linux/linux-5.4.31/drivers/power/supply/sc27xx_fuel_gauge.c

1232 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.
#include <linux/gpio/consumer.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/slab.h>
/* PMIC global control registers definition */
#define SC27XX_MODULE_EN0 0xc08
#define SC27XX_CLK_EN0 0xc18
#define SC27XX_FGU_EN BIT(7)
#define SC27XX_FGU_RTC_EN BIT(6)
/* FGU registers definition */
#define SC27XX_FGU_START 0x0
#define SC27XX_FGU_CONFIG 0x4
#define SC27XX_FGU_ADC_CONFIG 0x8
#define SC27XX_FGU_STATUS 0xc
#define SC27XX_FGU_INT_EN 0x10
#define SC27XX_FGU_INT_CLR 0x14
#define SC27XX_FGU_INT_STS 0x1c
#define SC27XX_FGU_VOLTAGE 0x20
#define SC27XX_FGU_OCV 0x24
#define SC27XX_FGU_POCV 0x28
#define SC27XX_FGU_CURRENT 0x2c
#define SC27XX_FGU_LOW_OVERLOAD 0x34
#define SC27XX_FGU_CLBCNT_SETH 0x50
#define SC27XX_FGU_CLBCNT_SETL 0x54
#define SC27XX_FGU_CLBCNT_DELTH 0x58
#define SC27XX_FGU_CLBCNT_DELTL 0x5c
#define SC27XX_FGU_CLBCNT_VALH 0x68
#define SC27XX_FGU_CLBCNT_VALL 0x6c
#define SC27XX_FGU_CLBCNT_QMAXL 0x74
#define SC27XX_FGU_USER_AREA_SET 0xa0
#define SC27XX_FGU_USER_AREA_CLEAR 0xa4
#define SC27XX_FGU_USER_AREA_STATUS 0xa8
#define SC27XX_WRITE_SELCLB_EN BIT(0)
#define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
#define SC27XX_FGU_CLBCNT_SHIFT 16
#define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
#define SC27XX_FGU_INT_MASK GENMASK(9, 0)
#define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
#define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
#define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
#define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
#define SC27XX_FGU_MODE_AREA_SHIFT 12
#define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
#define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
#define SC27XX_FGU_NORMAIL_POWERTON 0x5
#define SC27XX_FGU_CUR_BASIC_ADC 8192
#define SC27XX_FGU_SAMPLE_HZ 2
/*
* struct sc27xx_fgu_data: describe the FGU device
* @regmap: regmap for register access
* @dev: platform device
* @battery: battery power supply
* @base: the base offset for the controller
* @lock: protect the structure
* @gpiod: GPIO for battery detection
* @channel: IIO channel to get battery temperature
* @charge_chan: IIO channel to get charge voltage
* @internal_resist: the battery internal resistance in mOhm
* @total_cap: the total capacity of the battery in mAh
* @init_cap: the initial capacity of the battery in mAh
* @alarm_cap: the alarm capacity
* @init_clbcnt: the initial coulomb counter
* @max_volt: the maximum constant input voltage in millivolt
* @min_volt: the minimum drained battery voltage in microvolt
* @table_len: the capacity table length
* @cur_1000ma_adc: ADC value corresponding to 1000 mA
* @vol_1000mv_adc: ADC value corresponding to 1000 mV
* @cap_table: capacity table with corresponding ocv
*/
struct sc27xx_fgu_data {
struct regmap *regmap;
struct device *dev;
struct power_supply *battery;
u32 base;
struct mutex lock;
struct gpio_desc *gpiod;
struct iio_channel *channel;
struct iio_channel *charge_chan;
bool bat_present;
int internal_resist;
int total_cap;
int init_cap;
int alarm_cap;
int init_clbcnt;
int max_volt;
int min_volt;
int table_len;
int cur_1000ma_adc;
int vol_1000mv_adc;
struct power_supply_battery_ocv_table *cap_table;
};
static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
int cap, bool int_mode);
static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
static const char * const sc27xx_charger_supply_name[] = {
"sc2731_charger",
"sc2720_charger",
"sc2721_charger",
"sc2723_charger",
};
static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, int adc)
{
return DIV_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
}
static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, int adc)
{
return DIV_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
}
static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
{
return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
}
static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
{
int ret, status, cap, mode;
ret = regmap_read(data->regmap,
data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
if (ret)
return false;
/*
* We use low 4 bits to save the last battery capacity and high 12 bits
* to save the system boot mode.
