linux/linux-5.4.31/drivers/net/ethernet/pensando/ionic/ionic_txrx.c

926 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2017 - 2019 Pensando Systems, Inc */
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <net/ip6_checksum.h>
#include "ionic.h"
#include "ionic_lif.h"
#include "ionic_txrx.h"
static void ionic_rx_clean(struct ionic_queue *q, struct ionic_desc_info *desc_info,
struct ionic_cq_info *cq_info, void *cb_arg);
static inline void ionic_txq_post(struct ionic_queue *q, bool ring_dbell,
ionic_desc_cb cb_func, void *cb_arg)
{
DEBUG_STATS_TXQ_POST(q_to_qcq(q), q->head->desc, ring_dbell);
ionic_q_post(q, ring_dbell, cb_func, cb_arg);
}
static inline void ionic_rxq_post(struct ionic_queue *q, bool ring_dbell,
ionic_desc_cb cb_func, void *cb_arg)
{
ionic_q_post(q, ring_dbell, cb_func, cb_arg);
DEBUG_STATS_RX_BUFF_CNT(q_to_qcq(q));
}
static inline struct netdev_queue *q_to_ndq(struct ionic_queue *q)
{
return netdev_get_tx_queue(q->lif->netdev, q->index);
}
static void ionic_rx_recycle(struct ionic_queue *q, struct ionic_desc_info *desc_info,
struct sk_buff *skb)
{
struct ionic_rxq_desc *old = desc_info->desc;
struct ionic_rxq_desc *new = q->head->desc;
new->addr = old->addr;
new->len = old->len;
ionic_rxq_post(q, true, ionic_rx_clean, skb);
}
static bool ionic_rx_copybreak(struct ionic_queue *q, struct ionic_desc_info *desc_info,
struct ionic_cq_info *cq_info, struct sk_buff **skb)
{
struct ionic_rxq_comp *comp = cq_info->cq_desc;
struct ionic_rxq_desc *desc = desc_info->desc;
struct net_device *netdev = q->lif->netdev;
struct device *dev = q->lif->ionic->dev;
struct sk_buff *new_skb;
u16 clen, dlen;
clen = le16_to_cpu(comp->len);
dlen = le16_to_cpu(desc->len);
if (clen > q->lif->rx_copybreak) {
dma_unmap_single(dev, (dma_addr_t)le64_to_cpu(desc->addr),
dlen, DMA_FROM_DEVICE);
return false;
}
new_skb = netdev_alloc_skb_ip_align(netdev, clen);
if (!new_skb) {
dma_unmap_single(dev, (dma_addr_t)le64_to_cpu(desc->addr),
dlen, DMA_FROM_DEVICE);
return false;
}
dma_sync_single_for_cpu(dev, (dma_addr_t)le64_to_cpu(desc->addr),
clen, DMA_FROM_DEVICE);
memcpy(new_skb->data, (*skb)->data, clen);
ionic_rx_recycle(q, desc_info, *skb);
*skb = new_skb;
return true;
}
static void ionic_rx_clean(struct ionic_queue *q, struct ionic_desc_info *desc_info,
struct ionic_cq_info *cq_info, void *cb_arg)
{
struct ionic_rxq_comp *comp = cq_info->cq_desc;
struct ionic_qcq *qcq = q_to_qcq(q);
struct sk_buff *skb = cb_arg;
struct ionic_rx_stats *stats;
struct net_device *netdev;
stats = q_to_rx_stats(q);
netdev = q->lif->netdev;
if (comp->status) {
ionic_rx_recycle(q, desc_info, skb);
return;
}
if (unlikely(test_bit(IONIC_LIF_QUEUE_RESET, q->lif->state))) {
/* no packet processing while resetting */
ionic_rx_recycle(q, desc_info, skb);
return;
}
stats->pkts++;
stats->bytes += le16_to_cpu(comp->len);
