linux/linux-5.4.31/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c

5633 lines
160 KiB
C

/*
* Copyright (c) 2010-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <asm/unaligned.h>
#include <linux/kernel.h>
#include "hw.h"
#include "ar9003_phy.h"
#include "ar9003_eeprom.h"
#include "ar9003_mci.h"
#define COMP_HDR_LEN 4
#define COMP_CKSUM_LEN 2
#define LE16(x) cpu_to_le16(x)
#define LE32(x) cpu_to_le32(x)
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
#define EEPROM_DATA_LEN_9485 1088
static int ar9003_hw_power_interpolate(int32_t x,
int32_t *px, int32_t *py, u_int16_t np);
static const struct ar9300_eeprom ar9300_default = {
.eepromVersion = 2,
.templateVersion = 2,
.macAddr = {0, 2, 3, 4, 5, 6},
.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0c,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 3,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x22222),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 36,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {0, 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0},
.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2484, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {36, 36, 36, 36} },
{ {36, 36, 36, 36} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {32, 32, 28, 24} },
{ {32, 32, 28, 24} },
{ {32, 32, 28, 24} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
},
.calTargetPower2GHT40 = {
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x22222),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x000), LE16(0x000), LE16(0x000),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 68,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 0,
.tempSlopeHigh = 0,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_x113 = {
.eepromVersion = 2,
.templateVersion = 6,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"x113-023-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11A,
.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x21,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x44444),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 25,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0},
.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {34, 34, 34, 34} },
{ {34, 34, 34, 34} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
},
.calTargetPower2GHT40 = {
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x220),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x11111),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x150), LE16(0x150), LE16(0x150),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 68,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0xf,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 72,
.tempSlopeHigh = 105,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5785, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5190, 0),
FREQ2FBIN(5230, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5410, 0),
FREQ2FBIN(5510, 0),
FREQ2FBIN(5670, 0),
FREQ2FBIN(5755, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_h112 = {
.eepromVersion = 2,
.templateVersion = 3,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"h112-241-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x10,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x44444),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 25,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0},
.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2462, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {34, 34, 34, 34} },
{ {34, 34, 34, 34} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
},
.calTargetPower2GHT40 = {
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x220),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x44444),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x150), LE16(0x150), LE16(0x150),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 45,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 40,
.tempSlopeHigh = 50,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_x112 = {
.eepromVersion = 2,
.templateVersion = 5,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"x112-041-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastclock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x0,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x22222),
/*
* antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
/*
* xatten1DB[AR9300_max_chains]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0x1b, 0x1b, 0x1b},
/*
* xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x15, 0x15, 0x15},
.tempSlope = 50,
.voltSlope = 0,
/*
* spurChans[OSPrey_eeprom_modal_sPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0},
.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11s */
{ {38, 38, 38, 38} },
{ {38, 38, 38, 38} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {38, 38, 36, 34} },
{ {38, 38, 36, 34} },
{ {38, 38, 34, 32} },
},
.calTargetPower2GHT20 = {
{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
},
.calTargetPower2GHT40 = {
{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x22222),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x0), LE16(0x0), LE16(0x0),
},
/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0x13, 0x19, 0x17},
/*
* xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x19, 0x19, 0x19},
.tempSlope = 70,
.voltSlope = 15,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshch check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 72,
.tempSlopeHigh = 105,
.xatten1DBLow = {0x10, 0x14, 0x10},
.xatten1MarginLow = {0x19, 0x19 , 0x19},
.xatten1DBHigh = {0x1d, 0x20, 0x24},
.xatten1MarginHigh = {0x10, 0x10, 0x10}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {32, 32, 28, 26} },
{ {32, 32, 28, 26} },
{ {32, 32, 28, 26} },
{ {32, 32, 26, 24} },
{ {32, 32, 26, 24} },
{ {32, 32, 24, 22} },
{ {30, 30, 24, 22} },
{ {30, 30, 24, 22} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctledges[6].bchannel */ 0xFF,
/* Data[3].ctledges[7].bchannel */ 0xFF,
},
{
/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctledges[4].bchannel */ 0xFF,
/* Data[4].ctledges[5].bchannel */ 0xFF,
/* Data[4].ctledges[6].bchannel */ 0xFF,
/* Data[4].ctledges[7].bchannel */ 0xFF,
},
{
/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctledges[6].bchannel */ 0xFF,
/* Data[5].ctledges[7].bchannel */ 0xFF
},
{
/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_h116 = {
.eepromVersion = 2,
.templateVersion = 4,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"h116-041-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x10,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x44444),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0x1f, 0x1f, 0x1f},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x12, 0x12, 0x12},
.tempSlope = 25,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80C080),
.papdRateMaskHt40 = LE32(0x0080C080),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0},
.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2462, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {34, 34, 34, 34} },
{ {34, 34, 34, 34} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
},
.calTargetPower2GHT40 = {
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x220),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x44444),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x150), LE16(0x150), LE16(0x150),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0x19, 0x19, 0x19},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x14, 0x14, 0x14},
.tempSlope = 70,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.switchcomspdt = 0,
.xlna_bias_strength = 0,
.futureModal = {
0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 35,
.tempSlopeHigh = 50,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5160, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom *ar9300_eep_templates[] = {
&ar9300_default,
&ar9300_x112,
&ar9300_h116,
&ar9300_h112,
&ar9300_x113,
};
static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
{
int it;
for (it = 0; it < ARRAY_SIZE(ar9300_eep_templates); it++)
if (ar9300_eep_templates[it]->templateVersion == id)
return ar9300_eep_templates[it];
return NULL;
}
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
{
return 0;
}
static int interpolate(int x, int xa, int xb, int ya, int yb)
{
int bf, factor, plus;
bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
factor = bf / 2;
plus = bf % 2;
return ya + factor + plus;
}
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
enum eeprom_param param)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
switch (param) {
case EEP_MAC_LSW:
return get_unaligned_be16(eep->macAddr);
case EEP_MAC_MID:
return get_unaligned_be16(eep->macAddr + 2);
case EEP_MAC_MSW:
return get_unaligned_be16(eep->macAddr + 4);
case EEP_REG_0:
return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags.opFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_TX_MASK:
return (pBase->txrxMask >> 4) & 0xf;
case EEP_RX_MASK:
return pBase->txrxMask & 0xf;
case EEP_PAPRD:
return !!(pBase->featureEnable & BIT(5));
case EEP_CHAIN_MASK_REDUCE:
return (pBase->miscConfiguration >> 0x3) & 0x1;
case EEP_ANT_DIV_CTL1:
if (AR_SREV_9565(ah))
return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
else
return eep->base_ext1.ant_div_control;
case EEP_ANTENNA_GAIN_5G:
return eep->modalHeader5G.antennaGain;
case EEP_ANTENNA_GAIN_2G:
return eep->modalHeader2G.antennaGain;
default:
return 0;
}
}
static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
u8 *buffer)
{
u16 val;
if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
return false;
*buffer = (val >> (8 * (address % 2))) & 0xff;
return true;
}
static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
u8 *buffer)
{
u16 val;
if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
return false;
buffer[0] = val >> 8;
buffer[1] = val & 0xff;
return true;
}
static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
int count)
{
struct ath_common *common = ath9k_hw_common(ah);
int i;
if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
ath_dbg(common, EEPROM, "eeprom address not in range\n");
return false;
}
/*
* Since we're reading the bytes in reverse order from a little-endian
* word stream, an even address means we only use the lower half of
* the 16-bit word at that address
*/
if (address % 2 == 0) {
if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
goto error;
count--;
}
for (i = 0; i < count / 2; i++) {
if (!ar9300_eeprom_read_word(ah, address, buffer))
goto error;
address -= 2;
buffer += 2;
}
if (count % 2)
if (!ar9300_eeprom_read_byte(ah, address, buffer))
goto error;
return true;
error:
ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
address);
return false;
}
static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
{
REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
AR9300_OTP_STATUS_VALID, 1000))
return false;
*data = REG_READ(ah, AR9300_OTP_READ_DATA);
return true;
}
static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
int count)
{
u32 data;
int i;
for (i = 0; i < count; i++) {
int offset = 8 * ((address - i) % 4);
if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
return false;
buffer[i] = (data >> offset) & 0xff;
}
return true;
}
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
int *length, int *major, int *minor)
{
unsigned long value[4];
value[0] = best[0];
value[1] = best[1];
value[2] = best[2];
value[3] = best[3];
*code = ((value[0] >> 5) & 0x0007);
*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
*major = (value[2] & 0x000f);
*minor = (value[3] & 0x00ff);
}
static u16 ar9300_comp_cksum(u8 *data, int dsize)
{
int it, checksum = 0;
for (it = 0; it < dsize; it++) {
checksum += data[it];
checksum &= 0xffff;
}
return checksum;
}
static bool ar9300_uncompress_block(struct ath_hw *ah,
u8 *mptr,
int mdataSize,
u8 *block,
int size)
{
int it;
int spot;
int offset;
int length;
struct ath_common *common = ath9k_hw_common(ah);
spot = 0;
for (it = 0; it < size; it += (length+2)) {
offset = block[it];
offset &= 0xff;
spot += offset;
length = block[it+1];
length &= 0xff;
if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
ath_dbg(common, EEPROM,
"Restore at %d: spot=%d offset=%d length=%d\n",
it, spot, offset, length);
memcpy(&mptr[spot], &block[it+2], length);
spot += length;
} else if (length > 0) {
ath_dbg(common, EEPROM,
"Bad restore at %d: spot=%d offset=%d length=%d\n",
it, spot, offset, length);
return false;
}
}
return true;
}
static int ar9300_compress_decision(struct ath_hw *ah,
int it,
int code,
int reference,
u8 *mptr,
u8 *word, int length, int mdata_size)
{
struct ath_common *common = ath9k_hw_common(ah);
const struct ar9300_eeprom *eep = NULL;
switch (code) {
case _CompressNone:
if (length != mdata_size) {
ath_dbg(common, EEPROM,
"EEPROM structure size mismatch memory=%d eeprom=%d\n",
mdata_size, length);
return -1;
}
memcpy(mptr, word + COMP_HDR_LEN, length);
ath_dbg(common, EEPROM,
"restored eeprom %d: uncompressed, length %d\n",
it, length);
break;
case _CompressBlock:
if (reference != 0) {
eep = ar9003_eeprom_struct_find_by_id(reference);
if (eep == NULL) {
ath_dbg(common, EEPROM,
"can't find reference eeprom struct %d\n",
reference);
return -1;
}
memcpy(mptr, eep, mdata_size);
}
ath_dbg(common, EEPROM,
"restore eeprom %d: block, reference %d, length %d\n",
it, reference, length);
ar9300_uncompress_block(ah, mptr, mdata_size,
(word + COMP_HDR_LEN), length);
break;
default:
ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
return -1;
}
return 0;
}
typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
int count);
static bool ar9300_check_header(void *data)
{
u32 *word = data;
return !(*word == 0 || *word == ~0);
}
static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
int base_addr)
{
u8 header[4];
if (!read(ah, base_addr, header, 4))
return false;
return ar9300_check_header(header);
}
static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
int mdata_size)
{
u16 *data = (u16 *) mptr;
int i;
for (i = 0; i < mdata_size / 2; i++, data++)
if (!ath9k_hw_nvram_read(ah, i, data))
return -EIO;
return 0;
}
/*
* Read the configuration data from the eeprom.
* The data can be put in any specified memory buffer.
*
* Returns -1 on error.
* Returns address of next memory location on success.
*/
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
u8 *mptr, int mdata_size)
{
#define MDEFAULT 15
#define MSTATE 100
int cptr;
u8 *word;
int code;
int reference, length, major, minor;
int osize;
int it;
u16 checksum, mchecksum;
struct ath_common *common = ath9k_hw_common(ah);
struct ar9300_eeprom *eep;
eeprom_read_op read;
if (ath9k_hw_use_flash(ah)) {
u8 txrx;
if (ar9300_eeprom_restore_flash(ah, mptr, mdata_size))
return -EIO;
/* check if eeprom contains valid data */
eep = (struct ar9300_eeprom *) mptr;
txrx = eep->baseEepHeader.txrxMask;
if (txrx != 0 && txrx != 0xff)
return 0;
}
word = kzalloc(2048, GFP_KERNEL);
if (!word)
return -ENOMEM;
memcpy(mptr, &ar9300_default, mdata_size);
read = ar9300_read_eeprom;
if (AR_SREV_9485(ah))
cptr = AR9300_BASE_ADDR_4K;
else if (AR_SREV_9330(ah))
cptr = AR9300_BASE_ADDR_512;
else
cptr = AR9300_BASE_ADDR;
ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
cptr = AR9300_BASE_ADDR_4K;
ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
cptr = AR9300_BASE_ADDR_512;
ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
read = ar9300_read_otp;
cptr = AR9300_BASE_ADDR;
ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
cptr = AR9300_BASE_ADDR_512;
ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
goto fail;
found:
ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
for (it = 0; it < MSTATE; it++) {
if (!read(ah, cptr, word, COMP_HDR_LEN))
goto fail;
if (!ar9300_check_header(word))
break;
ar9300_comp_hdr_unpack(word, &code, &reference,
&length, &major, &minor);
ath_dbg(common, EEPROM,
"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
cptr, code, reference, length, major, minor);
if ((!AR_SREV_9485(ah) && length >= 1024) ||
(AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
ath_dbg(common, EEPROM, "Skipping bad header\n");
cptr -= COMP_HDR_LEN;
continue;
}
osize = length;
read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
ath_dbg(common, EEPROM, "checksum %x %x\n",
checksum, mchecksum);
if (checksum == mchecksum) {
ar9300_compress_decision(ah, it, code, reference, mptr,
word, length, mdata_size);
} else {
ath_dbg(common, EEPROM,
"skipping block with bad checksum\n");
}
cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
}
kfree(word);
return cptr;
fail:
kfree(word);
return -1;
}
/*
* Restore the configuration structure by reading the eeprom.
* This function destroys any existing in-memory structure
* content.