*/
mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
cap = status & SC27XX_FGU_CAP_AREA_MASK;
/*
* When FGU has been powered down, the user area registers became
* default value (0xffff), which can be used to valid if the system is
* first power on or not.
*/
if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
return true;
return false;
}
static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
int boot_mode)
{
int ret;
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_USER_AREA_CLEAR,
SC27XX_FGU_MODE_AREA_MASK,
SC27XX_FGU_MODE_AREA_MASK);
if (ret)
return ret;
/*
* Since the user area registers are put on power always-on region,
* then these registers changing time will be a little long. Thus
* here we should delay 200us to wait until values are updated
* successfully according to the datasheet.
*/
udelay(200);
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_USER_AREA_SET,
SC27XX_FGU_MODE_AREA_MASK,
boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
if (ret)
return ret;
/*
* Since the user area registers are put on power always-on region,
* then these registers changing time will be a little long. Thus
* here we should delay 200us to wait until values are updated
* successfully according to the datasheet.
*/
udelay(200);
/*
* According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
* make the user area data available, otherwise we can not save the user
* area data.
*/
return regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_USER_AREA_CLEAR,
SC27XX_FGU_MODE_AREA_MASK, 0);
}
static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
{
int ret;
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_USER_AREA_CLEAR,
SC27XX_FGU_CAP_AREA_MASK,
SC27XX_FGU_CAP_AREA_MASK);
if (ret)
return ret;
/*
* Since the user area registers are put on power always-on region,
* then these registers changing time will be a little long. Thus
* here we should delay 200us to wait until values are updated
* successfully according to the datasheet.
*/
udelay(200);
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_USER_AREA_SET,
SC27XX_FGU_CAP_AREA_MASK, cap);
if (ret)
return ret;
/*
* Since the user area registers are put on power always-on region,
* then these registers changing time will be a little long. Thus
* here we should delay 200us to wait until values are updated
* successfully according to the datasheet.
*/
udelay(200);
/*
* According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
* make the user area data available, otherwise we can not save the user
* area data.
*/
return regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_USER_AREA_CLEAR,
SC27XX_FGU_CAP_AREA_MASK, 0);
}
static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
{
int ret, value;
ret = regmap_read(data->regmap,
data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
if (ret)
return ret;
*cap = value & SC27XX_FGU_CAP_AREA_MASK;
return 0;
}
/*
* When system boots on, we can not read battery capacity from coulomb
* registers, since now the coulomb registers are invalid. So we should
* calculate the battery open circuit voltage, and get current battery
* capacity according to the capacity table.
*/
static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
{
int volt, cur, oci, ocv, ret;
bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
/*
* If system is not the first power on, we should use the last saved
* battery capacity as the initial battery capacity. Otherwise we should
* re-calculate the initial battery capacity.
*/
if (!is_first_poweron) {
ret = sc27xx_fgu_read_last_cap(data, cap);
if (ret)
return ret;
return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
}
/*
* After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
* the first sampled open circuit current.
*/
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
&cur);
if (ret)
return ret;
cur <<= 1;
oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
/*
* Should get the OCV from SC27XX_FGU_POCV register at the system
* beginning. It is ADC values reading from registers which need to
* convert the corresponding voltage.
*/
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
if (ret)
return ret;
volt = sc27xx_fgu_adc_to_voltage(data, volt);
ocv = volt * 1000 - oci * data->internal_resist;
/*
* Parse the capacity table to look up the correct capacity percent
* according to current battery's corresponding OCV values.
*/
*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
ocv);
ret = sc27xx_fgu_save_last_cap(data, *cap);
if (ret)
return ret;
return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
}
static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
{
int ret;
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_CLBCNT_SETL,
SC27XX_FGU_CLBCNT_MASK, clbcnt);
if (ret)
return ret;
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_CLBCNT_SETH,
SC27XX_FGU_CLBCNT_MASK,
clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
if (ret)
return ret;
return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
SC27XX_WRITE_SELCLB_EN,
SC27XX_WRITE_SELCLB_EN);
}
static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
{
int ccl, cch, ret;
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
&ccl);
if (ret)
return ret;
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
&cch);
if (ret)
return ret;
*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
return 0;
}
static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
{
int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
/* Get current coulomb counters firstly */
ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
if (ret)
return ret;
delta_clbcnt = cur_clbcnt - data->init_clbcnt;
/*
* Convert coulomb counter to delta capacity (mAh), and set multiplier
* as 10 to improve the precision.
