linux/linux-5.4.31/drivers/net/wireless/realtek/rtlwifi/rtl8723ae/hw.c

2409 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2012 Realtek Corporation.*/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "../rtl8723com/phy_common.h"
#include "dm.h"
#include "../rtl8723com/dm_common.h"
#include "fw.h"
#include "../rtl8723com/fw_common.h"
#include "led.h"
#include "hw.h"
#include "../pwrseqcmd.h"
#include "pwrseq.h"
#include "btc.h"
#define LLT_CONFIG 5
static void _rtl8723e_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
}
static void _rtl8723e_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl8723e_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(1);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl8723e_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl8723e_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl8723e_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
void rtl8723e_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *)(val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfstate;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw,
HW_VAR_RF_STATE,
(u8 *)(&rfstate));
if (rfstate == ERFOFF) {
*((bool *)(val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *)(val)) = false;
else
*((bool *)(val)) = true;
}
break;
}
case HW_VAR_FW_PSMODE_STATUS:
*((bool *)(val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
break;
}
case HAL_DEF_WOWLAN:
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", variable);
break;
}
}
void rtl8723e_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:{
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_MACID + idx),
val[idx]);
}
break;
}
case HW_VAR_BASIC_RATE:{
u16 b_rate_cfg = ((u16 *)val)[0];
u8 rate_index = 0;
b_rate_cfg = b_rate_cfg & 0x15f;
b_rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1,
(b_rate_cfg >> 8) & 0xff);
while (b_rate_cfg > 0x1) {
b_rate_cfg = (b_rate_cfg >> 1);
rate_index++;
}
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
rate_index);
break;
}
case HW_VAR_BSSID:{
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
val[idx]);
}
break;
}
case HW_VAR_SIFS:{
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *)val));
break;
}
case HW_VAR_SLOT_TIME:{
u8 e_aci;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AC_PARAM,
(u8 *)(&e_aci));
}
break;
}
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool)(*(u8 *)val);
reg_tmp = (mac->cur_40_prime_sc) << 5;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
break;
}
case HW_VAR_AMPDU_MIN_SPACE:{
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *((u8 *)val);
if (min_spacing_to_set <= 7) {
sec_min_space = 0;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg &
0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break;
}
case HW_VAR_SHORTGI_DENSITY:{
u8 density_to_set;
density_to_set = *((u8 *)val);
mac->min_space_cfg |= (density_to_set << 3);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR:{
u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
u8 factor_toset;
u8 *p_regtoset = NULL;
u8 index = 0;
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type ==
BT_CSR_BC4))
p_regtoset = regtoset_bt;
else
p_regtoset = regtoset_normal;
factor_toset = *((u8 *)val);
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
if ((p_regtoset[index] & 0xf0) >
(factor_toset << 4))
p_regtoset[index] =
(p_regtoset[index] & 0x0f) |
(factor_toset << 4);
if ((p_regtoset[index] & 0x0f) >
factor_toset)
p_regtoset[index] =
(p_regtoset[index] & 0xf0) |
(factor_toset);
rtl_write_byte(rtlpriv,
(REG_AGGLEN_LMT + index),
p_regtoset[index]);
}
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break;
}
case HW_VAR_AC_PARAM:{
u8 e_aci = *((u8 *)val);
rtl8723_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_ACM_CTRL,
(u8 *)(&e_aci));
break;
}
case HW_VAR_ACM_CTRL:{
u8 e_aci = *((u8 *)val);
union aci_aifsn *p_aci_aifsn =
(union aci_aifsn *)(&mac->ac[0].aifs);
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl =
acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_VOQEN);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n",
e_aci);
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break;
}
case HW_VAR_RCR:{
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
rtlpci->receive_config = ((u32 *)(val))[0];
break;
}
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = ((u8 *)(val))[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break;
}
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *((u8 *)val);
break;
case HW_VAR_IO_CMD:
rtl8723e_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val));
break;
case HW_VAR_SET_RPWM:{
u8 rpwm_val;
rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
udelay(1);
if (rpwm_val & BIT(7)) {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
(*(u8 *)val));
} else {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
((*(u8 *)val) | BIT(7)));
}
break;
}
case HW_VAR_H2C_FW_PWRMODE:{
u8 psmode = (*(u8 *)val);
if (psmode != FW_PS_ACTIVE_MODE)