*/
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
{
u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
if (ar9300_eeprom_restore_internal(ah, mptr,
sizeof(struct ar9300_eeprom)) < 0)
return false;
return true;
}
#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
struct ar9300_modal_eep_header *modal_hdr)
{
PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
PR_EEP("Ant. Gain", modal_hdr->antennaGain);
PR_EEP("Switch Settle", modal_hdr->switchSettling);
PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
PR_EEP("Temp Slope", modal_hdr->tempSlope);
PR_EEP("Volt Slope", modal_hdr->voltSlope);
PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
PR_EEP("Quick Drop", modal_hdr->quick_drop);
PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
PR_EEP("txClip", modal_hdr->txClip);
PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
return len;
}
static u32 ar9003_dump_cal_data(struct ath_hw *ah, char *buf, u32 len, u32 size,
bool is_2g)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase;
struct ar9300_cal_data_per_freq_op_loop *cal_pier;
int cal_pier_nr;
int freq;
int i, j;
pBase = &eep->baseEepHeader;
if (is_2g)
cal_pier_nr = AR9300_NUM_2G_CAL_PIERS;
else
cal_pier_nr = AR9300_NUM_5G_CAL_PIERS;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!((pBase->txrxMask >> i) & 1))
continue;
len += scnprintf(buf + len, size - len, "Chain %d\n", i);
len += scnprintf(buf + len, size - len,
"Freq\t ref\tvolt\ttemp\tnf_cal\tnf_pow\trx_temp\n");
for (j = 0; j < cal_pier_nr; j++) {
if (is_2g) {
cal_pier = &eep->calPierData2G[i][j];
freq = 2300 + eep->calFreqPier2G[j];
} else {
cal_pier = &eep->calPierData5G[i][j];
freq = 4800 + eep->calFreqPier5G[j] * 5;
}
len += scnprintf(buf + len, size - len,
"%d\t", freq);
len += scnprintf(buf + len, size - len,
"%d\t%d\t%d\t%d\t%d\t%d\n",
cal_pier->refPower,
cal_pier->voltMeas,
cal_pier->tempMeas,
cal_pier->rxTempMeas ?
N2DBM(cal_pier->rxNoisefloorCal) : 0,
cal_pier->rxTempMeas ?
N2DBM(cal_pier->rxNoisefloorPower) : 0,
cal_pier->rxTempMeas);
}
}
return len;
}
static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase;
if (!dump_base_hdr) {
len += scnprintf(buf + len, size - len,
"%20s :\n", "2GHz modal Header");
len = ar9003_dump_modal_eeprom(buf, len, size,
&eep->modalHeader2G);
len += scnprintf(buf + len, size - len, "Calibration data\n");
len = ar9003_dump_cal_data(ah, buf, len, size, true);
len += scnprintf(buf + len, size - len,
"%20s :\n", "5GHz modal Header");
len = ar9003_dump_modal_eeprom(buf, len, size,
&eep->modalHeader5G);
len += scnprintf(buf + len, size - len, "Calibration data\n");
len = ar9003_dump_cal_data(ah, buf, len, size, false);
goto out;
}
pBase = &eep->baseEepHeader;
PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", (pBase->txrxMask >> 4));
PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_11A));
PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_11G));
PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_2G_HT20));
PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_2G_HT40));
PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_5G_HT20));
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc &
AR5416_EEPMISC_BIG_ENDIAN));
PR_EEP("RF Silent", pBase->rfSilent);
PR_EEP("BT option", pBase->blueToothOptions);
PR_EEP("Device Cap", pBase->deviceCap);
PR_EEP("Device Type", pBase->deviceType);
PR_EEP("Power Table Offset", pBase->pwrTableOffset);
PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
PR_EEP("Tx Gain", pBase->txrxgain >> 4);
PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
ah->eeprom.ar9300_eep.macAddr);
out:
if (len > size)
len = size;
return len;
}
#else
static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
return 0;
}
#endif
/* XXX: review hardware docs */
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
{
return ah->eeprom.ar9300_eep.eepromVersion;
}
/* XXX: could be read from the eepromVersion, not sure yet */
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
{
return 0;
}
static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (is2ghz)
return &eep->modalHeader2G;
else
return &eep->modalHeader5G;
}
static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
{
int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
AR_SREV_9531(ah) || AR_SREV_9561(ah))
REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
else {
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
REG_RMW_FIELD(ah, AR_CH0_THERM,
AR_CH0_THERM_XPABIASLVL_MSB,
bias >> 2);
REG_RMW_FIELD(ah, AR_CH0_THERM,
AR_CH0_THERM_XPASHORT2GND, 1);
}
}
static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
{
return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
}
u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
{
return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
}
u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
{
return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
}
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
bool is2ghz)
{
__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
return le16_to_cpu(val);
}
static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_capabilities *pCap = &ah->caps;
int chain;
u32 regval, value, gpio;
static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
AR_PHY_SWITCH_CHAIN_0,
AR_PHY_SWITCH_CHAIN_1,
AR_PHY_SWITCH_CHAIN_2,
};
if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
if (ah->config.xlna_gpio)
gpio = ah->config.xlna_gpio;
else
gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
ath9k_hw_gpio_request_out(ah, gpio, NULL,
AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
}
value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_AR9462_ALL, value);
} else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_AR9550_ALL, value);
} else
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_ALL, value);
/*
* AR9462 defines new switch table for BT/WLAN,
* here's new field name in XXX.ref for both 2G and 5G.
* Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
* 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
* SWITCH_TABLE_COM_SPDT_WLAN_RX
*
* 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
* SWITCH_TABLE_COM_SPDT_WLAN_TX
*
* 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
* SWITCH_TABLE_COM_SPDT_WLAN_IDLE
*/
if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
value = ar9003_switch_com_spdt_get(ah, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
AR_SWITCH_TABLE_COM_SPDT_ALL, value);
REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
}
value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
value &= ~AR_SWITCH_TABLE_COM2_ALL;
value |= ah->config.ant_ctrl_comm2g_switch_enable;
}
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
REG_RMW_FIELD(ah, switch_chain_reg[0],
AR_SWITCH_TABLE_ALL, value);
}
for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
if ((ah->rxchainmask & BIT(chain)) ||
(ah->txchainmask & BIT(chain))) {
value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
is2ghz);
REG_RMW_FIELD(ah, switch_chain_reg[chain],
AR_SWITCH_TABLE_ALL, value);
}
}
if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
/*
* main_lnaconf, alt_lnaconf, main_tb, alt_tb
* are the fields present
*/
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= (~AR_ANT_DIV_CTRL_ALL);
regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
/* enable_lnadiv */
regval &= (~AR_PHY_ANT_DIV_LNADIV);
regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
if (AR_SREV_9485(ah) && common->bt_ant_diversity)
regval |= AR_ANT_DIV_ENABLE;
if (AR_SREV_9565(ah)) {
if (common->bt_ant_diversity) {
regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
REG_SET_BIT(ah, AR_PHY_RESTART,
AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
/* Force WLAN LNA diversity ON */
REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
AR_BTCOEX_WL_LNADIV_FORCE_ON);
} else {
regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
(1 << AR_PHY_ANT_SW_RX_PROT_S));
/* Force WLAN LNA diversity OFF */
REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
AR_BTCOEX_WL_LNADIV_FORCE_ON);
}
}
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
/* enable fast_div */
regval = REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= (~AR_FAST_DIV_ENABLE);
regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
&& common->bt_ant_diversity)
regval |= AR_FAST_DIV_ENABLE;
REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
/*
* clear bits 25-30 main_lnaconf, alt_lnaconf,
* main_tb, alt_tb
*/
regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
AR_PHY_ANT_DIV_ALT_LNACONF |
AR_PHY_ANT_DIV_ALT_GAINTB |
AR_PHY_ANT_DIV_MAIN_GAINTB));
/* by default use LNA1 for the main antenna */
regval |= (ATH_ANT_DIV_COMB_LNA1 <<
AR_PHY_ANT_DIV_MAIN_LNACONF_S);
regval |= (ATH_ANT_DIV_COMB_LNA2 <<
AR_PHY_ANT_DIV_ALT_LNACONF_S);
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
}
}
}
static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
int drive_strength;
unsigned long reg;
drive_strength = pBase->miscConfiguration & BIT(0);
if (!drive_strength)
return;
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
reg &= ~0x00ffffc0;