*/
temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
/*
* Convert to capacity percent of the battery total capacity,
* and multiplier is 100 too.
*/
delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
*cap = delta_cap + data->init_cap;
/* Calibrate the battery capacity in a normal range. */
sc27xx_fgu_capacity_calibration(data, *cap, false);
return 0;
}
static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
{
int ret, vol;
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
if (ret)
return ret;
/*
* It is ADC values reading from registers which need to convert to
* corresponding voltage values.
*/
*val = sc27xx_fgu_adc_to_voltage(data, vol);
return 0;
}
static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
{
int ret, cur;
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
if (ret)
return ret;
/*
* It is ADC values reading from registers which need to convert to
* corresponding current values.
*/
*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
return 0;
}
static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
{
int vol, cur, ret;
ret = sc27xx_fgu_get_vbat_vol(data, &vol);
if (ret)
return ret;
ret = sc27xx_fgu_get_current(data, &cur);
if (ret)
return ret;
/* Return the battery OCV in micro volts. */
*val = vol * 1000 - cur * data->internal_resist;
return 0;
}
static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
{
int ret, vol;
ret = iio_read_channel_processed(data->charge_chan, &vol);
if (ret < 0)
return ret;
*val = vol * 1000;
return 0;
}
static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
{
return iio_read_channel_processed(data->channel, temp);
}
static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
{
int ret, vol;
ret = sc27xx_fgu_get_vbat_vol(data, &vol);
if (ret)
return ret;
if (vol > data->max_volt)
*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
else
*health = POWER_SUPPLY_HEALTH_GOOD;
return 0;
}
static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
{
union power_supply_propval val;
struct power_supply *psy;
int i, ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
if (!psy)
continue;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
&val);
power_supply_put(psy);
if (ret)
return ret;
*status = val.intval;
}
return ret;
}
static int sc27xx_fgu_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
int ret = 0;
int value;
mutex_lock(&data->lock);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
ret = sc27xx_fgu_get_status(data, &value);
if (ret)
goto error;
val->intval = value;
break;
case POWER_SUPPLY_PROP_HEALTH:
ret = sc27xx_fgu_get_health(data, &value);
if (ret)
goto error;
val->intval = value;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = data->bat_present;
break;
case POWER_SUPPLY_PROP_TEMP:
ret = sc27xx_fgu_get_temp(data, &value);
if (ret)
goto error;
val->intval = value;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = sc27xx_fgu_get_capacity(data, &value);
if (ret)
goto error;
val->intval = value;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
ret = sc27xx_fgu_get_vbat_vol(data, &value);
if (ret)
goto error;
val->intval = value * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
ret = sc27xx_fgu_get_vbat_ocv(data, &value);
if (ret)
goto error;
val->intval = value;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
ret = sc27xx_fgu_get_charge_vol(data, &value);
if (ret)
goto error;
val->intval = value;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_CURRENT_AVG:
ret = sc27xx_fgu_get_current(data, &value);
if (ret)
goto error;
val->intval = value * 1000;
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = data->total_cap * 1000;
break;
default:
ret = -EINVAL;
break;
}
error:
mutex_unlock(&data->lock);
return ret;
}
static int sc27xx_fgu_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
int ret;
mutex_lock(&data->lock);
switch (psp) {
case POWER_SUPPLY_PROP_CAPACITY:
ret = sc27xx_fgu_save_last_cap(data, val->intval);
if (ret < 0)
dev_err(data->dev, "failed to save battery capacity\n");
break;
case POWER_SUPPLY_PROP_CALIBRATE:
sc27xx_fgu_adjust_cap(data, val->intval);
ret = 0;
break;
default:
ret = -EINVAL;
}
mutex_unlock(&data->lock);
return ret;
}
static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
{
struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
power_supply_changed(data->battery);
}
static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
return psp == POWER_SUPPLY_PROP_CAPACITY ||
psp == POWER_SUPPLY_PROP_CALIBRATE;
}
static enum power_supply_property sc27xx_fgu_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_OCV,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_CALIBRATE,
};
static const struct power_supply_desc sc27xx_fgu_desc = {
.name = "sc27xx-fgu",
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = sc27xx_fgu_props,
.num_properties = ARRAY_SIZE(sc27xx_fgu_props),
.get_property = sc27xx_fgu_get_property,
.set_property = sc27xx_fgu_set_property,
.external_power_changed = sc27xx_fgu_external_power_changed,
.property_is_writeable = sc27xx_fgu_property_is_writeable,
};
static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
{
int ret;
data->init_cap = cap;
ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
if (ret)
dev_err(data->dev, "failed to get init coulomb counter\n");
}
static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
int cap, bool int_mode)
{
int ret, ocv, chg_sts, adc;
ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
if (ret) {
dev_err(data->dev, "get battery ocv error.\n");
return;
}
ret = sc27xx_fgu_get_status(data, &chg_sts);
if (ret) {
dev_err(data->dev, "get charger status error.\n");
return;
}
/*
* If we are in charging mode, then we do not need to calibrate the
* lower capacity.