rtl8723e_dm_rf_saving(hw, true);
rtl8723e_set_fw_pwrmode_cmd(hw, (*(u8 *)val));
break;
}
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *)val);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:{
u8 mstatus = (*(u8 *)val);
u8 tmp_regcr, tmp_reg422;
bool b_recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
NULL);
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr | BIT(0)));
_rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl8723e_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 =
rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
if (tmp_reg422 & BIT(6))
b_recover = true;
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
rtl8723e_set_fw_rsvdpagepkt(hw, 0);
_rtl8723e_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (b_recover) {
rtl_write_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2,
tmp_reg422);
}
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr & ~(BIT(0))));
}
rtl8723e_set_fw_joinbss_report_cmd(hw, (*(u8 *)val));
break;
}
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:{
rtl8723e_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
break;
}
case HW_VAR_AID:{
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
(u2btmp | mac->assoc_id));
break;
}
case HW_VAR_CORRECT_TSF:{
u8 btype_ibss = ((u8 *)(val))[0];
if (btype_ibss)
_rtl8723e_stop_tx_beacon(hw);
_rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32)(mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32)((mac->tsf >> 32) & 0xffffffff));
_rtl8723e_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss)
_rtl8723e_resume_tx_beacon(hw);
break;
}
case HW_VAR_FW_LPS_ACTION:{
bool b_enter_fwlps = *((bool *)val);
u8 rpwm_val, fw_pwrmode;
bool fw_current_inps;
if (b_enter_fwlps) {
rpwm_val = 0x02; /* RF off */
fw_current_inps = true;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
} else {
rpwm_val = 0x0C; /* RF on */
fw_pwrmode = FW_PS_ACTIVE_MODE;
fw_current_inps = false;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
break;
}
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", variable);
break;
}
}
static bool _rtl8723e_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) |
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
pr_err("Failed to polling write LLT done at address %d!\n",
address);
status = false;
break;
}
} while (++count);
return status;
}
static bool _rtl8723e_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned short i;
u8 txpktbuf_bndy;
u8 maxpage;
bool status;
u8 ubyte;
#if LLT_CONFIG == 1
maxpage = 255;
txpktbuf_bndy = 252;
#elif LLT_CONFIG == 2
maxpage = 127;
txpktbuf_bndy = 124;
#elif LLT_CONFIG == 3
maxpage = 255;
txpktbuf_bndy = 174;
#elif LLT_CONFIG == 4
maxpage = 255;
txpktbuf_bndy = 246;
#elif LLT_CONFIG == 5
maxpage = 255;
txpktbuf_bndy = 246;
#endif
rtl_write_byte(rtlpriv, REG_CR, 0x8B);
#if LLT_CONFIG == 1
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
#elif LLT_CONFIG == 2
rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
#elif LLT_CONFIG == 3
rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
#elif LLT_CONFIG == 4
rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
#elif LLT_CONFIG == 5
rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
rtl_write_dword(rtlpriv, REG_RQPN, 0x80ac1c29);
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x03);
#endif
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _rtl8723e_llt_write(hw, i, i + 1);
if (true != status)
return status;
}
status = _rtl8723e_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
if (true != status)
return status;
for (i = txpktbuf_bndy; i < maxpage; i++) {
status = _rtl8723e_llt_write(hw, i, (i + 1));
if (true != status)
return status;
}
status = _rtl8723e_llt_write(hw, maxpage, txpktbuf_bndy);
if (true != status)
return status;
rtl_write_byte(rtlpriv, REG_CR, 0xff);
ubyte = rtl_read_byte(rtlpriv, REG_RQPN + 3);
rtl_write_byte(rtlpriv, REG_RQPN + 3, ubyte | BIT(7));
return true;
}
static void _rtl8723e_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
if (rtlpriv->rtlhal.up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl8723e_sw_led_on(hw, pled0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl8723e_sw_led_on(hw, pled0);
else
rtl8723e_sw_led_off(hw, pled0);
}
static bool _rtl8712e_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
unsigned char bytetmp;
unsigned short wordtmp;
u16 retry = 0;
u16 tmpu2b;
bool mac_func_enable;
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
bytetmp = rtl_read_byte(rtlpriv, REG_CR);
if (bytetmp == 0xFF)
mac_func_enable = true;
else
mac_func_enable = false;
/* HW Power on sequence */
if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8723_NIC_ENABLE_FLOW))
return false;
bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp | BIT(4));
/* eMAC time out function enable, 0x369[7]=1 */
bytetmp = rtl_read_byte(rtlpriv, 0x369);
rtl_write_byte(rtlpriv, 0x369, bytetmp | BIT(7));
/* ePHY reg 0x1e bit[4]=1 using MDIO interface,
* we should do this before Enabling ASPM backdoor.