reg |= 0x5 << 21;
reg |= 0x5 << 18;
reg |= 0x5 << 15;
reg |= 0x5 << 12;
reg |= 0x5 << 9;
reg |= 0x5 << 6;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
reg &= ~0xffffffe0;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
reg |= 0x5 << 20;
reg |= 0x5 << 17;
reg |= 0x5 << 14;
reg |= 0x5 << 11;
reg |= 0x5 << 8;
reg |= 0x5 << 5;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
reg &= ~0xff800000;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
}
static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
struct ath9k_channel *chan)
{
int f[3], t[3];
u16 value;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (chain >= 0 && chain < 3) {
if (IS_CHAN_2GHZ(chan))
return eep->modalHeader2G.xatten1DB[chain];
else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
t[0] = eep->base_ext2.xatten1DBLow[chain];
f[0] = 5180;
t[1] = eep->modalHeader5G.xatten1DB[chain];
f[1] = 5500;
t[2] = eep->base_ext2.xatten1DBHigh[chain];
f[2] = 5785;
value = ar9003_hw_power_interpolate((s32) chan->channel,
f, t, 3);
return value;
} else
return eep->modalHeader5G.xatten1DB[chain];
}
return 0;
}
static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
struct ath9k_channel *chan)
{
int f[3], t[3];
u16 value;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (chain >= 0 && chain < 3) {
if (IS_CHAN_2GHZ(chan))
return eep->modalHeader2G.xatten1Margin[chain];
else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
t[0] = eep->base_ext2.xatten1MarginLow[chain];
f[0] = 5180;
t[1] = eep->modalHeader5G.xatten1Margin[chain];
f[1] = 5500;
t[2] = eep->base_ext2.xatten1MarginHigh[chain];
f[2] = 5785;
value = ar9003_hw_power_interpolate((s32) chan->channel,
f, t, 3);
return value;
} else
return eep->modalHeader5G.xatten1Margin[chain];
}
return 0;
}
static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
{
int i;
u16 value;
unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
AR_PHY_EXT_ATTEN_CTL_1,
AR_PHY_EXT_ATTEN_CTL_2,
};
if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
value = ar9003_hw_atten_chain_get(ah, 1, chan);
REG_RMW_FIELD(ah, ext_atten_reg[0],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
REG_RMW_FIELD(ah, ext_atten_reg[0],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
}
/* Test value. if 0 then attenuation is unused. Don't load anything. */
for (i = 0; i < 3; i++) {
if (ah->txchainmask & BIT(i)) {
value = ar9003_hw_atten_chain_get(ah, i, chan);
REG_RMW_FIELD(ah, ext_atten_reg[i],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
if (AR_SREV_9485(ah) &&
(ar9003_hw_get_rx_gain_idx(ah) == 0) &&
ah->config.xatten_margin_cfg)
value = 5;
else
value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
if (ah->config.alt_mingainidx)
REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
REG_RMW_FIELD(ah, ext_atten_reg[i],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
}
}
}
static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
{
int timeout = 100;
while (pmu_set != REG_READ(ah, pmu_reg)) {
if (timeout-- == 0)
return false;
REG_WRITE(ah, pmu_reg, pmu_set);
udelay(10);
}
return true;
}
void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
u32 reg_val;
if (pBase->featureEnable & BIT(4)) {
if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
int reg_pmu_set;
reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
return;
if (AR_SREV_9330(ah)) {
if (ah->is_clk_25mhz) {
reg_pmu_set = (3 << 1) | (8 << 4) |
(3 << 8) | (1 << 14) |
(6 << 17) | (1 << 20) |
(3 << 24);
} else {
reg_pmu_set = (4 << 1) | (7 << 4) |
(3 << 8) | (1 << 14) |
(6 << 17) | (1 << 20) |
(3 << 24);
}
} else {
reg_pmu_set = (5 << 1) | (7 << 4) |
(2 << 8) | (2 << 14) |
(6 << 17) | (1 << 20) |
(3 << 24) | (1 << 28);
}
REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
return;
reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
| (4 << 26);
REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
return;
reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
| (1 << 21);
REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
return;
} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah) ||
AR_SREV_9561(ah)) {
reg_val = le32_to_cpu(pBase->swreg);
REG_WRITE(ah, AR_PHY_PMU1, reg_val);
if (AR_SREV_9561(ah))
REG_WRITE(ah, AR_PHY_PMU2, 0x10200000);
} else {
/* Internal regulator is ON. Write swreg register. */
reg_val = le32_to_cpu(pBase->swreg);
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
REG_READ(ah, AR_RTC_REG_CONTROL1) &
(~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
/* Set REG_CONTROL1.SWREG_PROGRAM */
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
REG_READ(ah,
AR_RTC_REG_CONTROL1) |
AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
}
} else {
if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
while (REG_READ_FIELD(ah, AR_PHY_PMU2,
AR_PHY_PMU2_PGM))
udelay(10);
REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
AR_PHY_PMU1_PWD))
udelay(10);
REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
AR_PHY_PMU2_PGM))
udelay(10);
} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
else {
reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
AR_RTC_FORCE_SWREG_PRD;
REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
}
}
}
static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
return;
if (eep->baseEepHeader.featureEnable & 0x40) {
tuning_caps_param &= 0x7f;
REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
tuning_caps_param);
REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
tuning_caps_param);
}
}
static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
int quick_drop;
s32 t[3], f[3] = {5180, 5500, 5785};
if (!(pBase->miscConfiguration & BIT(4)))
return;
if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
if (freq < 4000) {
quick_drop = eep->modalHeader2G.quick_drop;
} else {
t[0] = eep->base_ext1.quick_drop_low;
t[1] = eep->modalHeader5G.quick_drop;
t[2] = eep->base_ext1.quick_drop_high;
quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
}
REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
}
}
static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
{
u32 value;
value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
}
static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
u8 xpa_ctl;
if (!(eep->baseEepHeader.featureEnable & 0x80))
return;
if (!AR_SREV_9300(ah) &&
!AR_SREV_9340(ah) &&
!AR_SREV_9580(ah) &&
!AR_SREV_9531(ah) &&
!AR_SREV_9561(ah))
return;
xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
if (is2ghz)
REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
else
REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
}
static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
u8 bias;
if (!(eep->baseEepHeader.miscConfiguration & 0x40))
return;
if (!AR_SREV_9300(ah))
return;
bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
bias & 0x3);
bias >>= 2;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
bias & 0x3);
bias >>= 2;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
bias & 0x3);
}
static int ar9003_hw_get_thermometer(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
int thermometer = (pBase->miscConfiguration >> 1) & 0x3;
return --thermometer;
}
static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
{
struct ath9k_hw_capabilities *pCap = &ah->caps;
int thermometer = ar9003_hw_get_thermometer(ah);
u8 therm_on = (thermometer < 0) ? 0 : 1;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
if (pCap->chip_chainmask & BIT(1))
REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
if (pCap->chip_chainmask & BIT(2))
REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
therm_on = thermometer == 0;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
if (pCap->chip_chainmask & BIT(1)) {
therm_on = thermometer == 1;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
}
if (pCap->chip_chainmask & BIT(2)) {
therm_on = thermometer == 2;
REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
}
}
static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
{
u32 data = 0, ko, kg;
if (!AR_SREV_9462_20_OR_LATER(ah))
return;
ar9300_otp_read_word(ah, 1, &data);
ko = data & 0xff;
kg = (data >> 8) & 0xff;
if (ko || kg) {
REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
kg + 256);
}
}
static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
AR_PHY_CCA_CTRL_0,
AR_PHY_CCA_CTRL_1,
AR_PHY_CCA_CTRL_2,
};
int chain;
u32 val;
if (is2ghz) {
if (!(eep->base_ext1.misc_enable & BIT(2)))
return;
} else {
if (!(eep->base_ext1.misc_enable & BIT(3)))
return;
}
for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
if (!(ah->caps.tx_chainmask & BIT(chain)))
continue;
val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
REG_RMW_FIELD(ah, cca_ctrl[chain],
AR_PHY_EXT_CCA0_THRESH62_1, val);
}
}
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
struct ath9k_channel *chan)
{
bool is2ghz = IS_CHAN_2GHZ(chan);
ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
ar9003_hw_ant_ctrl_apply(ah, is2ghz);
ar9003_hw_drive_strength_apply(ah);
ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
ar9003_hw_atten_apply(ah, chan);
ar9003_hw_quick_drop_apply(ah, chan->channel);
