linux/linux-5.4.31/drivers/net/wireless/realtek/rtw88/main.c

1287 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include "main.h"
#include "regd.h"
#include "fw.h"
#include "ps.h"
#include "sec.h"
#include "mac.h"
#include "coex.h"
#include "phy.h"
#include "reg.h"
#include "efuse.h"
#include "debug.h"
static bool rtw_fw_support_lps;
unsigned int rtw_debug_mask;
EXPORT_SYMBOL(rtw_debug_mask);
module_param_named(support_lps, rtw_fw_support_lps, bool, 0644);
module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
MODULE_PARM_DESC(support_lps, "Set Y to enable Leisure Power Save support, to turn radio off between beacons");
MODULE_PARM_DESC(debug_mask, "Debugging mask");
static struct ieee80211_channel rtw_channeltable_2g[] = {
{.center_freq = 2412, .hw_value = 1,},
{.center_freq = 2417, .hw_value = 2,},
{.center_freq = 2422, .hw_value = 3,},
{.center_freq = 2427, .hw_value = 4,},
{.center_freq = 2432, .hw_value = 5,},
{.center_freq = 2437, .hw_value = 6,},
{.center_freq = 2442, .hw_value = 7,},
{.center_freq = 2447, .hw_value = 8,},
{.center_freq = 2452, .hw_value = 9,},
{.center_freq = 2457, .hw_value = 10,},
{.center_freq = 2462, .hw_value = 11,},
{.center_freq = 2467, .hw_value = 12,},
{.center_freq = 2472, .hw_value = 13,},
{.center_freq = 2484, .hw_value = 14,},
};
static struct ieee80211_channel rtw_channeltable_5g[] = {
{.center_freq = 5180, .hw_value = 36,},
{.center_freq = 5200, .hw_value = 40,},
{.center_freq = 5220, .hw_value = 44,},
{.center_freq = 5240, .hw_value = 48,},
{.center_freq = 5260, .hw_value = 52,},
{.center_freq = 5280, .hw_value = 56,},
{.center_freq = 5300, .hw_value = 60,},
{.center_freq = 5320, .hw_value = 64,},
{.center_freq = 5500, .hw_value = 100,},
{.center_freq = 5520, .hw_value = 104,},
{.center_freq = 5540, .hw_value = 108,},
{.center_freq = 5560, .hw_value = 112,},
{.center_freq = 5580, .hw_value = 116,},
{.center_freq = 5600, .hw_value = 120,},
{.center_freq = 5620, .hw_value = 124,},
{.center_freq = 5640, .hw_value = 128,},
{.center_freq = 5660, .hw_value = 132,},
{.center_freq = 5680, .hw_value = 136,},
{.center_freq = 5700, .hw_value = 140,},
{.center_freq = 5745, .hw_value = 149,},
{.center_freq = 5765, .hw_value = 153,},
{.center_freq = 5785, .hw_value = 157,},
{.center_freq = 5805, .hw_value = 161,},
{.center_freq = 5825, .hw_value = 165,
.flags = IEEE80211_CHAN_NO_HT40MINUS},
};
static struct ieee80211_rate rtw_ratetable[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static struct ieee80211_supported_band rtw_band_2ghz = {
.band = NL80211_BAND_2GHZ,
.channels = rtw_channeltable_2g,
.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
.bitrates = rtw_ratetable,
.n_bitrates = ARRAY_SIZE(rtw_ratetable),
.ht_cap = {0},
.vht_cap = {0},
};
static struct ieee80211_supported_band rtw_band_5ghz = {
.band = NL80211_BAND_5GHZ,
.channels = rtw_channeltable_5g,
.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
/* 5G has no CCK rates */
.bitrates = rtw_ratetable + 4,
.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
.ht_cap = {0},
.vht_cap = {0},
};
struct rtw_watch_dog_iter_data {
struct rtw_vif *rtwvif;
bool active;
u8 assoc_cnt;
};
static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rtw_watch_dog_iter_data *iter_data = data;
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
if (vif->type == NL80211_IFTYPE_STATION) {
if (vif->bss_conf.assoc) {
iter_data->assoc_cnt++;
iter_data->rtwvif = rtwvif;
}
if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD ||
rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD)
iter_data->active = true;
} else {
/* only STATION mode can enter lps */
iter_data->active = true;
}
rtwvif->stats.tx_unicast = 0;
rtwvif->stats.rx_unicast = 0;
rtwvif->stats.tx_cnt = 0;
rtwvif->stats.rx_cnt = 0;
}
/* process TX/RX statistics periodically for hardware,
* the information helps hardware to enhance performance
*/
static void rtw_watch_dog_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
watch_dog_work.work);
struct rtw_watch_dog_iter_data data = {};