*/
do {
rtl_write_word(rtlpriv, 0x358, 0x5e);
udelay(100);
rtl_write_word(rtlpriv, 0x356, 0xc280);
rtl_write_word(rtlpriv, 0x354, 0xc290);
rtl_write_word(rtlpriv, 0x358, 0x3e);
udelay(100);
rtl_write_word(rtlpriv, 0x358, 0x5e);
udelay(100);
tmpu2b = rtl_read_word(rtlpriv, 0x356);
retry++;
} while (tmpu2b != 0xc290 && retry < 100);
if (retry >= 100) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"InitMAC(): ePHY configure fail!!!\n");
return false;
}
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
rtl_write_word(rtlpriv, REG_CR + 1, 0x06);
if (!mac_func_enable) {
if (!_rtl8723e_llt_table_init(hw))
return false;
}
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xF771;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF);
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
rtl_write_byte(rtlpriv, 0x4d0, 0x0);
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_MGQ_DESA,
(u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VOQ_DESA,
(u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VIQ_DESA,
(u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BEQ_DESA,
(u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BKQ_DESA,
(u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_HQ_DESA,
(u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_RX_DESA,
(u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x74);
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
do {
retry++;
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
} while ((retry < 200) && (bytetmp & BIT(7)));
_rtl8723e_gen_refresh_led_state(hw);
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
return true;
}
static void _rtl8723e_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 reg_bw_opmode;
u32 reg_prsr;
reg_bw_opmode = BW_OPMODE_20MHZ;
reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
rtl_write_word(rtlpriv, REG_RL, 0x0707);
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4))
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
else
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
rtlpci->reg_bcn_ctrl_val = 0x1f;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4)) {
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
} else {
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
}
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4))
rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
else
rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
rtl_write_dword(rtlpriv, 0x394, 0x1);
}
static void _rtl8723e_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
rtl_write_byte(rtlpriv, 0x34b, 0x93);
rtl_write_word(rtlpriv, 0x350, 0x870c);
rtl_write_byte(rtlpriv, 0x352, 0x1);
if (ppsc->support_backdoor)
rtl_write_byte(rtlpriv, 0x349, 0x1b);
else
rtl_write_byte(rtlpriv, 0x349, 0x03);
rtl_write_word(rtlpriv, 0x350, 0x2718);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
void rtl8723e_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl8723e_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
bool rtstatus = true;
int err;
u8 tmp_u1b;
unsigned long flags;
rtlpriv->rtlhal.being_init_adapter = true;
/* As this function can take a very long time (up to 350 ms)
* and can be called with irqs disabled, reenable the irqs
* to let the other devices continue being serviced.
*
* It is safe doing so since our own interrupts will only be enabled
* in a subsequent step.
*/
local_save_flags(flags);
local_irq_enable();
rtlhal->fw_ready = false;
rtlpriv->intf_ops->disable_aspm(hw);
rtstatus = _rtl8712e_init_mac(hw);
if (rtstatus != true) {
pr_err("Init MAC failed\n");
err = 1;
goto exit;
}
err = rtl8723_download_fw(hw, false, FW_8723A_POLLING_TIMEOUT_COUNT);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now..\n");
err = 1;
goto exit;
}
rtlhal->fw_ready = true;
rtlhal->last_hmeboxnum = 0;
rtl8723e_phy_mac_config(hw);
/* because last function modify RCR, so we update
* rcr var here, or TP will unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstable & Rx
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
*/
rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl8723e_phy_bb_config(hw);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