if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
ar9003_hw_internal_regulator_apply(ah);
ar9003_hw_apply_tuning_caps(ah);
ar9003_hw_apply_minccapwr_thresh(ah, is2ghz);
ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
ar9003_hw_thermometer_apply(ah);
ar9003_hw_thermo_cal_apply(ah);
}
static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
struct ath9k_channel *chan)
{
}
/*
* Returns the interpolated y value corresponding to the specified x value
* from the np ordered pairs of data (px,py).
* The pairs do not have to be in any order.
* If the specified x value is less than any of the px,
* the returned y value is equal to the py for the lowest px.
* If the specified x value is greater than any of the px,
* the returned y value is equal to the py for the highest px.
*/
static int ar9003_hw_power_interpolate(int32_t x,
int32_t *px, int32_t *py, u_int16_t np)
{
int ip = 0;
int lx = 0, ly = 0, lhave = 0;
int hx = 0, hy = 0, hhave = 0;
int dx = 0;
int y = 0;
lhave = 0;
hhave = 0;
/* identify best lower and higher x calibration measurement */
for (ip = 0; ip < np; ip++) {
dx = x - px[ip];
/* this measurement is higher than our desired x */
if (dx <= 0) {
if (!hhave || dx > (x - hx)) {
/* new best higher x measurement */
hx = px[ip];
hy = py[ip];
hhave = 1;
}
}
/* this measurement is lower than our desired x */
if (dx >= 0) {
if (!lhave || dx < (x - lx)) {
/* new best lower x measurement */
lx = px[ip];
ly = py[ip];
lhave = 1;
}
}
}
/* the low x is good */
if (lhave) {
/* so is the high x */
if (hhave) {
/* they're the same, so just pick one */
if (hx == lx)
y = ly;
else /* interpolate */
y = interpolate(x, lx, hx, ly, hy);
} else /* only low is good, use it */
y = ly;
} else if (hhave) /* only high is good, use it */
y = hy;
else /* nothing is good,this should never happen unless np=0, ???? */
y = -(1 << 30);
return y;
}
static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
u16 rateIndex, u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_legacy *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2G;
pFreqBin = eep->calTarget_freqbin_2G;
} else {
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5G;
pFreqBin = eep->calTarget_freqbin_5G;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
u16 rateIndex,
u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_ht *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2GHT20;
pFreqBin = eep->calTarget_freqbin_2GHT20;
} else {
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5GHT20;
pFreqBin = eep->calTarget_freqbin_5GHT20;
}
/*
* create array of channels and targetpower
* from targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
u16 rateIndex,
u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_ht *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2GHT40;
pFreqBin = eep->calTarget_freqbin_2GHT40;
} else {
numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5GHT40;
pFreqBin = eep->calTarget_freqbin_5GHT40;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
u16 rateIndex, u16 freq)
{
u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
u8 *pFreqBin = eep->calTarget_freqbin_Cck;
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static void ar9003_hw_selfgen_tpc_txpower(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *pwr_array)
{
u32 val;
/* target power values for self generated frames (ACK,RTS/CTS) */
if (IS_CHAN_2GHZ(chan)) {
val = SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
} else {
val = SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
}
REG_WRITE(ah, AR_TPC, val);
}
/* Set tx power registers to array of values passed in */
int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
/* make sure forced gain is not set */
REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
/* Write the OFDM power per rate set */
/* 6 (LSB), 9, 12, 18 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
/* 24 (LSB), 36, 48, 54 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
/* Write the CCK power per rate set */
/* 1L (LSB), reserved, 2L, 2S (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
/* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the power for duplicated frames - HT40 */
/* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the HT20 power per rate set */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
);
/* Mixed HT20 and HT40 rates */
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
);
/*
* Write the HT40 power per rate set
* correct PAR difference between HT40 and HT20/LEGACY
* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
*/
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
);
return 0;
#undef POW_SM
}
static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
u8 *targetPowerValT2,
bool is2GHz)
{
targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_36] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_48] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_54] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
is2GHz);
}
static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
u8 *targetPowerValT2)
{
targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
freq);
targetPowerValT2[ALL_TARGET_LEGACY_5S] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
targetPowerValT2[ALL_TARGET_LEGACY_11L] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
targetPowerValT2[ALL_TARGET_LEGACY_11S] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
}
static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
u8 *targetPowerValT2, bool is2GHz)
{
targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
freq, is2GHz);
targetPowerValT2[ALL_TARGET_HT20_4] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_5] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_6] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_7] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_12] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_13] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_14] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_15] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_20] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_21] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_22] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_23] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
is2GHz);
}
static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
u16 freq,
u8 *targetPowerValT2,
bool is2GHz)
{
/* XXX: hard code for now, need to get from eeprom struct */
u8 ht40PowerIncForPdadc = 0;
targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_4] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_5] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_6] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_7] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_12] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_13] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_14] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_15] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_20] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_21] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_22] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_23] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
is2GHz) + ht40PowerIncForPdadc;
}
static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *targetPowerValT2)
{
bool is2GHz = IS_CHAN_2GHZ(chan);
unsigned int i = 0;
struct ath_common *common = ath9k_hw_common(ah);
u16 freq = chan->channel;
if (is2GHz)
ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
if (IS_CHAN_HT40(chan))
ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
is2GHz);
for (i = 0; i < ar9300RateSize; i++) {
ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
i, targetPowerValT2[i]);
}
}
static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
int mode,
int ipier,
int ichain,
int *pfrequency,
int *pcorrection,
int *ptemperature, int *pvoltage,
int *pnf_cal, int *pnf_power)
{
u8 *pCalPier;
struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
int is2GHz;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ath_common *common = ath9k_hw_common(ah);
if (ichain >= AR9300_MAX_CHAINS) {
ath_dbg(common, EEPROM,
"Invalid chain index, must be less than %d\n",
AR9300_MAX_CHAINS);
return -1;
}
if (mode) { /* 5GHz */
if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
ath_dbg(common, EEPROM,
"Invalid 5GHz cal pier index, must be less than %d\n",
AR9300_NUM_5G_CAL_PIERS);
return -1;
}
pCalPier = &(eep->calFreqPier5G[ipier]);
pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
is2GHz = 0;
} else {
if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
ath_dbg(common, EEPROM,
"Invalid 2GHz cal pier index, must be less than %d\n",
AR9300_NUM_2G_CAL_PIERS);
return -1;
}
pCalPier = &(eep->calFreqPier2G[ipier]);
pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
is2GHz = 1;
}
*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
*pcorrection = pCalPierStruct->refPower;
*ptemperature = pCalPierStruct->tempMeas;
*pvoltage = pCalPierStruct->voltMeas;
*pnf_cal = pCalPierStruct->rxTempMeas ?