ionic_rx_copybreak(q, desc_info, cq_info, &skb);
skb_put(skb, le16_to_cpu(comp->len));
skb->protocol = eth_type_trans(skb, netdev);
skb_record_rx_queue(skb, q->index);
if (netdev->features & NETIF_F_RXHASH) {
switch (comp->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK) {
case IONIC_PKT_TYPE_IPV4:
case IONIC_PKT_TYPE_IPV6:
skb_set_hash(skb, le32_to_cpu(comp->rss_hash),
PKT_HASH_TYPE_L3);
break;
case IONIC_PKT_TYPE_IPV4_TCP:
case IONIC_PKT_TYPE_IPV6_TCP:
case IONIC_PKT_TYPE_IPV4_UDP:
case IONIC_PKT_TYPE_IPV6_UDP:
skb_set_hash(skb, le32_to_cpu(comp->rss_hash),
PKT_HASH_TYPE_L4);
break;
}
}
if (netdev->features & NETIF_F_RXCSUM) {
if (comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = (__wsum)le16_to_cpu(comp->csum);
stats->csum_complete++;
}
} else {
stats->csum_none++;
}
if ((comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_TCP_BAD) ||
(comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_UDP_BAD) ||
(comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_BAD))
stats->csum_error++;
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
if (comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
le16_to_cpu(comp->vlan_tci));
}
napi_gro_receive(&qcq->napi, skb);
}
static bool ionic_rx_service(struct ionic_cq *cq, struct ionic_cq_info *cq_info)
{
struct ionic_rxq_comp *comp = cq_info->cq_desc;
struct ionic_queue *q = cq->bound_q;
struct ionic_desc_info *desc_info;
if (!color_match(comp->pkt_type_color, cq->done_color))
return false;
/* check for empty queue */
if (q->tail->index == q->head->index)
return false;
desc_info = q->tail;
if (desc_info->index != le16_to_cpu(comp->comp_index))
return false;
q->tail = desc_info->next;
/* clean the related q entry, only one per qc completion */
ionic_rx_clean(q, desc_info, cq_info, desc_info->cb_arg);
desc_info->cb = NULL;
desc_info->cb_arg = NULL;
return true;
}
static u32 ionic_rx_walk_cq(struct ionic_cq *rxcq, u32 limit)
{
u32 work_done = 0;
while (ionic_rx_service(rxcq, rxcq->tail)) {
if (rxcq->tail->last)
rxcq->done_color = !rxcq->done_color;
rxcq->tail = rxcq->tail->next;
DEBUG_STATS_CQE_CNT(rxcq);
if (++work_done >= limit)
break;
}
return work_done;
}
void ionic_rx_flush(struct ionic_cq *cq)
{
struct ionic_dev *idev = &cq->lif->ionic->idev;
u32 work_done;
work_done = ionic_rx_walk_cq(cq, cq->num_descs);
if (work_done)
ionic_intr_credits(idev->intr_ctrl, cq->bound_intr->index,
work_done, IONIC_INTR_CRED_RESET_COALESCE);
}
static struct sk_buff *ionic_rx_skb_alloc(struct ionic_queue *q, unsigned int len,
dma_addr_t *dma_addr)
{
struct ionic_lif *lif = q->lif;
struct ionic_rx_stats *stats;
struct net_device *netdev;
struct sk_buff *skb;
struct device *dev;
netdev = lif->netdev;
dev = lif->ionic->dev;
stats = q_to_rx_stats(q);
skb = netdev_alloc_skb_ip_align(netdev, len);
if (!skb) {
