|
|
*/
|
|
void big_key_free_preparse(struct key_preparsed_payload *prep)
|
|
{
|
|
if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
struct path *path = (struct path *)&prep->payload.data[big_key_path];
|
|
|
|
path_put(path);
|
|
}
|
|
kzfree(prep->payload.data[big_key_data]);
|
|
}
|
|
|
|
/*
|
|
* dispose of the links from a revoked keyring
|
|
* - called with the key sem write-locked
|
|
*/
|
|
void big_key_revoke(struct key *key)
|
|
{
|
|
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
|
|
|
/* clear the quota */
|
|
key_payload_reserve(key, 0);
|
|
if (key_is_positive(key) &&
|
|
(size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
|
|
vfs_truncate(path, 0);
|
|
}
|
|
|
|
/*
|
|
* dispose of the data dangling from the corpse of a big_key key
|
|
*/
|
|
void big_key_destroy(struct key *key)
|
|
{
|
|
size_t datalen = (size_t)key->payload.data[big_key_len];
|
|
|
|
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
|
|
|
path_put(path);
|
|
path->mnt = NULL;
|
|
path->dentry = NULL;
|
|
}
|
|
kzfree(key->payload.data[big_key_data]);
|
|
key->payload.data[big_key_data] = NULL;
|
|
}
|
|
|
|
/*
|
|
* describe the big_key key
|
|
*/
|
|
void big_key_describe(const struct key *key, struct seq_file *m)
|
|
{
|
|
size_t datalen = (size_t)key->payload.data[big_key_len];
|
|
|
|
seq_puts(m, key->description);
|
|
|
|
if (key_is_positive(key))
|
|
seq_printf(m, ": %zu [%s]",
|
|
datalen,
|
|
datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
|
|
}
|
|
|
|
/*
|
|
* read the key data
|
|
* - the key's semaphore is read-locked
|
|
*/
|
|
long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
|
|
{
|
|
size_t datalen = (size_t)key->payload.data[big_key_len];
|
|
long ret;
|
|
|
|
if (!buffer || buflen < datalen)
|
|
return datalen;
|
|
|
|
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
struct big_key_buf *buf;
|
|
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
|
struct file *file;
|
|
u8 *enckey = (u8 *)key->payload.data[big_key_data];
|
|
size_t enclen = datalen + ENC_AUTHTAG_SIZE;
|
|
loff_t pos = 0;
|
|
|
|
buf = big_key_alloc_buffer(enclen);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
file = dentry_open(path, O_RDONLY, current_cred());
|
|
if (IS_ERR(file)) {
|
|
ret = PTR_ERR(file);
|
|
goto error;
|
|
}
|
|
|
|
/* read file to kernel and decrypt */
|
|
ret = kernel_read(file, buf->virt, enclen, &pos);
|
|
if (ret >= 0 && ret != enclen) {
|
|
ret = -EIO;
|
|
goto err_fput;
|
|
}
|
|
|
|
ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
|
|
if (ret)
|
|
goto err_fput;
|
|
|
|
ret = datalen;
|
|
|
|
/* copy decrypted data to user */
|
|
if (copy_to_user(buffer, buf->virt, datalen) != 0)
|
|
ret = -EFAULT;
|
|
|
|
err_fput:
|
|
fput(file);
|
|
error:
|
|
big_key_free_buffer(buf);
|
|
} else {
|
|
ret = datalen;
|
|
if (copy_to_user(buffer, key->payload.data[big_key_data],
|
|
datalen) != 0)
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Register key type
|
|
*/
|
|
static int __init big_key_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/* init block cipher */
|
|
big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(big_key_aead)) {
|
|
ret = PTR_ERR(big_key_aead);
|
|
pr_err("Can't alloc crypto: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
|
|
WARN(1, "big key algorithm changed?");
|
|
ret = -EINVAL;
|
|
goto free_aead;
|
|
}
|
|
|
|
ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
|
|
if (ret < 0) {
|
|
pr_err("Can't set crypto auth tag len: %d\n", ret);
|
|
goto free_aead;
|
|
}
|
|
|
|
ret = register_key_type(&key_type_big_key);
|
|
if (ret < 0) {
|
|
pr_err("Can't register type: %d\n", ret);
|
|
goto free_aead;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_aead:
|
|
crypto_free_aead(big_key_aead);
|
|
return ret;
|
|
}
|
|
|
|
late_initcall(big_key_init);
|