N2DBM(pCalPierStruct->rxNoisefloorCal) : 0;
*pnf_power = pCalPierStruct->rxTempMeas ?
N2DBM(pCalPierStruct->rxNoisefloorPower) : 0;
return 0;
}
static void ar9003_hw_power_control_override(struct ath_hw *ah,
int frequency,
int *correction,
int *voltage, int *temperature)
{
int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
int f[8], t[8], t1[3], t2[3], i;
REG_RMW(ah, AR_PHY_TPC_11_B0,
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
if (ah->caps.tx_chainmask & BIT(1))
REG_RMW(ah, AR_PHY_TPC_11_B1,
(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
if (ah->caps.tx_chainmask & BIT(2))
REG_RMW(ah, AR_PHY_TPC_11_B2,
(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
/* enable open loop power control on chip */
REG_RMW(ah, AR_PHY_TPC_6_B0,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
if (ah->caps.tx_chainmask & BIT(1))
REG_RMW(ah, AR_PHY_TPC_6_B1,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
if (ah->caps.tx_chainmask & BIT(2))
REG_RMW(ah, AR_PHY_TPC_6_B2,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
/*
* enable temperature compensation
* Need to use register names
*/
if (frequency < 4000) {
temp_slope = eep->modalHeader2G.tempSlope;
} else {
if (AR_SREV_9550(ah)) {
t[0] = eep->base_ext1.tempslopextension[2];
t1[0] = eep->base_ext1.tempslopextension[3];
t2[0] = eep->base_ext1.tempslopextension[4];
f[0] = 5180;
t[1] = eep->modalHeader5G.tempSlope;
t1[1] = eep->base_ext1.tempslopextension[0];
t2[1] = eep->base_ext1.tempslopextension[1];
f[1] = 5500;
t[2] = eep->base_ext1.tempslopextension[5];
t1[2] = eep->base_ext1.tempslopextension[6];
t2[2] = eep->base_ext1.tempslopextension[7];
f[2] = 5785;
temp_slope = ar9003_hw_power_interpolate(frequency,
f, t, 3);
temp_slope1 = ar9003_hw_power_interpolate(frequency,
f, t1, 3);
temp_slope2 = ar9003_hw_power_interpolate(frequency,
f, t2, 3);
goto tempslope;
}
if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
for (i = 0; i < 8; i++) {
t[i] = eep->base_ext1.tempslopextension[i];
f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
}
temp_slope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 8);
} else if (eep->base_ext2.tempSlopeLow != 0) {
t[0] = eep->base_ext2.tempSlopeLow;
f[0] = 5180;
t[1] = eep->modalHeader5G.tempSlope;
f[1] = 5500;
t[2] = eep->base_ext2.tempSlopeHigh;
f[2] = 5785;
temp_slope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 3);
} else {
temp_slope = eep->modalHeader5G.tempSlope;
}
}
tempslope:
if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
u8 txmask = (eep->baseEepHeader.txrxMask & 0xf0) >> 4;
/*
* AR955x has tempSlope register for each chain.
* Check whether temp_compensation feature is enabled or not.
*/
if (eep->baseEepHeader.featureEnable & 0x1) {
if (frequency < 4000) {
if (txmask & BIT(0))
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM,
eep->base_ext2.tempSlopeLow);
if (txmask & BIT(1))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope);
if (txmask & BIT(2))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
AR_PHY_TPC_19_ALPHA_THERM,
eep->base_ext2.tempSlopeHigh);
} else {
if (txmask & BIT(0))
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope);
if (txmask & BIT(1))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope1);
if (txmask & BIT(2))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope2);
}
} else {
/*
* If temp compensation is not enabled,
* set all registers to 0.
*/
if (txmask & BIT(0))
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM, 0);
if (txmask & BIT(1))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_ALPHA_THERM, 0);
if (txmask & BIT(2))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
AR_PHY_TPC_19_ALPHA_THERM, 0);
}
} else {
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
}
if (AR_SREV_9462_20_OR_LATER(ah))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
temperature[0]);
}
/* Apply the recorded correction values. */
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
{
int ichain, ipier, npier;
int mode;
int lfrequency[AR9300_MAX_CHAINS],
lcorrection[AR9300_MAX_CHAINS],
ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS],
lnf_cal[AR9300_MAX_CHAINS], lnf_pwr[AR9300_MAX_CHAINS];
int hfrequency[AR9300_MAX_CHAINS],
hcorrection[AR9300_MAX_CHAINS],
htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS],
hnf_cal[AR9300_MAX_CHAINS], hnf_pwr[AR9300_MAX_CHAINS];
int fdiff;
int correction[AR9300_MAX_CHAINS],
voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS],
nf_cal[AR9300_MAX_CHAINS], nf_pwr[AR9300_MAX_CHAINS];
int pfrequency, pcorrection, ptemperature, pvoltage,
pnf_cal, pnf_pwr;
struct ath_common *common = ath9k_hw_common(ah);
mode = (frequency >= 4000);
if (mode)
npier = AR9300_NUM_5G_CAL_PIERS;
else
npier = AR9300_NUM_2G_CAL_PIERS;
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
lfrequency[ichain] = 0;
hfrequency[ichain] = 100000;
}
/* identify best lower and higher frequency calibration measurement */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
for (ipier = 0; ipier < npier; ipier++) {
if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
&pfrequency, &pcorrection,
&ptemperature, &pvoltage,
&pnf_cal, &pnf_pwr)) {
fdiff = frequency - pfrequency;
/*
* this measurement is higher than
* our desired frequency
*/
if (fdiff <= 0) {
if (hfrequency[ichain] <= 0 ||
hfrequency[ichain] >= 100000 ||
fdiff >
(frequency - hfrequency[ichain])) {
/*
* new best higher
* frequency measurement
*/
hfrequency[ichain] = pfrequency;
hcorrection[ichain] =
pcorrection;
htemperature[ichain] =
ptemperature;
hvoltage[ichain] = pvoltage;
hnf_cal[ichain] = pnf_cal;
hnf_pwr[ichain] = pnf_pwr;
}
}
if (fdiff >= 0) {
if (lfrequency[ichain] <= 0
|| fdiff <
(frequency - lfrequency[ichain])) {
/*
* new best lower
* frequency measurement
*/
lfrequency[ichain] = pfrequency;
lcorrection[ichain] =
pcorrection;
ltemperature[ichain] =
ptemperature;
lvoltage[ichain] = pvoltage;
lnf_cal[ichain] = pnf_cal;
lnf_pwr[ichain] = pnf_pwr;
}
}
}
}
}
/* interpolate */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
ath_dbg(common, EEPROM,
"ch=%d f=%d low=%d %d h=%d %d n=%d %d p=%d %d\n",
ichain, frequency, lfrequency[ichain],
lcorrection[ichain], hfrequency[ichain],
hcorrection[ichain], lnf_cal[ichain],
hnf_cal[ichain], lnf_pwr[ichain],
hnf_pwr[ichain]);
/* they're the same, so just pick one */