net_warn_ratelimited("%s: SKB alloc failed on %s!\n",
netdev->name, q->name);
stats->alloc_err++;
return NULL;
}
*dma_addr = dma_map_single(dev, skb->data, len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, *dma_addr)) {
dev_kfree_skb(skb);
net_warn_ratelimited("%s: DMA single map failed on %s!\n",
netdev->name, q->name);
stats->dma_map_err++;
return NULL;
}
return skb;
}
#define IONIC_RX_RING_DOORBELL_STRIDE ((1 << 2) - 1)
void ionic_rx_fill(struct ionic_queue *q)
{
struct net_device *netdev = q->lif->netdev;
struct ionic_rxq_desc *desc;
struct sk_buff *skb;
dma_addr_t dma_addr;
bool ring_doorbell;
unsigned int len;
unsigned int i;
len = netdev->mtu + ETH_HLEN;
for (i = ionic_q_space_avail(q); i; i--) {
skb = ionic_rx_skb_alloc(q, len, &dma_addr);
if (!skb)
return;
desc = q->head->desc;
desc->addr = cpu_to_le64(dma_addr);
desc->len = cpu_to_le16(len);
desc->opcode = IONIC_RXQ_DESC_OPCODE_SIMPLE;
ring_doorbell = ((q->head->index + 1) &
IONIC_RX_RING_DOORBELL_STRIDE) == 0;
ionic_rxq_post(q, ring_doorbell, ionic_rx_clean, skb);
}
}
static void ionic_rx_fill_cb(void *arg)
{
ionic_rx_fill(arg);
}
void ionic_rx_empty(struct ionic_queue *q)
{
struct device *dev = q->lif->ionic->dev;
struct ionic_desc_info *cur;
struct ionic_rxq_desc *desc;
for (cur = q->tail; cur != q->head; cur = cur->next) {
desc = cur->desc;
dma_unmap_single(dev, le64_to_cpu(desc->addr),
le16_to_cpu(desc->len), DMA_FROM_DEVICE);
dev_kfree_skb(cur->cb_arg);
cur->cb_arg = NULL;
}
}
int ionic_rx_napi(struct napi_struct *napi, int budget)
{
struct ionic_qcq *qcq = napi_to_qcq(napi);
struct ionic_cq *rxcq = napi_to_cq(napi);
unsigned int qi = rxcq->bound_q->index;
struct ionic_dev *idev;
struct ionic_lif *lif;
struct ionic_cq *txcq;
u32 work_done = 0;
u32 flags = 0;
lif = rxcq->bound_q->lif;
idev = &lif->ionic->idev;
txcq = &lif->txqcqs[qi].qcq->cq;
ionic_tx_flush(txcq);
work_done = ionic_rx_walk_cq(rxcq, budget);
if (work_done)
ionic_rx_fill_cb(rxcq->bound_q);
if (work_done < budget && napi_complete_done(napi, work_done)) {
flags |= IONIC_INTR_CRED_UNMASK;
DEBUG_STATS_INTR_REARM(rxcq->bound_intr);
}
if (work_done || flags) {
flags |= IONIC_INTR_CRED_RESET_COALESCE;
ionic_intr_credits(idev->intr_ctrl, rxcq->bound_intr->index,
work_done, flags);
}
DEBUG_STATS_NAPI_POLL(qcq, work_done);
return work_done;
}
static dma_addr_t ionic_tx_map_single(struct ionic_queue *q, void *data, size_t len)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct device *dev = q->lif->ionic->dev;
dma_addr_t dma_addr;
dma_addr = dma_map_single(dev, data, len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
net_warn_ratelimited("%s: DMA single map failed on %s!\n",
q->lif->netdev->name, q->name);
stats->dma_map_err++;
return 0;
}
return dma_addr;
}
static dma_addr_t ionic_tx_map_frag(struct ionic_queue *q, const skb_frag_t *frag,