rtl8723e_phy_rf_config(hw);
if (IS_VENDOR_UMC_A_CUT(rtlhal->version)) {
rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
} else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
}
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
_rtl8723e_hw_configure(hw);
rtl_cam_reset_all_entry(hw);
rtl8723e_enable_hw_security_config(hw);
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl8723e_enable_aspm_back_door(hw);
rtlpriv->intf_ops->enable_aspm(hw);
rtl8723e_bt_hw_init(hw);
if (ppsc->rfpwr_state == ERFON) {
rtl8723e_phy_set_rfpath_switch(hw, 1);
if (rtlphy->iqk_initialized) {
rtl8723e_phy_iq_calibrate(hw, true);
} else {
rtl8723e_phy_iq_calibrate(hw, false);
rtlphy->iqk_initialized = true;
}
rtl8723e_dm_check_txpower_tracking(hw);
rtl8723e_phy_lc_calibrate(hw);
}
tmp_u1b = efuse_read_1byte(hw, 0x1FA);
if (!(tmp_u1b & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
}
if (!(tmp_u1b & BIT(4))) {
tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
tmp_u1b &= 0x0F;
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
udelay(10);
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
}
rtl8723e_dm_init(hw);
exit:
local_irq_restore(flags);
rtlpriv->rtlhal.being_init_adapter = false;
return err;
}
static enum version_8723e _rtl8723e_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum version_8723e version = 0x0000;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (value32 & TRP_VAUX_EN) {
version = (enum version_8723e)(version |
((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
/* RTL8723 with BT function. */
version = (enum version_8723e)(version |
((value32 & BT_FUNC) ? CHIP_8723 : 0));
} else {
/* Normal mass production chip. */
version = (enum version_8723e) NORMAL_CHIP;
version = (enum version_8723e)(version |
((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
/* RTL8723 with BT function. */
version = (enum version_8723e)(version |
((value32 & BT_FUNC) ? CHIP_8723 : 0));
if (IS_CHIP_VENDOR_UMC(version))
version = (enum version_8723e)(version |
((value32 & CHIP_VER_RTL_MASK)));/* IC version (CUT) */
if (IS_8723_SERIES(version)) {
value32 = rtl_read_dword(rtlpriv, REG_GPIO_OUTSTS);
/* ROM code version. */
version = (enum version_8723e)(version |
((value32 & RF_RL_ID)>>20));
}
}
if (IS_8723_SERIES(version)) {
value32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL);
rtlphy->polarity_ctl = ((value32 & WL_HWPDN_SL) ?
RT_POLARITY_HIGH_ACT :
RT_POLARITY_LOW_ACT);
}
switch (version) {
case VERSION_TEST_UMC_CHIP_8723:
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Chip Version ID: VERSION_TEST_UMC_CHIP_8723.\n");
break;
case VERSION_NORMAL_UMC_CHIP_8723_1T1R_A_CUT:
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Chip Version ID: VERSION_NORMAL_UMC_CHIP_8723_1T1R_A_CUT.\n");
break;
case VERSION_NORMAL_UMC_CHIP_8723_1T1R_B_CUT:
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Chip Version ID: VERSION_NORMAL_UMC_CHIP_8723_1T1R_B_CUT.\n");
break;
default:
pr_err("Chip Version ID: Unknown. Bug?\n");
break;
}
if (IS_8723_SERIES(version))
rtlphy->rf_type = RF_1T1R;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
(rtlphy->rf_type == RF_2T2R) ? "RF_2T2R" : "RF_1T1R");
return version;
}
static int _rtl8723e_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc;
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
u8 mode = MSR_NOLINK;
rtl_write_dword(rtlpriv, REG_BCN_CTRL, 0);
RT_TRACE(rtlpriv, COMP_BEACON, DBG_LOUD,
"clear 0x550 when set HW_VAR_MEDIA_STATUS\n");
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
mode = MSR_NOLINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
mode = MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
mode = MSR_INFRA;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
mode = MSR_AP;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
default:
pr_err("Network type %d not support!\n", type);
return 1;
break;
}
/* MSR_INFRA == Link in infrastructure network;
* MSR_ADHOC == Link in ad hoc network;
* Therefore, check link state is necessary.
*
* MSR_AP == AP mode; link state is not cared here.