bool busy_traffic = rtw_flag_check(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
if (!rtw_flag_check(rtwdev, RTW_FLAG_RUNNING))
return;
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
RTW_WATCH_DOG_DELAY_TIME);
if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
rtw_flag_set(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
else
rtw_flag_clear(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
if (busy_traffic != rtw_flag_check(rtwdev, RTW_FLAG_BUSY_TRAFFIC))
rtw_coex_wl_status_change_notify(rtwdev);
/* reset tx/rx statictics */
rtwdev->stats.tx_unicast = 0;
rtwdev->stats.rx_unicast = 0;
rtwdev->stats.tx_cnt = 0;
rtwdev->stats.rx_cnt = 0;
/* use atomic version to avoid taking local->iflist_mtx mutex */
rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
/* fw supports only one station associated to enter lps, if there are
* more than two stations associated to the AP, then we can not enter
* lps, because fw does not handle the overlapped beacon interval
*/
if (rtw_fw_support_lps &&
data.rtwvif && !data.active && data.assoc_cnt == 1)
rtw_enter_lps(rtwdev, data.rtwvif);
if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
return;
rtw_phy_dynamic_mechanism(rtwdev);
rtwdev->watch_dog_cnt++;
}
static void rtw_c2h_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
skb_unlink(skb, &rtwdev->c2h_queue);
rtw_fw_c2h_cmd_handle(rtwdev, skb);
dev_kfree_skb_any(skb);
}
}
void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
struct rtw_channel_params *chan_params)
{
struct ieee80211_channel *channel = chandef->chan;
enum nl80211_chan_width width = chandef->width;
u8 *cch_by_bw = chan_params->cch_by_bw;
u32 primary_freq, center_freq;
u8 center_chan;
u8 bandwidth = RTW_CHANNEL_WIDTH_20;
u8 primary_chan_idx = 0;
u8 i;
center_chan = channel->hw_value;
primary_freq = channel->center_freq;
center_freq = chandef->center_freq1;
/* assign the center channel used while 20M bw is selected */
cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
switch (width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
bandwidth = RTW_CHANNEL_WIDTH_20;
primary_chan_idx = 0;
break;
case NL80211_CHAN_WIDTH_40:
bandwidth = RTW_CHANNEL_WIDTH_40;
if (primary_freq > center_freq) {
primary_chan_idx = 1;
center_chan -= 2;
} else {
primary_chan_idx = 2;
center_chan += 2;
}
break;
case NL80211_CHAN_WIDTH_80:
bandwidth = RTW_CHANNEL_WIDTH_80;
if (primary_freq > center_freq) {
if (primary_freq - center_freq == 10) {
primary_chan_idx = 1;
center_chan -= 2;
} else {
primary_chan_idx = 3;
center_chan -= 6;
}
/* assign the center channel used
* while 40M bw is selected
*/
cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
} else {
if (center_freq - primary_freq == 10) {
primary_chan_idx = 2;
center_chan += 2;
} else {
primary_chan_idx = 4;
center_chan += 6;
}
/* assign the center channel used
* while 40M bw is selected
*/
cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
}
break;
default:
center_chan = 0;
break;
}
chan_params->center_chan = center_chan;
chan_params->bandwidth = bandwidth;
chan_params->primary_chan_idx = primary_chan_idx;
/* assign the center channel used while current bw is selected */
cch_by_bw[bandwidth] = center_chan;
for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
cch_by_bw[i] = 0;
}
void rtw_set_channel(struct rtw_dev *rtwdev)
{
struct ieee80211_hw *hw = rtwdev->hw;
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_channel_params ch_param;
u8 center_chan, bandwidth, primary_chan_idx;
u8 i;
rtw_get_channel_params(&hw->conf.chandef, &ch_param);
if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
return;
center_chan = ch_param.center_chan;
bandwidth = ch_param.bandwidth;
primary_chan_idx = ch_param.primary_chan_idx;
hal->current_band_width = bandwidth;
hal->current_channel = center_chan;
hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
if (hal->current_band_type == RTW_BAND_5G) {
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
} else {
if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
else