size_t offset, size_t len)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct device *dev = q->lif->ionic->dev;
dma_addr_t dma_addr;
dma_addr = skb_frag_dma_map(dev, frag, offset, len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
net_warn_ratelimited("%s: DMA frag map failed on %s!\n",
q->lif->netdev->name, q->name);
stats->dma_map_err++;
}
return dma_addr;
}
static void ionic_tx_clean(struct ionic_queue *q, struct ionic_desc_info *desc_info,
struct ionic_cq_info *cq_info, void *cb_arg)
{
struct ionic_txq_sg_desc *sg_desc = desc_info->sg_desc;
struct ionic_txq_sg_elem *elem = sg_desc->elems;
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_txq_desc *desc = desc_info->desc;
struct device *dev = q->lif->ionic->dev;
u8 opcode, flags, nsge;
u16 queue_index;
unsigned int i;
u64 addr;
decode_txq_desc_cmd(le64_to_cpu(desc->cmd),
&opcode, &flags, &nsge, &addr);
/* use unmap_single only if either this is not TSO,
* or this is first descriptor of a TSO
*/
if (opcode != IONIC_TXQ_DESC_OPCODE_TSO ||
flags & IONIC_TXQ_DESC_FLAG_TSO_SOT)
dma_unmap_single(dev, (dma_addr_t)addr,
le16_to_cpu(desc->len), DMA_TO_DEVICE);
else
dma_unmap_page(dev, (dma_addr_t)addr,
le16_to_cpu(desc->len), DMA_TO_DEVICE);
for (i = 0; i < nsge; i++, elem++)
dma_unmap_page(dev, (dma_addr_t)le64_to_cpu(elem->addr),
le16_to_cpu(elem->len), DMA_TO_DEVICE);
if (cb_arg) {
struct sk_buff *skb = cb_arg;
u32 len = skb->len;
queue_index = skb_get_queue_mapping(skb);
if (unlikely(__netif_subqueue_stopped(q->lif->netdev,
queue_index))) {
netif_wake_subqueue(q->lif->netdev, queue_index);
q->wake++;
}
dev_kfree_skb_any(skb);
stats->clean++;
netdev_tx_completed_queue(q_to_ndq(q), 1, len);
}
}
void ionic_tx_flush(struct ionic_cq *cq)
{
struct ionic_txq_comp *comp = cq->tail->cq_desc;
struct ionic_dev *idev = &cq->lif->ionic->idev;
struct ionic_queue *q = cq->bound_q;
struct ionic_desc_info *desc_info;
unsigned int work_done = 0;
/* walk the completed cq entries */
while (work_done < cq->num_descs &&
color_match(comp->color, cq->done_color)) {
/* clean the related q entries, there could be
* several q entries completed for each cq completion
*/
do {
desc_info = q->tail;
q->tail = desc_info->next;
ionic_tx_clean(q, desc_info, cq->tail,
desc_info->cb_arg);
desc_info->cb = NULL;
desc_info->cb_arg = NULL;
} while (desc_info->index != le16_to_cpu(comp->comp_index));
if (cq->tail->last)
cq->done_color = !cq->done_color;
cq->tail = cq->tail->next;
comp = cq->tail->cq_desc;
DEBUG_STATS_CQE_CNT(cq);
work_done++;
}
if (work_done)
ionic_intr_credits(idev->intr_ctrl, cq->bound_intr->index,
work_done, 0);
}
static int ionic_tx_tcp_inner_pseudo_csum(struct sk_buff *skb)
{
int err;
err = skb_cow_head(skb, 0);
if (err)
return err;
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
inner_ip_hdr(skb)->check = 0;