*/
if (mode != MSR_AP &&
rtlpriv->mac80211.link_state < MAC80211_LINKED) {
mode = MSR_NOLINK;
ledaction = LED_CTL_NO_LINK;
}
if (mode == MSR_NOLINK || mode == MSR_INFRA) {
_rtl8723e_stop_tx_beacon(hw);
_rtl8723e_enable_bcn_sub_func(hw);
} else if (mode == MSR_ADHOC || mode == MSR_AP) {
_rtl8723e_resume_tx_beacon(hw);
_rtl8723e_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
mode);
}
rtl_write_byte(rtlpriv, MSR, bt_msr | mode);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if (mode == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl8723e_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 reg_rcr = rtlpci->receive_config;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
if (check_bssid) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else if (!check_bssid) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl8723e_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_RCR, (u8 *)(&reg_rcr));
}
}
int rtl8723e_set_network_type(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl8723e_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP)
rtl8723e_set_check_bssid(hw, true);
} else {
rtl8723e_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here
* because mac80211 will send pkt when scan
*/
void rtl8723e_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl8723_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
break;
case AC0_BE:
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
break;
default:
WARN_ONCE(true, "rtl8723ae: invalid aci: %d !\n", aci);
break;
}
}
void rtl8723e_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, 0x3a8, rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, 0x3ac, rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
}
void rtl8723e_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, 0x3a8, IMR8190_DISABLED);
rtl_write_dword(rtlpriv, 0x3ac, IMR8190_DISABLED);
rtlpci->irq_enabled = false;
/*synchronize_irq(rtlpci->pdev->irq);*/
}
static void _rtl8723e_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 u1b_tmp;
/* Combo (PCIe + USB) Card and PCIe-MF Card */
/* 1. Run LPS WL RFOFF flow */
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW);
/* 2. 0x1F[7:0] = 0 */
/* turn off RF */
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) &&
rtlhal->fw_ready) {
rtl8723ae_firmware_selfreset(hw);
}
/* Reset MCU. Suggested by Filen. */
u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN+1, (u1b_tmp & (~BIT(2))));
/* g. MCUFWDL 0x80[1:0]=0 */
/* reset MCU ready status */
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
/* HW card disable configuration. */
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW);
/* Reset MCU IO Wrapper */
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0))));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0));
/* 7. RSV_CTRL 0x1C[7:0] = 0x0E */
/* lock ISO/CLK/Power control register */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
}
void rtl8723e_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl8723e_set_media_status(hw, opmode);
if (rtlpriv->rtlhal.driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
_rtl8723e_poweroff_adapter(hw);
/* after power off we should do iqk again */
rtlpriv->phy.iqk_initialized = false;
}
void rtl8723e_interrupt_recognized(struct ieee80211_hw *hw,
struct rtl_int *intvec)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
intvec->inta = rtl_read_dword(rtlpriv, 0x3a0) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, 0x3a0, intvec->inta);
}
void rtl8723e_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl8723e_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
rtl_write_byte(rtlpriv, 0x606, 0x30);
rtl8723e_enable_interrupt(hw);
}
void rtl8723e_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
rtl8723e_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl8723e_enable_interrupt(hw);
}
void rtl8723e_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl8723e_disable_interrupt(hw);
rtl8723e_enable_interrupt(hw);
}
static u8 _rtl8723e_get_chnl_group(u8 chnl)
{
u8 group;
if (chnl < 3)
group = 0;
else if (chnl < 9)
group = 1;
else
group = 2;
return group;
}
static void _rtl8723e_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 rf_path, index, tempval;
u16 i;
for (rf_path = 0; rf_path < 1; rf_path++) {
for (i = 0; i < 3; i++) {
if (!autoload_fail) {
rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 + i];
} else {
rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
EEPROM_DEFAULT_TXPOWERLEVEL;
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
EEPROM_DEFAULT_TXPOWERLEVEL;
}
}
}
for (i = 0; i < 3; i++) {
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
else
tempval = EEPROM_DEFAULT_HT40_2SDIFF;
rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
(tempval & 0xf);
rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
((tempval & 0xf0) >> 4);