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
}
rtw_phy_set_tx_power_level(rtwdev, center_chan);
}
static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
{
int i;
for (i = 0; i < ETH_ALEN; i++)
rtw_write8(rtwdev, start + i, addr[i]);
}
void rtw_vif_port_config(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif,
u32 config)
{
u32 addr, mask;
if (config & PORT_SET_MAC_ADDR) {
addr = rtwvif->conf->mac_addr.addr;
rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
}
if (config & PORT_SET_BSSID) {
addr = rtwvif->conf->bssid.addr;
rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
}
if (config & PORT_SET_NET_TYPE) {
addr = rtwvif->conf->net_type.addr;
mask = rtwvif->conf->net_type.mask;
rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
}
if (config & PORT_SET_AID) {
addr = rtwvif->conf->aid.addr;
mask = rtwvif->conf->aid.mask;
rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
}
if (config & PORT_SET_BCN_CTRL) {
addr = rtwvif->conf->bcn_ctrl.addr;
mask = rtwvif->conf->bcn_ctrl.mask;
rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
}
}
static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
{
u8 bw = 0;
switch (bw_cap) {
case EFUSE_HW_CAP_IGNORE:
case EFUSE_HW_CAP_SUPP_BW80:
bw |= BIT(RTW_CHANNEL_WIDTH_80);
/* fall through */
case EFUSE_HW_CAP_SUPP_BW40:
bw |= BIT(RTW_CHANNEL_WIDTH_40);
/* fall through */
default:
bw |= BIT(RTW_CHANNEL_WIDTH_20);
break;
}
return bw;
}
static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
{
struct rtw_hal *hal = &rtwdev->hal;
if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
hw_ant_num >= hal->rf_path_num)
return;
switch (hw_ant_num) {
case 1:
hal->rf_type = RF_1T1R;
hal->rf_path_num = 1;
hal->antenna_tx = BB_PATH_A;
hal->antenna_rx = BB_PATH_A;
break;
default:
WARN(1, "invalid hw configuration from efuse\n");
break;
}
}
static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
{
u64 ra_mask = 0;
u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
u8 vht_mcs_cap;
int i, nss;
/* 4SS, every two bits for MCS7/8/9 */
for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
vht_mcs_cap = mcs_map & 0x3;
switch (vht_mcs_cap) {
case 2: /* MCS9 */
ra_mask |= 0x3ffULL << nss;
break;
case 1: /* MCS8 */
ra_mask |= 0x1ffULL << nss;
break;
case 0: /* MCS7 */
ra_mask |= 0x0ffULL << nss;
break;
default:
break;
}
}
return ra_mask;
}
static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
{
u8 rate_id = 0;
switch (wireless_set) {
case WIRELESS_CCK:
rate_id = RTW_RATEID_B_20M;
break;
case WIRELESS_OFDM:
rate_id = RTW_RATEID_G;
break;
case WIRELESS_CCK | WIRELESS_OFDM:
rate_id = RTW_RATEID_BG;
break;
case WIRELESS_OFDM | WIRELESS_HT:
if (tx_num == 1)
rate_id = RTW_RATEID_GN_N1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_GN_N2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
break;
case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
if (bw_mode == RTW_CHANNEL_WIDTH_40) {
if (tx_num == 1)
rate_id = RTW_RATEID_BGN_40M_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_BGN_40M_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR7_N_4SS;
} else {
if (tx_num == 1)
rate_id = RTW_RATEID_BGN_20M_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_BGN_20M_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR7_N_4SS;
}
break;
case WIRELESS_OFDM | WIRELESS_VHT:
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR1_AC_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR0_AC_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
break;
case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR1_AC_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR0_AC_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
} else {
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
}
break;
default:
break;
}
return rate_id;
}
#define RA_MASK_CCK_RATES 0x0000f
#define RA_MASK_OFDM_RATES 0x00ff0
#define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
#define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
#define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