inner_tcp_hdr(skb)->check =
~csum_tcpudp_magic(inner_ip_hdr(skb)->saddr,
inner_ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
inner_tcp_hdr(skb)->check =
~csum_ipv6_magic(&inner_ipv6_hdr(skb)->saddr,
&inner_ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 0;
}
static int ionic_tx_tcp_pseudo_csum(struct sk_buff *skb)
{
int err;
err = skb_cow_head(skb, 0);
if (err)
return err;
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 0;
}
static void ionic_tx_tso_post(struct ionic_queue *q, struct ionic_txq_desc *desc,
struct sk_buff *skb,
dma_addr_t addr, u8 nsge, u16 len,
unsigned int hdrlen, unsigned int mss,
bool outer_csum,
u16 vlan_tci, bool has_vlan,
bool start, bool done)
{
u8 flags = 0;
u64 cmd;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= outer_csum ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
flags |= start ? IONIC_TXQ_DESC_FLAG_TSO_SOT : 0;
flags |= done ? IONIC_TXQ_DESC_FLAG_TSO_EOT : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_TSO, flags, nsge, addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(len);
desc->vlan_tci = cpu_to_le16(vlan_tci);
desc->hdr_len = cpu_to_le16(hdrlen);
desc->mss = cpu_to_le16(mss);
if (done) {
skb_tx_timestamp(skb);
netdev_tx_sent_queue(q_to_ndq(q), skb->len);
ionic_txq_post(q, !netdev_xmit_more(), ionic_tx_clean, skb);
} else {
ionic_txq_post(q, false, ionic_tx_clean, NULL);
}
}
static struct ionic_txq_desc *ionic_tx_tso_next(struct ionic_queue *q,
struct ionic_txq_sg_elem **elem)
{
struct ionic_txq_sg_desc *sg_desc = q->head->sg_desc;
struct ionic_txq_desc *desc = q->head->desc;
*elem = sg_desc->elems;
return desc;
}
static int ionic_tx_tso(struct ionic_queue *q, struct sk_buff *skb)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_desc_info *abort = q->head;
struct device *dev = q->lif->ionic->dev;
struct ionic_desc_info *rewind = abort;
struct ionic_txq_sg_elem *elem;
struct ionic_txq_desc *desc;
unsigned int frag_left = 0;
unsigned int offset = 0;
unsigned int len_left;
dma_addr_t desc_addr;
unsigned int hdrlen;
unsigned int nfrags;
unsigned int seglen;
u64 total_bytes = 0;
u64 total_pkts = 0;
unsigned int left;
unsigned int len;
unsigned int mss;
skb_frag_t *frag;
bool start, done;
bool outer_csum;
bool has_vlan;
u16 desc_len;
u8 desc_nsge;
u16 vlan_tci;
bool encap;
int err;
mss = skb_shinfo(skb)->gso_size;
nfrags = skb_shinfo(skb)->nr_frags;
len_left = skb->len - skb_headlen(skb);
outer_csum = (skb_shinfo(skb)->gso_type & SKB_GSO_GRE_CSUM) ||
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM);
has_vlan = !!skb_vlan_tag_present(skb);
vlan_tci = skb_vlan_tag_get(skb);
encap = skb->encapsulation;
/* Preload inner-most TCP csum field with IP pseudo hdr
* calculated with IP length set to zero. HW will later
* add in length to each TCP segment resulting from the TSO.