}
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
i, rtlefuse->eeprom_chnlarea_txpwr_cck
[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->eprom_chnl_txpwr_ht40_2sdf
[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = _rtl8723e_get_chnl_group((u8)i);
rtlefuse->txpwrlevel_cck[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_cck
[rf_path][index];
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
[rf_path][index];
if ((rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
[rf_path][index] -
rtlefuse->eprom_chnl_txpwr_ht40_2sdf
[rf_path][index]) > 0) {
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
[rf_path][index] -
rtlefuse->eprom_chnl_txpwr_ht40_2sdf
[rf_path][index];
} else {
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
}
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
}
}
for (i = 0; i < 3; i++) {
if (!autoload_fail) {
rtlefuse->eeprom_pwrlimit_ht40[i] =
hwinfo[EEPROM_TXPWR_GROUP + i];
rtlefuse->eeprom_pwrlimit_ht20[i] =
hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
} else {
rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
}
}
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = _rtl8723e_get_chnl_group((u8)i);
if (rf_path == RF90_PATH_A) {
rtlefuse->pwrgroup_ht20[rf_path][i] =
(rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf);
rtlefuse->pwrgroup_ht40[rf_path][i] =
(rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf);
} else if (rf_path == RF90_PATH_B) {
rtlefuse->pwrgroup_ht20[rf_path][i] =
((rtlefuse->eeprom_pwrlimit_ht20[index] &
0xf0) >> 4);
rtlefuse->pwrgroup_ht40[rf_path][i] =
((rtlefuse->eeprom_pwrlimit_ht40[index] &
0xf0) >> 4);
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-%d pwrgroup_ht20[%d] = 0x%x\n", rf_path, i,
rtlefuse->pwrgroup_ht20[rf_path][i]);
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-%d pwrgroup_ht40[%d] = 0x%x\n", rf_path, i,
rtlefuse->pwrgroup_ht40[rf_path][i]);
}
}
for (i = 0; i < 14; i++) {
index = _rtl8723e_get_chnl_group((u8)i);
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
else
tempval = EEPROM_DEFAULT_HT20_DIFF;
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
index = _rtl8723e_get_chnl_group((u8)i);
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
else
tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
}
rtlefuse->legacy_ht_txpowerdiff =
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
if (!autoload_fail)
rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
else
rtlefuse->eeprom_regulatory = 0;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
if (!autoload_fail)
rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
else
rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"TSSI_A = 0x%x, TSSI_B = 0x%x\n",
rtlefuse->eeprom_tssi[RF90_PATH_A],
rtlefuse->eeprom_tssi[RF90_PATH_B]);
if (!autoload_fail)
tempval = hwinfo[EEPROM_THERMAL_METER];
else
tempval = EEPROM_DEFAULT_THERMALMETER;
rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
rtlefuse->apk_thermalmeterignore = true;
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
}
static void _rtl8723e_read_adapter_info(struct ieee80211_hw *hw,
bool b_pseudo_test)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR,
EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
COUNTRY_CODE_WORLD_WIDE_13};
u8 *hwinfo;
if (b_pseudo_test) {
/* need add */
return;
}
hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
if (!hwinfo)
return;
if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
goto exit;
_rtl8723e_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
hwinfo);
rtl8723e_read_bt_coexist_info_from_hwpg(hw,
rtlefuse->autoload_failflag, hwinfo);
if (rtlhal->oem_id != RT_CID_DEFAULT)
goto exit;
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
switch (rtlefuse->eeprom_did) {
case 0x8176:
switch (rtlefuse->eeprom_svid) {
case 0x10EC:
switch (rtlefuse->eeprom_smid) {
case 0x6151 ... 0x6152:
case 0x6154 ... 0x6155:
case 0x6177 ... 0x6180:
case 0x7151 ... 0x7152:
case 0x7154 ... 0x7155:
case 0x7177 ... 0x7180:
case 0x8151 ... 0x8152:
case 0x8154 ... 0x8155:
case 0x8181 ... 0x8182:
case 0x8184 ... 0x8185:
case 0x9151 ... 0x9152:
case 0x9154 ... 0x9155:
case 0x9181 ... 0x9182:
case 0x9184 ... 0x9185:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case 0x6191 ... 0x6193:
case 0x7191 ... 0x7193:
case 0x8191 ... 0x8193:
case 0x9191 ... 0x9193:
rtlhal->oem_id = RT_CID_819X_SAMSUNG;
break;
case 0x8197:
case 0x9196:
rtlhal->oem_id = RT_CID_819X_CLEVO;
break;
case 0x8203:
rtlhal->oem_id = RT_CID_819X_PRONETS;
break;
case 0x8195:
case 0x9195:
case 0x7194:
case 0x8200 ... 0x8202:
case 0x9200:
rtlhal->oem_id = RT_CID_819X_LENOVO;
break;
}
break;
case 0x1025:
rtlhal->oem_id = RT_CID_819X_ACER;
break;
case 0x1028:
switch (rtlefuse->eeprom_smid) {
case 0x8194:
case 0x8198:
case 0x9197 ... 0x9198:
rtlhal->oem_id = RT_CID_819X_DELL;