#define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
RA_MASK_HT_RATES_2SS | \
RA_MASK_HT_RATES_3SS)
#define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
#define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
#define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
#define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
RA_MASK_VHT_RATES_2SS | \
RA_MASK_VHT_RATES_3SS)
#define RA_MASK_CCK_IN_HT 0x00005
#define RA_MASK_CCK_IN_VHT 0x00005
#define RA_MASK_OFDM_IN_VHT 0x00010
#define RA_MASK_OFDM_IN_HT_2G 0x00010
#define RA_MASK_OFDM_IN_HT_5G 0x00030
void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
{
struct ieee80211_sta *sta = si->sta;
struct rtw_efuse *efuse = &rtwdev->efuse;
struct rtw_hal *hal = &rtwdev->hal;
u8 rssi_level;
u8 wireless_set;
u8 bw_mode;
u8 rate_id;
u8 rf_type = RF_1T1R;
u8 stbc_en = 0;
u8 ldpc_en = 0;
u8 tx_num = 1;
u64 ra_mask = 0;
bool is_vht_enable = false;
bool is_support_sgi = false;
if (sta->vht_cap.vht_supported) {
is_vht_enable = true;
ra_mask |= get_vht_ra_mask(sta);
if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
stbc_en = VHT_STBC_EN;
if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
ldpc_en = VHT_LDPC_EN;
if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
is_support_sgi = true;
} else if (sta->ht_cap.ht_supported) {
ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
(sta->ht_cap.mcs.rx_mask[0] << 12);
if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
stbc_en = HT_STBC_EN;
if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
ldpc_en = HT_LDPC_EN;
if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
is_support_sgi = true;
}
if (efuse->hw_cap.nss == 1)
ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
if (hal->current_band_type == RTW_BAND_5G) {
ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
if (sta->vht_cap.vht_supported) {
ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
} else if (sta->ht_cap.ht_supported) {
ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
wireless_set = WIRELESS_OFDM | WIRELESS_HT;
} else {
wireless_set = WIRELESS_OFDM;
}
} else if (hal->current_band_type == RTW_BAND_2G) {
ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
if (sta->vht_cap.vht_supported) {
ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
RA_MASK_OFDM_IN_VHT;
wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
WIRELESS_HT | WIRELESS_VHT;
} else if (sta->ht_cap.ht_supported) {
ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
RA_MASK_OFDM_IN_HT_2G;
wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
WIRELESS_HT;
} else if (sta->supp_rates[0] <= 0xf) {
wireless_set = WIRELESS_CCK;
} else {
wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
}
} else {
rtw_err(rtwdev, "Unknown band type\n");
wireless_set = 0;
}
switch (sta->bandwidth) {
case IEEE80211_STA_RX_BW_80:
bw_mode = RTW_CHANNEL_WIDTH_80;
break;
case IEEE80211_STA_RX_BW_40:
bw_mode = RTW_CHANNEL_WIDTH_40;
break;
default:
bw_mode = RTW_CHANNEL_WIDTH_20;
break;
}
if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
tx_num = 2;
rf_type = RF_2T2R;
} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
tx_num = 2;
rf_type = RF_2T2R;
}
rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
if (wireless_set != WIRELESS_CCK) {
rssi_level = si->rssi_level;
if (rssi_level == 0)
ra_mask &= 0xffffffffffffffffULL;
else if (rssi_level == 1)
ra_mask &= 0xfffffffffffffff0ULL;
else if (rssi_level == 2)
ra_mask &= 0xffffffffffffefe0ULL;
else if (rssi_level == 3)
ra_mask &= 0xffffffffffffcfc0ULL;
else if (rssi_level == 4)
ra_mask &= 0xffffffffffff8f80ULL;
else if (rssi_level >= 5)
ra_mask &= 0xffffffffffff0f00ULL;
}
si->bw_mode = bw_mode;
si->stbc_en = stbc_en;
si->ldpc_en = ldpc_en;
si->rf_type = rf_type;
si->wireless_set = wireless_set;
si->sgi_enable = is_support_sgi;
si->vht_enable = is_vht_enable;
si->ra_mask = ra_mask;
si->rate_id = rate_id;
rtw_fw_send_ra_info(rtwdev, si);
}
static int rtw_power_on(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_fw_state *fw = &rtwdev->fw;