*/
if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
return;
if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
/*
* If current OCV value is larger than the max OCV value in
* OCV table, or the current capacity is larger than 100,
* we should force the inititial capacity to 100.
*/
sc27xx_fgu_adjust_cap(data, 100);
} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
/*
* If current OCV value is leass than the minimum OCV value in
* OCV table, we should force the inititial capacity to 0.
*/
sc27xx_fgu_adjust_cap(data, 0);
} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
(ocv > data->min_volt && cap <= data->alarm_cap)) {
/*
* If current OCV value is not matchable with current capacity,
* we should re-calculate current capacity by looking up the
* OCV table.
*/
int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
data->table_len, ocv);
sc27xx_fgu_adjust_cap(data, cur_cap);
} else if (ocv <= data->min_volt) {
/*
* If current OCV value is less than the low alarm voltage, but
* current capacity is larger than the alarm capacity, we should
* adjust the inititial capacity to alarm capacity.
*/
if (cap > data->alarm_cap) {
sc27xx_fgu_adjust_cap(data, data->alarm_cap);
} else {
int cur_cap;
/*
* If current capacity is equal with 0 or less than 0
* (some error occurs), we should adjust inititial
* capacity to the capacity corresponding to current OCV
* value.
*/
cur_cap = power_supply_ocv2cap_simple(data->cap_table,
data->table_len,
ocv);
sc27xx_fgu_adjust_cap(data, cur_cap);
}
if (!int_mode)
return;
/*
* After adjusting the battery capacity, we should set the
* lowest alarm voltage instead.
*/
data->min_volt = data->cap_table[data->table_len - 1].ocv;
data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
data->table_len,
data->min_volt);
adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_LOW_OVERLOAD,
SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
}
}
static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
{
struct sc27xx_fgu_data *data = dev_id;
int ret, cap;
u32 status;
mutex_lock(&data->lock);
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
&status);
if (ret)
goto out;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
status, status);
if (ret)
goto out;
/*
* When low overload voltage interrupt happens, we should calibrate the
* battery capacity in lower voltage stage.
*/
if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
goto out;
ret = sc27xx_fgu_get_capacity(data, &cap);
if (ret)
goto out;
sc27xx_fgu_capacity_calibration(data, cap, true);
out:
mutex_unlock(&data->lock);
power_supply_changed(data->battery);
return IRQ_HANDLED;
}
static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
{
struct sc27xx_fgu_data *data = dev_id;
int state;
mutex_lock(&data->lock);
state = gpiod_get_value_cansleep(data->gpiod);
if (state < 0) {
dev_err(data->dev, "failed to get gpio state\n");
mutex_unlock(&data->lock);
return IRQ_RETVAL(state);
}
data->bat_present = !!state;
mutex_unlock(&data->lock);
power_supply_changed(data->battery);
return IRQ_HANDLED;
}
static void sc27xx_fgu_disable(void *_data)
{
struct sc27xx_fgu_data *data = _data;
regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
}
static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
{
/*
* Get current capacity (mAh) = battery total capacity (mAh) *
* current capacity percent (capacity / 100).
*/
int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
/*
* Convert current capacity (mAh) to coulomb counter according to the
* formula: 1 mAh =3.6 coulomb.