break;
}
break;
case 0x103C:
switch (rtlefuse->eeprom_smid) {
case 0x1629:
rtlhal->oem_id = RT_CID_819X_HP;
}
break;
case 0x1A32:
switch (rtlefuse->eeprom_smid) {
case 0x2315:
rtlhal->oem_id = RT_CID_819X_QMI;
break;
}
break;
case 0x1043:
switch (rtlefuse->eeprom_smid) {
case 0x84B5:
rtlhal->oem_id =
RT_CID_819X_EDIMAX_ASUS;
}
break;
}
break;
case 0x8178:
switch (rtlefuse->eeprom_svid) {
case 0x10ec:
switch (rtlefuse->eeprom_smid) {
case 0x6181 ... 0x6182:
case 0x6184 ... 0x6185:
case 0x7181 ... 0x7182:
case 0x7184 ... 0x7185:
case 0x8181 ... 0x8182:
case 0x8184 ... 0x8185:
case 0x9181 ... 0x9182:
case 0x9184 ... 0x9185:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case 0x8186:
rtlhal->oem_id =
RT_CID_819X_PRONETS;
break;
}
break;
case 0x1025:
rtlhal->oem_id = RT_CID_819X_ACER;
break;
case 0x1043:
switch (rtlefuse->eeprom_smid) {
case 0x8486:
rtlhal->oem_id =
RT_CID_819X_EDIMAX_ASUS;
}
break;
}
break;
}
break;
case EEPROM_CID_TOSHIBA:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case EEPROM_CID_CCX:
rtlhal->oem_id = RT_CID_CCX;
break;
case EEPROM_CID_QMI:
rtlhal->oem_id = RT_CID_819X_QMI;
break;
case EEPROM_CID_WHQL:
break;
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
exit:
kfree(hwinfo);
}
static void _rtl8723e_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
rtlpriv->ledctl.led_opendrain = true;
switch (rtlhal->oem_id) {
case RT_CID_819X_HP:
rtlpriv->ledctl.led_opendrain = true;
break;
case RT_CID_819X_LENOVO:
case RT_CID_DEFAULT:
case RT_CID_TOSHIBA:
case RT_CID_CCX:
case RT_CID_819X_ACER:
case RT_CID_WHQL:
default:
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"RT Customized ID: 0x%02X\n", rtlhal->oem_id);
}
void rtl8723e_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
u32 value32;
value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST]);
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
rtl_write_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST], value32);
rtlhal->version = _rtl8723e_read_chip_version(hw);
if (get_rf_type(rtlphy) == RF_1T1R)
rtlpriv->dm.rfpath_rxenable[0] = true;
else
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
if (tmp_u1b & BIT(4)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl8723e_read_adapter_info(hw, false);
} else {
rtlefuse->autoload_failflag = true;
_rtl8723e_read_adapter_info(hw, false);
pr_err("Autoload ERR!!\n");
}
_rtl8723e_hal_customized_behavior(hw);
}
static void rtl8723e_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 b_nmode = mac->ht_enable;
u16 shortgi_rate;
u32 tmp_ratr_value;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = mac->mode;
u32 ratr_mask;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->supp_rates[1] << 4;
else
ratr_value = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_value = 0xfff;
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
b_nmode = 1;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R)
ratr_mask = 0x000ff005;
else
ratr_mask = 0x0f0ff005;
ratr_value &= ratr_mask;
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4) &&
(rtlpriv->btcoexist.bt_cur_state) &&
(rtlpriv->btcoexist.bt_ant_isolation) &&
((rtlpriv->btcoexist.bt_service == BT_SCO) ||
(rtlpriv->btcoexist.bt_service == BT_BUSY)))
ratr_value &= 0x0fffcfc0;
else
ratr_value &= 0x0FFFFFFF;
if (b_nmode &&
((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
}
static void rtl8723e_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
? 1 : 0;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool shortgi = false;
u8 rate_mask[5];
u8 macid = 0;
/*u8 mimo_ps = IEEE80211_SMPS_OFF;*/
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->supp_rates[1] << 4;
else
ratr_bitmap = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_G;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff005;
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
sta_entry->ratr_index = ratr_index;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x\n", ratr_bitmap);
*(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
(ratr_index << 28);
rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n",
ratr_index, ratr_bitmap,
rate_mask[0], rate_mask[1],
rate_mask[2], rate_mask[3],
rate_mask[4]);
rtl8723e_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
}
void rtl8723e_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level,
bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl8723e_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
else
rtl8723e_update_hal_rate_table(hw, sta);
}
void rtl8723e_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x1010;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl8723e_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum rf_pwrstate e_rfpowerstate_toset;
u8 u1tmp;
bool b_actuallyset = false;
if (rtlpriv->rtlhal.being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock(&rtlpriv->locks.rf_ps_lock);