bool wifi_only;
int ret;
ret = rtw_hci_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup hci\n");
goto err;
}
/* power on MAC before firmware downloaded */
ret = rtw_mac_power_on(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to power on mac\n");
goto err;
}
wait_for_completion(&fw->completion);
if (!fw->firmware) {
ret = -EINVAL;
rtw_err(rtwdev, "failed to load firmware\n");
goto err;
}
ret = rtw_download_firmware(rtwdev, fw);
if (ret) {
rtw_err(rtwdev, "failed to download firmware\n");
goto err_off;
}
/* config mac after firmware downloaded */
ret = rtw_mac_init(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to configure mac\n");
goto err_off;
}
chip->ops->phy_set_param(rtwdev);
ret = rtw_hci_start(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to start hci\n");
goto err_off;
}
/* send H2C after HCI has started */
rtw_fw_send_general_info(rtwdev);
rtw_fw_send_phydm_info(rtwdev);
wifi_only = !rtwdev->efuse.btcoex;
rtw_coex_power_on_setting(rtwdev);
rtw_coex_init_hw_config(rtwdev, wifi_only);
return 0;
err_off:
rtw_mac_power_off(rtwdev);
err:
return ret;
}
int rtw_core_start(struct rtw_dev *rtwdev)
{
int ret;
ret = rtw_power_on(rtwdev);
if (ret)
return ret;
rtw_sec_enable_sec_engine(rtwdev);
/* rcr reset after powered on */
rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
RTW_WATCH_DOG_DELAY_TIME);
rtw_flag_set(rtwdev, RTW_FLAG_RUNNING);
return 0;
}
static void rtw_power_off(struct rtw_dev *rtwdev)
{
rtwdev->hci.ops->stop(rtwdev);
rtw_mac_power_off(rtwdev);
}
void rtw_core_stop(struct rtw_dev *rtwdev)
{
struct rtw_coex *coex = &rtwdev->coex;
rtw_flag_clear(rtwdev, RTW_FLAG_RUNNING);
rtw_flag_clear(rtwdev, RTW_FLAG_FW_RUNNING);
cancel_delayed_work_sync(&rtwdev->watch_dog_work);
cancel_delayed_work_sync(&coex->bt_relink_work);
cancel_delayed_work_sync(&coex->bt_reenable_work);
cancel_delayed_work_sync(&coex->defreeze_work);
rtw_power_off(rtwdev);
}
static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
struct ieee80211_sta_ht_cap *ht_cap)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
ht_cap->ht_supported = true;
ht_cap->cap = 0;
ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_MAX_AMSDU |
IEEE80211_HT_CAP_LDPC_CODING |
(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_DSSSCCK40 |
IEEE80211_HT_CAP_SGI_40;
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (efuse->hw_cap.nss > 1) {
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(300);
} else {
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0x00;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(150);
}
}
static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
struct ieee80211_sta_vht_cap *vht_cap)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
u16 mcs_map;
__le16 highest;
if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
return;
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_RXLDPC |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_TXSTBC |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_HTC_VHT |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
0;
mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
if (efuse->hw_cap.nss > 1) {
highest = cpu_to_le16(780);
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
} else {
highest = cpu_to_le16(390);
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
}
vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.rx_highest = highest;
vht_cap->vht_mcs.tx_highest = highest;
}
static void rtw_set_supported_band(struct ieee80211_hw *hw,
struct rtw_chip_info *chip)
{
struct rtw_dev *rtwdev = hw->priv;
struct ieee80211_supported_band *sband;
if (chip->band & RTW_BAND_2G) {
sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
if (!sband)
goto err_out;
if (chip->ht_supported)
rtw_init_ht_cap(rtwdev, &sband->ht_cap);
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
}
if (chip->band & RTW_BAND_5G) {
sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
if (!sband)
goto err_out;
if (chip->ht_supported)
rtw_init_ht_cap(rtwdev, &sband->ht_cap);