if (hfrequency[ichain] == lfrequency[ichain]) {
correction[ichain] = lcorrection[ichain];
voltage[ichain] = lvoltage[ichain];
temperature[ichain] = ltemperature[ichain];
nf_cal[ichain] = lnf_cal[ichain];
nf_pwr[ichain] = lnf_pwr[ichain];
}
/* the low frequency is good */
else if (frequency - lfrequency[ichain] < 1000) {
/* so is the high frequency, interpolate */
if (hfrequency[ichain] - frequency < 1000) {
correction[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
lcorrection[ichain],
hcorrection[ichain]);
temperature[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
ltemperature[ichain],
htemperature[ichain]);
voltage[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
lvoltage[ichain],
hvoltage[ichain]);
nf_cal[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
lnf_cal[ichain],
hnf_cal[ichain]);
nf_pwr[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
lnf_pwr[ichain],
hnf_pwr[ichain]);
}
/* only low is good, use it */
else {
correction[ichain] = lcorrection[ichain];
temperature[ichain] = ltemperature[ichain];
voltage[ichain] = lvoltage[ichain];
nf_cal[ichain] = lnf_cal[ichain];
nf_pwr[ichain] = lnf_pwr[ichain];
}
}
/* only high is good, use it */
else if (hfrequency[ichain] - frequency < 1000) {
correction[ichain] = hcorrection[ichain];
temperature[ichain] = htemperature[ichain];
voltage[ichain] = hvoltage[ichain];
nf_cal[ichain] = hnf_cal[ichain];
nf_pwr[ichain] = hnf_pwr[ichain];
} else { /* nothing is good, presume 0???? */
correction[ichain] = 0;
temperature[ichain] = 0;
voltage[ichain] = 0;
nf_cal[ichain] = 0;
nf_pwr[ichain] = 0;
}
}
ar9003_hw_power_control_override(ah, frequency, correction, voltage,
temperature);
ath_dbg(common, EEPROM,
"for frequency=%d, calibration correction = %d %d %d\n",
frequency, correction[0], correction[1], correction[2]);
/* Store calibrated noise floor values */
for (ichain = 0; ichain < AR5416_MAX_CHAINS; ichain++)
if (mode) {
ah->nf_5g.cal[ichain] = nf_cal[ichain];
ah->nf_5g.pwr[ichain] = nf_pwr[ichain];
} else {
ah->nf_2g.cal[ichain] = nf_cal[ichain];
ah->nf_2g.pwr[ichain] = nf_pwr[ichain];
}
return 0;
}
static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
int idx,
int edge,
bool is2GHz)
{
struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
if (is2GHz)
return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
else
return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
}
static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
int idx,
unsigned int edge,
u16 freq,
bool is2GHz)
{
struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
u8 *ctl_freqbin = is2GHz ?
&eep->ctl_freqbin_2G[idx][0] :
&eep->ctl_freqbin_5G[idx][0];
if (is2GHz) {
if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
} else {
if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
}
return MAX_RATE_POWER;
}
/*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
u16 freq, int idx, bool is2GHz)
{
u16 twiceMaxEdgePower = MAX_RATE_POWER;
u8 *ctl_freqbin = is2GHz ?
&eep->ctl_freqbin_2G[idx][0] :
&eep->ctl_freqbin_5G[idx][0];
u16 num_edges = is2GHz ?
AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
unsigned int edge;
/* Get the edge power */
for (edge = 0;
(edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
edge++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
twiceMaxEdgePower =
ar9003_hw_get_direct_edge_power(eep, idx,
edge, is2GHz);
break;
} else if ((edge > 0) &&
(freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
is2GHz))) {
twiceMaxEdgePower =
ar9003_hw_get_indirect_edge_power(eep, idx,
edge, freq,
is2GHz);
/*
* Leave loop - no more affecting edges possible in
* this monotonic increasing list
*/
break;
}
}
if (is2GHz && !twiceMaxEdgePower)
twiceMaxEdgePower = 60;
return twiceMaxEdgePower;
}
static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *pPwrArray, u16 cfgCtl,
u8 antenna_reduction,
u16 powerLimit)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
u16 twiceMaxEdgePower;
int i;
u16 scaledPower = 0, minCtlPower;
static const u16 ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
static const u16 ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
CTL_11G_EXT, CTL_2GHT40
};
u16 numCtlModes;
const u16 *pCtlMode;
u16 ctlMode, freq;
struct chan_centers centers;
u8 *ctlIndex;
u8 ctlNum;
u16 twiceMinEdgePower;
bool is2ghz = IS_CHAN_2GHZ(chan);
ath9k_hw_get_channel_centers(ah, chan, &centers);
scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
antenna_reduction);
if (is2ghz) {
/* Setup for CTL modes */
/* CTL_11B, CTL_11G, CTL_2GHT20 */
numCtlModes =
ARRAY_SIZE(ctlModesFor11g) -
SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
if (IS_CHAN_HT40(chan))
/* All 2G CTL's */
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
} else {
/* Setup for CTL modes */
/* CTL_11A, CTL_5GHT20 */
numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
SUB_NUM_CTL_MODES_AT_5G_40;
pCtlMode = ctlModesFor11a;
if (IS_CHAN_HT40(chan))
/* All 5G CTL's */
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
}
/*
* For MIMO, need to apply regulatory caps individually across
* dynamically running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
ath_dbg(common, REGULATORY,
"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
ctlMode, numCtlModes, isHt40CtlMode,
(pCtlMode[ctlMode] & EXT_ADDITIVE));
/* walk through each CTL index stored in EEPROM */
if (is2ghz) {
ctlIndex = pEepData->ctlIndex_2G;
ctlNum = AR9300_NUM_CTLS_2G;
} else {
ctlIndex = pEepData->ctlIndex_5G;
ctlNum = AR9300_NUM_CTLS_5G;
}
twiceMaxEdgePower = MAX_RATE_POWER;
for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
ath_dbg(common, REGULATORY,
"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
chan->channel);
/*
* compare test group from regulatory
* channel list with test mode from pCtlMode
* list
*/
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((ctlIndex[i] & CTL_MODE_M) |
SD_NO_CTL))) {
twiceMinEdgePower =
ar9003_hw_get_max_edge_power(pEepData,
freq, i,
is2ghz);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
/*
* Find the minimum of all CTL
* edge powers that apply to
* this channel
*/
twiceMaxEdgePower =
min(twiceMaxEdgePower,
twiceMinEdgePower);
else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
ath_dbg(common, REGULATORY,
"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