*/
return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
}
static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
{
struct nvmem_cell *cell;
int calib_data, cal_4200mv;
void *buf;
size_t len;
cell = nvmem_cell_get(data->dev, "fgu_calib");
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
memcpy(&calib_data, buf, min(len, sizeof(u32)));
/*
* Get the ADC value corresponding to 4200 mV from eFuse controller
* according to below formula. Then convert to ADC values corresponding
* to 1000 mV and 1000 mA.
*/
cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
data->cur_1000ma_adc = data->vol_1000mv_adc * 4;
kfree(buf);
return 0;
}
static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
{
struct power_supply_battery_info info = { };
struct power_supply_battery_ocv_table *table;
int ret, delta_clbcnt, alarm_adc;
ret = power_supply_get_battery_info(data->battery, &info);
if (ret) {
dev_err(data->dev, "failed to get battery information\n");
return ret;
}
data->total_cap = info.charge_full_design_uah / 1000;
data->max_volt = info.constant_charge_voltage_max_uv / 1000;
data->internal_resist = info.factory_internal_resistance_uohm / 1000;
data->min_volt = info.voltage_min_design_uv;
/*
* For SC27XX fuel gauge device, we only use one ocv-capacity
* table in normal temperature 20 Celsius.
*/
table = power_supply_find_ocv2cap_table(&info, 20, &data->table_len);
if (!table)
return -EINVAL;
data->cap_table = devm_kmemdup(data->dev, table,
data->table_len * sizeof(*table),
GFP_KERNEL);
if (!data->cap_table) {
power_supply_put_battery_info(data->battery, &info);
return -ENOMEM;
}
data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
data->table_len,
data->min_volt);
if (!data->alarm_cap)
data->alarm_cap += 1;
power_supply_put_battery_info(data->battery, &info);
ret = sc27xx_fgu_calibration(data);
if (ret)
return ret;
/* Enable the FGU module */
ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
SC27XX_FGU_EN, SC27XX_FGU_EN);
if (ret) {
dev_err(data->dev, "failed to enable fgu\n");
return ret;
}
/* Enable the FGU RTC clock to make it work */
ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
if (ret) {
dev_err(data->dev, "failed to enable fgu RTC clock\n");
goto disable_fgu;
}
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
if (ret) {
dev_err(data->dev, "failed to clear interrupt status\n");
goto disable_clk;
}
/*
* Set the voltage low overload threshold, which means when the battery
* voltage is lower than this threshold, the controller will generate
* one interrupt to notify.
*/
alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
if (ret) {
dev_err(data->dev, "failed to set fgu low overload\n");
goto disable_clk;
}
/*
* Set the coulomb counter delta threshold, that means when the coulomb
* counter change is multiples of the delta threshold, the controller
* will generate one interrupt to notify the users to update the battery
* capacity. Now we set the delta threshold as a counter value of 1%
* capacity.
*/
delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
if (ret) {
dev_err(data->dev, "failed to set low delta coulomb counter\n");
goto disable_clk;
}
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
SC27XX_FGU_CLBCNT_MASK,
delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
if (ret) {
dev_err(data->dev, "failed to set high delta coulomb counter\n");
goto disable_clk;
}
/*
* Get the boot battery capacity when system powers on, which is used to
* initialize the coulomb counter. After that, we can read the coulomb
* counter to measure the battery capacity.
*/
ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
if (ret) {
dev_err(data->dev, "failed to get boot capacity\n");
goto disable_clk;
}
/*
* Convert battery capacity to the corresponding initial coulomb counter
* and set into coulomb counter registers.