if (chip->vht_supported)
rtw_init_vht_cap(rtwdev, &sband->vht_cap);
hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
}
return;
err_out:
rtw_err(rtwdev, "failed to set supported band\n");
kfree(sband);
}
static void rtw_unset_supported_band(struct ieee80211_hw *hw,
struct rtw_chip_info *chip)
{
kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
}
static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
{
struct rtw_dev *rtwdev = context;
struct rtw_fw_state *fw = &rtwdev->fw;
if (!firmware)
rtw_err(rtwdev, "failed to request firmware\n");
fw->firmware = firmware;
complete_all(&fw->completion);
}
static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
{
struct rtw_fw_state *fw = &rtwdev->fw;
int ret;
init_completion(&fw->completion);
ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
if (ret) {
rtw_err(rtwdev, "async firmware request failed\n");
return ret;
}
return 0;
}
static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_efuse *efuse = &rtwdev->efuse;
int ret = 0;
switch (rtw_hci_type(rtwdev)) {
case RTW_HCI_TYPE_PCIE:
rtwdev->hci.rpwm_addr = 0x03d9;
break;
default:
rtw_err(rtwdev, "unsupported hci type\n");
return -EINVAL;
}
hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
if (hal->chip_version & BIT_RF_TYPE_ID) {
hal->rf_type = RF_2T2R;
hal->rf_path_num = 2;
hal->antenna_tx = BB_PATH_AB;
hal->antenna_rx = BB_PATH_AB;
} else {
hal->rf_type = RF_1T1R;
hal->rf_path_num = 1;
hal->antenna_tx = BB_PATH_A;
hal->antenna_rx = BB_PATH_A;
}
if (hal->fab_version == 2)
hal->fab_version = 1;
else if (hal->fab_version == 1)
hal->fab_version = 2;
efuse->physical_size = chip->phy_efuse_size;
efuse->logical_size = chip->log_efuse_size;
efuse->protect_size = chip->ptct_efuse_size;
/* default use ack */
rtwdev->hal.rcr |= BIT_VHT_DACK;
return ret;
}
static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
{
struct rtw_fw_state *fw = &rtwdev->fw;
int ret;
ret = rtw_hci_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup hci\n");
goto err;
}
ret = rtw_mac_power_on(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to power on mac\n");
goto err;
}
rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
wait_for_completion(&fw->completion);
if (!fw->firmware) {
ret = -EINVAL;
rtw_err(rtwdev, "failed to load firmware\n");
goto err;
}
ret = rtw_download_firmware(rtwdev, fw);
if (ret) {
rtw_err(rtwdev, "failed to download firmware\n");
goto err_off;
}
return 0;
err_off:
rtw_mac_power_off(rtwdev);
err:
return ret;
}
static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
u8 hw_feature[HW_FEATURE_LEN];
u8 id;
u8 bw;
int i;
id = rtw_read8(rtwdev, REG_C2HEVT);
if (id != C2H_HW_FEATURE_REPORT) {
rtw_err(rtwdev, "failed to read hw feature report\n");
return -EBUSY;
}
for (i = 0; i < HW_FEATURE_LEN; i++)
hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
rtw_write8(rtwdev, REG_C2HEVT, 0);
bw = GET_EFUSE_HW_CAP_BW(hw_feature);
efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
rtw_dbg(rtwdev, RTW_DBG_EFUSE,
"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
efuse->hw_cap.ant_num, efuse->hw_cap.nss);
return 0;
}
static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
{
rtw_hci_stop(rtwdev);
rtw_mac_power_off(rtwdev);
}
static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
int ret;
mutex_lock(&rtwdev->mutex);
/* power on mac to read efuse */
ret = rtw_chip_efuse_enable(rtwdev);
if (ret)
goto out_unlock;
ret = rtw_parse_efuse_map(rtwdev);
if (ret)
goto out_disable;
ret = rtw_dump_hw_feature(rtwdev);
if (ret)
goto out_disable;
ret = rtw_check_supported_rfe(rtwdev);
if (ret)
goto out_disable;
if (efuse->crystal_cap == 0xff)
efuse->crystal_cap = 0;
if (efuse->pa_type_2g == 0xff)
efuse->pa_type_2g = 0;
if (efuse->pa_type_5g == 0xff)
efuse->pa_type_5g = 0;
if (efuse->lna_type_2g == 0xff)
efuse->lna_type_2g = 0;
if (efuse->lna_type_5g == 0xff)
efuse->lna_type_5g = 0;
if (efuse->channel_plan == 0xff)
efuse->channel_plan = 0x7f;
if (efuse->rf_board_option == 0xff)
efuse->rf_board_option = 0;
if (efuse->bt_setting & BIT(0))