*/
if (encap)
err = ionic_tx_tcp_inner_pseudo_csum(skb);
else
err = ionic_tx_tcp_pseudo_csum(skb);
if (err)
return err;
if (encap)
hdrlen = skb_inner_transport_header(skb) - skb->data +
inner_tcp_hdrlen(skb);
else
hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
seglen = hdrlen + mss;
left = skb_headlen(skb);
desc = ionic_tx_tso_next(q, &elem);
start = true;
/* Chop skb->data up into desc segments */
while (left > 0) {
len = min(seglen, left);
frag_left = seglen - len;
desc_addr = ionic_tx_map_single(q, skb->data + offset, len);
if (dma_mapping_error(dev, desc_addr))
goto err_out_abort;
desc_len = len;
desc_nsge = 0;
left -= len;
offset += len;
if (nfrags > 0 && frag_left > 0)
continue;
done = (nfrags == 0 && left == 0);
ionic_tx_tso_post(q, desc, skb,
desc_addr, desc_nsge, desc_len,
hdrlen, mss,
outer_csum,
vlan_tci, has_vlan,
start, done);
total_pkts++;
total_bytes += start ? len : len + hdrlen;
desc = ionic_tx_tso_next(q, &elem);
start = false;
seglen = mss;
}
/* Chop skb frags into desc segments */
for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
offset = 0;
left = skb_frag_size(frag);
len_left -= left;
nfrags--;
stats->frags++;
while (left > 0) {
if (frag_left > 0) {
len = min(frag_left, left);
frag_left -= len;
elem->addr =
cpu_to_le64(ionic_tx_map_frag(q, frag,
offset, len));
if (dma_mapping_error(dev, elem->addr))
goto err_out_abort;
elem->len = cpu_to_le16(len);
elem++;
desc_nsge++;
left -= len;
offset += len;
if (nfrags > 0 && frag_left > 0)
continue;
done = (nfrags == 0 && left == 0);
ionic_tx_tso_post(q, desc, skb, desc_addr,
desc_nsge, desc_len,
hdrlen, mss, outer_csum,
vlan_tci, has_vlan,
start, done);
total_pkts++;
total_bytes += start ? len : len + hdrlen;
desc = ionic_tx_tso_next(q, &elem);
start = false;
} else {
len = min(mss, left);
frag_left = mss - len;
desc_addr = ionic_tx_map_frag(q, frag,
offset, len);
if (dma_mapping_error(dev, desc_addr))
goto err_out_abort;
desc_len = len;
desc_nsge = 0;
left -= len;
offset += len;
if (nfrags > 0 && frag_left > 0)
continue;
done = (nfrags == 0 && left == 0);
ionic_tx_tso_post(q, desc, skb, desc_addr,
desc_nsge, desc_len,
hdrlen, mss, outer_csum,
vlan_tci, has_vlan,
start, done);
total_pkts++;
total_bytes += start ? len : len + hdrlen;
desc = ionic_tx_tso_next(q, &elem);
start = false;
}
}
}
stats->pkts += total_pkts;
stats->bytes += total_bytes;
stats->tso++;
return 0;
err_out_abort:
while (rewind->desc != q->head->desc) {
ionic_tx_clean(q, rewind, NULL, NULL);
rewind = rewind->next;
}
q->head = abort;
return -ENOMEM;
}
static int ionic_tx_calc_csum(struct ionic_queue *q, struct sk_buff *skb)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_txq_desc *desc = q->head->desc;
struct device *dev = q->lif->ionic->dev;
dma_addr_t dma_addr;
bool has_vlan;
u8 flags = 0;
bool encap;
u64 cmd;
has_vlan = !!skb_vlan_tag_present(skb);
encap = skb->encapsulation;
dma_addr = ionic_tx_map_single(q, skb->data, skb_headlen(skb));
if (dma_mapping_error(dev, dma_addr))
return -ENOMEM;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_PARTIAL,
flags, skb_shinfo(skb)->nr_frags, dma_addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(skb_headlen(skb));
desc->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
desc->csum_start = cpu_to_le16(skb_checksum_start_offset(skb));
desc->csum_offset = cpu_to_le16(skb->csum_offset);
if (skb->csum_not_inet)
stats->crc32_csum++;
else
stats->csum++;
return 0;
}
static int ionic_tx_calc_no_csum(struct ionic_queue *q, struct sk_buff *skb)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_txq_desc *desc = q->head->desc;
struct device *dev = q->lif->ionic->dev;
dma_addr_t dma_addr;