*/
data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
if (ret) {
dev_err(data->dev, "failed to initialize coulomb counter\n");
goto disable_clk;
}
return 0;
disable_clk:
regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
disable_fgu:
regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
return ret;
}
static int sc27xx_fgu_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct power_supply_config fgu_cfg = { };
struct sc27xx_fgu_data *data;
int ret, irq;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->regmap = dev_get_regmap(dev->parent, NULL);
if (!data->regmap) {
dev_err(dev, "failed to get regmap\n");
return -ENODEV;
}
ret = device_property_read_u32(dev, "reg", &data->base);
if (ret) {
dev_err(dev, "failed to get fgu address\n");
return ret;
}
data->channel = devm_iio_channel_get(dev, "bat-temp");
if (IS_ERR(data->channel)) {
dev_err(dev, "failed to get IIO channel\n");
return PTR_ERR(data->channel);
}
data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
if (IS_ERR(data->charge_chan)) {
dev_err(dev, "failed to get charge IIO channel\n");
return PTR_ERR(data->charge_chan);
}
data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
if (IS_ERR(data->gpiod)) {
dev_err(dev, "failed to get battery detection GPIO\n");
return PTR_ERR(data->gpiod);
}
ret = gpiod_get_value_cansleep(data->gpiod);
if (ret < 0) {
dev_err(dev, "failed to get gpio state\n");
return ret;
}
data->bat_present = !!ret;
mutex_init(&data->lock);
data->dev = dev;
platform_set_drvdata(pdev, data);
fgu_cfg.drv_data = data;
fgu_cfg.of_node = np;
data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
&fgu_cfg);
if (IS_ERR(data->battery)) {
dev_err(dev, "failed to register power supply\n");
return PTR_ERR(data->battery);
}
ret = sc27xx_fgu_hw_init(data);
if (ret) {
dev_err(dev, "failed to initialize fgu hardware\n");
return ret;
}
ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
if (ret) {
dev_err(dev, "failed to add fgu disable action\n");
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "no irq resource specified\n");
return irq;
}
ret = devm_request_threaded_irq(data->dev, irq, NULL,
sc27xx_fgu_interrupt,
IRQF_NO_SUSPEND | IRQF_ONESHOT,
pdev->name, data);
if (ret) {
dev_err(data->dev, "failed to request fgu IRQ\n");
return ret;
}
irq = gpiod_to_irq(data->gpiod);
if (irq < 0) {
dev_err(dev, "failed to translate GPIO to IRQ\n");
return irq;
}
ret = devm_request_threaded_irq(dev, irq, NULL,
sc27xx_fgu_bat_detection,
IRQF_ONESHOT | IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
pdev->name, data);
if (ret) {
dev_err(dev, "failed to request IRQ\n");
return ret;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sc27xx_fgu_resume(struct device *dev)
{
struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
int ret;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
SC27XX_FGU_LOW_OVERLOAD_INT |
SC27XX_FGU_CLBCNT_DELTA_INT, 0);
if (ret) {
dev_err(data->dev, "failed to disable fgu interrupts\n");
return ret;
}
return 0;
}
static int sc27xx_fgu_suspend(struct device *dev)
{
struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
int ret, status, ocv;
ret = sc27xx_fgu_get_status(data, &status);
if (ret)
return ret;
/*
* If we are charging, then no need to enable the FGU interrupts to
* adjust the battery capacity.
*/
if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
status != POWER_SUPPLY_STATUS_DISCHARGING)
return 0;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
SC27XX_FGU_LOW_OVERLOAD_INT,
SC27XX_FGU_LOW_OVERLOAD_INT);
if (ret) {
dev_err(data->dev, "failed to enable low voltage interrupt\n");
return ret;
}
ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
if (ret)
goto disable_int;
/*
* If current OCV is less than the minimum voltage, we should enable the
* coulomb counter threshold interrupt to notify events to adjust the
* battery capacity.
*/
if (ocv < data->min_volt) {
ret = regmap_update_bits(data->regmap,
data->base + SC27XX_FGU_INT_EN,
SC27XX_FGU_CLBCNT_DELTA_INT,
SC27XX_FGU_CLBCNT_DELTA_INT);
if (ret) {
dev_err(data->dev,
"failed to enable coulomb threshold int\n");
goto disable_int;
}
}
return 0;
disable_int:
regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
SC27XX_FGU_LOW_OVERLOAD_INT, 0);
return ret;
}
#endif
static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
};
static const struct of_device_id sc27xx_fgu_of_match[] = {
{ .compatible = "sprd,sc2731-fgu", },
{ }
};
static struct platform_driver sc27xx_fgu_driver = {
.probe = sc27xx_fgu_probe,
.driver = {
.name = "sc27xx-fgu",
.of_match_table = sc27xx_fgu_of_match,
.pm = &sc27xx_fgu_pm_ops,
}
};
module_platform_driver(sc27xx_fgu_driver);
MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
MODULE_LICENSE("GPL v2");