efuse->share_ant = true;
if (efuse->regd == 0xff)
efuse->regd = 0;
efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
out_disable:
rtw_chip_efuse_disable(rtwdev);
out_unlock:
mutex_unlock(&rtwdev->mutex);
return ret;
}
static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
if (!rfe_def)
return -ENODEV;
rtw_phy_setup_phy_cond(rtwdev, 0);
rtw_phy_init_tx_power(rtwdev);
rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
rtw_phy_tx_power_by_rate_config(hal);
rtw_phy_tx_power_limit_config(hal);
return 0;
}
int rtw_chip_info_setup(struct rtw_dev *rtwdev)
{
int ret;
ret = rtw_chip_parameter_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip parameters\n");
goto err_out;
}
ret = rtw_chip_efuse_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip efuse info\n");
goto err_out;
}
ret = rtw_chip_board_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip board info\n");
goto err_out;
}
return 0;
err_out:
return ret;
}
EXPORT_SYMBOL(rtw_chip_info_setup);
int rtw_core_init(struct rtw_dev *rtwdev)
{
struct rtw_coex *coex = &rtwdev->coex;
int ret;
INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
timer_setup(&rtwdev->tx_report.purge_timer,
rtw_tx_report_purge_timer, 0);
INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
INIT_DELAYED_WORK(&rtwdev->lps_work, rtw_lps_work);
INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
skb_queue_head_init(&rtwdev->c2h_queue);
skb_queue_head_init(&rtwdev->coex.queue);
skb_queue_head_init(&rtwdev->tx_report.queue);
spin_lock_init(&rtwdev->dm_lock);
spin_lock_init(&rtwdev->rf_lock);
spin_lock_init(&rtwdev->h2c.lock);
spin_lock_init(&rtwdev->tx_report.q_lock);
mutex_init(&rtwdev->mutex);
mutex_init(&rtwdev->coex.mutex);
mutex_init(&rtwdev->hal.tx_power_mutex);
init_waitqueue_head(&rtwdev->coex.wait);
rtwdev->sec.total_cam_num = 32;
rtwdev->hal.current_channel = 1;
set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
mutex_lock(&rtwdev->mutex);
rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
mutex_unlock(&rtwdev->mutex);
/* default rx filter setting */
rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
BIT_AB | BIT_AM | BIT_APM;
ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
if (ret) {
rtw_warn(rtwdev, "no firmware loaded\n");
return ret;
}
return 0;
}
EXPORT_SYMBOL(rtw_core_init);
void rtw_core_deinit(struct rtw_dev *rtwdev)
{
struct rtw_fw_state *fw = &rtwdev->fw;
struct rtw_rsvd_page *rsvd_pkt, *tmp;
unsigned long flags;
if (fw->firmware)
release_firmware(fw->firmware);
spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
skb_queue_purge(&rtwdev->tx_report.queue);
spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
list_del(&rsvd_pkt->list);
kfree(rsvd_pkt);
}
mutex_destroy(&rtwdev->mutex);
mutex_destroy(&rtwdev->coex.mutex);
mutex_destroy(&rtwdev->hal.tx_power_mutex);
}
EXPORT_SYMBOL(rtw_core_deinit);
int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
{
int max_tx_headroom = 0;
int ret;
/* TODO: USB & SDIO may need extra room? */
max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
hw->extra_tx_headroom = max_tx_headroom;
hw->queues = IEEE80211_NUM_ACS;
hw->sta_data_size = sizeof(struct rtw_sta_info);
hw->vif_data_size = sizeof(struct rtw_vif);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, RX_INCLUDES_FCS);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
rtw_set_supported_band(hw, rtwdev->chip);
SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
rtw_regd_init(rtwdev, rtw_regd_notifier);
ret = ieee80211_register_hw(hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw\n");
return ret;
}
if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
rtw_err(rtwdev, "regulatory_hint fail\n");
rtw_debugfs_init(rtwdev);
return 0;
}
EXPORT_SYMBOL(rtw_register_hw);
void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
{
struct rtw_chip_info *chip = rtwdev->chip;
ieee80211_unregister_hw(hw);
rtw_unset_supported_band(hw, chip);
}
EXPORT_SYMBOL(rtw_unregister_hw);
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
MODULE_LICENSE("Dual BSD/GPL");