bool has_vlan;
u8 flags = 0;
bool encap;
u64 cmd;
has_vlan = !!skb_vlan_tag_present(skb);
encap = skb->encapsulation;
dma_addr = ionic_tx_map_single(q, skb->data, skb_headlen(skb));
if (dma_mapping_error(dev, dma_addr))
return -ENOMEM;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_NONE,
flags, skb_shinfo(skb)->nr_frags, dma_addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(skb_headlen(skb));
desc->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
stats->no_csum++;
return 0;
}
static int ionic_tx_skb_frags(struct ionic_queue *q, struct sk_buff *skb)
{
struct ionic_txq_sg_desc *sg_desc = q->head->sg_desc;
unsigned int len_left = skb->len - skb_headlen(skb);
struct ionic_txq_sg_elem *elem = sg_desc->elems;
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct device *dev = q->lif->ionic->dev;
dma_addr_t dma_addr;
skb_frag_t *frag;
u16 len;
for (frag = skb_shinfo(skb)->frags; len_left; frag++, elem++) {
len = skb_frag_size(frag);
elem->len = cpu_to_le16(len);
dma_addr = ionic_tx_map_frag(q, frag, 0, len);
if (dma_mapping_error(dev, dma_addr))
return -ENOMEM;
elem->addr = cpu_to_le64(dma_addr);
len_left -= len;
stats->frags++;
}
return 0;
}
static int ionic_tx(struct ionic_queue *q, struct sk_buff *skb)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
int err;
/* set up the initial descriptor */
if (skb->ip_summed == CHECKSUM_PARTIAL)
err = ionic_tx_calc_csum(q, skb);
else
err = ionic_tx_calc_no_csum(q, skb);
if (err)
return err;
/* add frags */
err = ionic_tx_skb_frags(q, skb);
if (err)
return err;
skb_tx_timestamp(skb);
stats->pkts++;
stats->bytes += skb->len;
netdev_tx_sent_queue(q_to_ndq(q), skb->len);
ionic_txq_post(q, !netdev_xmit_more(), ionic_tx_clean, skb);
return 0;
}
static int ionic_tx_descs_needed(struct ionic_queue *q, struct sk_buff *skb)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
int err;
/* If TSO, need roundup(skb->len/mss) descs */
if (skb_is_gso(skb))
return (skb->len / skb_shinfo(skb)->gso_size) + 1;
/* If non-TSO, just need 1 desc and nr_frags sg elems */
if (skb_shinfo(skb)->nr_frags <= IONIC_TX_MAX_SG_ELEMS)
return 1;
/* Too many frags, so linearize */
err = skb_linearize(skb);
if (err)
return err;
stats->linearize++;
/* Need 1 desc and zero sg elems */
return 1;
}
static int ionic_maybe_stop_tx(struct ionic_queue *q, int ndescs)
{
int stopped = 0;
if (unlikely(!ionic_q_has_space(q, ndescs))) {
netif_stop_subqueue(q->lif->netdev, q->index);
q->stop++;
stopped = 1;
/* Might race with ionic_tx_clean, check again */
smp_rmb();
if (ionic_q_has_space(q, ndescs)) {
netif_wake_subqueue(q->lif->netdev, q->index);
stopped = 0;
}
}
return stopped;
}
netdev_tx_t ionic_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
u16 queue_index = skb_get_queue_mapping(skb);
struct ionic_lif *lif = netdev_priv(netdev);
struct ionic_queue *q;
int ndescs;
int err;
if (unlikely(!test_bit(IONIC_LIF_UP, lif->state))) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
if (unlikely(!lif_to_txqcq(lif, queue_index)))
queue_index = 0;
q = lif_to_txq(lif, queue_index);
ndescs = ionic_tx_descs_needed(q, skb);
if (ndescs < 0)
goto err_out_drop;
if (unlikely(ionic_maybe_stop_tx(q, ndescs)))
return NETDEV_TX_BUSY;
if (skb_is_gso(skb))
err = ionic_tx_tso(q, skb);
else
err = ionic_tx(q, skb);
if (err)
goto err_out_drop;
/* Stop the queue if there aren't descriptors for the next packet.
* Since our SG lists per descriptor take care of most of the possible
* fragmentation, we don't need to have many descriptors available.
*/
ionic_maybe_stop_tx(q, 4);
return NETDEV_TX_OK;
err_out_drop:
q->stop++;
q->drop++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}