if (ppsc->rfchange_inprogress) {
spin_unlock(&rtlpriv->locks.rf_ps_lock);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2,
rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2)&~(BIT(1)));
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2);
if (rtlphy->polarity_ctl)
e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON;
else
e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF;
if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
e_rfpowerstate_toset = ERFON;
ppsc->hwradiooff = false;
b_actuallyset = true;
} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
e_rfpowerstate_toset = ERFOFF;
ppsc->hwradiooff = true;
b_actuallyset = true;
}
if (b_actuallyset) {
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
*valid = 1;
return !ppsc->hwradiooff;
}
void rtl8723e_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", enc_algo);
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP) {
entry_id =
rtl_cam_get_free_entry(hw, p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
pr_err("Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key_index]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
static void rtl8723e_bt_var_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->btcoexist.bt_coexistence =
rtlpriv->btcoexist.eeprom_bt_coexist;
rtlpriv->btcoexist.bt_ant_num =
rtlpriv->btcoexist.eeprom_bt_ant_num;
rtlpriv->btcoexist.bt_coexist_type =
rtlpriv->btcoexist.eeprom_bt_type;
rtlpriv->btcoexist.bt_ant_isolation =
rtlpriv->btcoexist.eeprom_bt_ant_isol;
rtlpriv->btcoexist.bt_radio_shared_type =
rtlpriv->btcoexist.eeprom_bt_radio_shared;
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BT Coexistence = 0x%x\n",
rtlpriv->btcoexist.bt_coexistence);
if (rtlpriv->btcoexist.bt_coexistence) {
rtlpriv->btcoexist.bt_busy_traffic = false;
rtlpriv->btcoexist.bt_traffic_mode_set = false;
rtlpriv->btcoexist.bt_non_traffic_mode_set = false;
rtlpriv->btcoexist.cstate = 0;
rtlpriv->btcoexist.previous_state = 0;
if (rtlpriv->btcoexist.bt_ant_num == ANT_X2) {
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_Ant_Num = Antx2\n");
} else if (rtlpriv->btcoexist.bt_ant_num == ANT_X1) {
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_Ant_Num = Antx1\n");
}
switch (rtlpriv->btcoexist.bt_coexist_type) {
case BT_2WIRE:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = BT_2Wire\n");
break;
case BT_ISSC_3WIRE:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = BT_ISSC_3Wire\n");
break;
case BT_ACCEL:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = BT_ACCEL\n");
break;
case BT_CSR_BC4:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = BT_CSR_BC4\n");
break;
case BT_CSR_BC8:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = BT_CSR_BC8\n");
break;
case BT_RTL8756:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = BT_RTL8756\n");
break;
default:
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_CoexistType = Unknown\n");
break;
}
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BlueTooth BT_Ant_isolation = %d\n",
rtlpriv->btcoexist.bt_ant_isolation);
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_TRACE,
"BT_RadioSharedType = 0x%x\n",
rtlpriv->btcoexist.bt_radio_shared_type);
rtlpriv->btcoexist.bt_active_zero_cnt = 0;
rtlpriv->btcoexist.cur_bt_disabled = false;
rtlpriv->btcoexist.pre_bt_disabled = false;
}
}
void rtl8723e_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
bool auto_load_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 value;
u32 tmpu_32;
if (!auto_load_fail) {
tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL);
if (tmpu_32 & BIT(18))
rtlpriv->btcoexist.eeprom_bt_coexist = 1;
else
rtlpriv->btcoexist.eeprom_bt_coexist = 0;
value = hwinfo[RF_OPTION4];
rtlpriv->btcoexist.eeprom_bt_type = BT_RTL8723A;
rtlpriv->btcoexist.eeprom_bt_ant_num = (value & 0x1);
rtlpriv->btcoexist.eeprom_bt_ant_isol = ((value & 0x10) >> 4);
rtlpriv->btcoexist.eeprom_bt_radio_shared =
((value & 0x20) >> 5);
} else {
rtlpriv->btcoexist.eeprom_bt_coexist = 0;
rtlpriv->btcoexist.eeprom_bt_type = BT_RTL8723A;
rtlpriv->btcoexist.eeprom_bt_ant_num = ANT_X2;
rtlpriv->btcoexist.eeprom_bt_ant_isol = 0;
rtlpriv->btcoexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
}
rtl8723e_bt_var_init(hw);
}
void rtl8723e_bt_reg_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* 0:Low, 1:High, 2:From Efuse. */
rtlpriv->btcoexist.reg_bt_iso = 2;
/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
rtlpriv->btcoexist.reg_bt_sco = 3;
/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
rtlpriv->btcoexist.reg_bt_sco = 0;
}
void rtl8723e_bt_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->cfg->ops->get_btc_status())
rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv);
}
void rtl8723e_suspend(struct ieee80211_hw *hw)
{
}
void rtl8723e_resume(struct ieee80211_hw *hw)
{
}