scaledPower, minCtlPower);
/* Apply ctl mode to correct target power set */
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = ALL_TARGET_LEGACY_1L_5L;
i <= ALL_TARGET_LEGACY_11S; i++)
pPwrArray[i] = (u8)min((u16)pPwrArray[i],
minCtlPower);
break;
case CTL_11A:
case CTL_11G:
for (i = ALL_TARGET_LEGACY_6_24;
i <= ALL_TARGET_LEGACY_54; i++)
pPwrArray[i] = (u8)min((u16)pPwrArray[i],
minCtlPower);
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = ALL_TARGET_HT20_0_8_16;
i <= ALL_TARGET_HT20_23; i++) {
pPwrArray[i] = (u8)min((u16)pPwrArray[i],
minCtlPower);
if (ath9k_hw_mci_is_enabled(ah))
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
ar9003_mci_get_max_txpower(ah,
pCtlMode[ctlMode]));
}
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = ALL_TARGET_HT40_0_8_16;
i <= ALL_TARGET_HT40_23; i++) {
pPwrArray[i] = (u8)min((u16)pPwrArray[i],
minCtlPower);
if (ath9k_hw_mci_is_enabled(ah))
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
ar9003_mci_get_max_txpower(ah,
pCtlMode[ctlMode]));
}
break;
default:
break;
}
} /* end ctl mode checking */
}
static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
{
u8 mod_idx = mcs_idx % 8;
if (mod_idx <= 3)
return mod_idx ? (base_pwridx + 1) : base_pwridx;
else
return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
}
static void ar9003_paprd_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *targetPowerValT2)
{
int i;
if (!ar9003_is_paprd_enabled(ah))
return;
if (IS_CHAN_HT40(chan))
i = ALL_TARGET_HT40_7;
else
i = ALL_TARGET_HT20_7;
if (IS_CHAN_2GHZ(chan)) {
if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
!AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
if (IS_CHAN_HT40(chan))
i = ALL_TARGET_HT40_0_8_16;
else
i = ALL_TARGET_HT20_0_8_16;
}
}
ah->paprd_target_power = targetPowerValT2[i];
}
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan, u16 cfgCtl,
u8 twiceAntennaReduction,
u8 powerLimit, bool test)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath_common *common = ath9k_hw_common(ah);
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_modal_eep_header *modal_hdr;
u8 targetPowerValT2[ar9300RateSize];
u8 target_power_val_t2_eep[ar9300RateSize];
u8 targetPowerValT2_tpc[ar9300RateSize];
unsigned int i = 0, paprd_scale_factor = 0;
u8 pwr_idx, min_pwridx = 0;
memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
/*
* Get target powers from EEPROM - our baseline for TX Power
*/
ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
if (ar9003_is_paprd_enabled(ah)) {
if (IS_CHAN_2GHZ(chan))
modal_hdr = &eep->modalHeader2G;
else
modal_hdr = &eep->modalHeader5G;
ah->paprd_ratemask =
le32_to_cpu(modal_hdr->papdRateMaskHt20) &
AR9300_PAPRD_RATE_MASK;
ah->paprd_ratemask_ht40 =
le32_to_cpu(modal_hdr->papdRateMaskHt40) &
AR9300_PAPRD_RATE_MASK;
paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
ALL_TARGET_HT20_0_8_16;
if (!ah->paprd_table_write_done) {
memcpy(target_power_val_t2_eep, targetPowerValT2,
sizeof(targetPowerValT2));
for (i = 0; i < 24; i++) {
pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
if (ah->paprd_ratemask & (1 << i)) {
if (targetPowerValT2[pwr_idx] &&
targetPowerValT2[pwr_idx] ==
target_power_val_t2_eep[pwr_idx])
targetPowerValT2[pwr_idx] -=
paprd_scale_factor;
}
}
}
memcpy(target_power_val_t2_eep, targetPowerValT2,
sizeof(targetPowerValT2));
}
ar9003_hw_set_power_per_rate_table(ah, chan,
targetPowerValT2, cfgCtl,
twiceAntennaReduction,
powerLimit);
memcpy(targetPowerValT2_tpc, targetPowerValT2,
sizeof(targetPowerValT2));
if (ar9003_is_paprd_enabled(ah)) {
for (i = 0; i < ar9300RateSize; i++) {
if ((ah->paprd_ratemask & (1 << i)) &&
(abs(targetPowerValT2[i] -
target_power_val_t2_eep[i]) >
paprd_scale_factor)) {
ah->paprd_ratemask &= ~(1 << i);
ath_dbg(common, EEPROM,
"paprd disabled for mcs %d\n", i);
}
}
}
regulatory->max_power_level = 0;
for (i = 0; i < ar9300RateSize; i++) {
if (targetPowerValT2[i] > regulatory->max_power_level)
regulatory->max_power_level = targetPowerValT2[i];
}
ath9k_hw_update_regulatory_maxpower(ah);
if (test)
return;
for (i = 0; i < ar9300RateSize; i++) {
ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
i, targetPowerValT2[i]);
}
/* Write target power array to registers */
ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
ar9003_hw_calibration_apply(ah, chan->channel);
ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
ar9003_hw_selfgen_tpc_txpower(ah, chan, targetPowerValT2);
/* TPC initializations */
if (ah->tpc_enabled) {
u32 val;
ar9003_hw_init_rate_txpower(ah, targetPowerValT2_tpc, chan);
/* Enable TPC */
REG_WRITE(ah, AR_PHY_PWRTX_MAX,
AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
/* Disable per chain power reduction */
val = REG_READ(ah, AR_PHY_POWER_TX_SUB);
if (AR_SREV_9340(ah))
REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
val & 0xFFFFFFC0);
else
REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
val & 0xFFFFF000);
} else {
/* Disable TPC */
REG_WRITE(ah, AR_PHY_PWRTX_MAX, 0);
}
}
static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
u16 i, bool is2GHz)
{
return AR_NO_SPUR;
}
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
}
s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
}
u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
{
return ar9003_modal_header(ah, is2ghz)->spurChans;
}
unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (IS_CHAN_2GHZ(chan))
return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
AR9300_PAPRD_SCALE_1);
else {
if (chan->channel >= 5700)
return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
AR9300_PAPRD_SCALE_1);
else if (chan->channel >= 5400)
return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
AR9300_PAPRD_SCALE_2);
else
return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
AR9300_PAPRD_SCALE_1);
}
}
static u8 ar9003_get_eepmisc(struct ath_hw *ah)
{
return ah->eeprom.map4k.baseEepHeader.eepMisc;
}
const struct eeprom_ops eep_ar9300_ops = {
.check_eeprom = ath9k_hw_ar9300_check_eeprom,
.get_eeprom = ath9k_hw_ar9300_get_eeprom,
.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
.set_board_values = ath9k_hw_ar9300_set_board_values,
.set_addac = ath9k_hw_ar9300_set_addac,
.set_txpower = ath9k_hw_ar9300_set_txpower,
.get_spur_channel = ath9k_hw_ar9300_get_spur_channel,
.get_eepmisc = ar9003_get_eepmisc
};