linux/linux-5.4.31/drivers/net/ethernet/intel/ice/ice_controlq.c

1126 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_common.h"
#define ICE_CQ_INIT_REGS(qinfo, prefix) \
do { \
(qinfo)->sq.head = prefix##_ATQH; \
(qinfo)->sq.tail = prefix##_ATQT; \
(qinfo)->sq.len = prefix##_ATQLEN; \
(qinfo)->sq.bah = prefix##_ATQBAH; \
(qinfo)->sq.bal = prefix##_ATQBAL; \
(qinfo)->sq.len_mask = prefix##_ATQLEN_ATQLEN_M; \
(qinfo)->sq.len_ena_mask = prefix##_ATQLEN_ATQENABLE_M; \
(qinfo)->sq.head_mask = prefix##_ATQH_ATQH_M; \
(qinfo)->rq.head = prefix##_ARQH; \
(qinfo)->rq.tail = prefix##_ARQT; \
(qinfo)->rq.len = prefix##_ARQLEN; \
(qinfo)->rq.bah = prefix##_ARQBAH; \
(qinfo)->rq.bal = prefix##_ARQBAL; \
(qinfo)->rq.len_mask = prefix##_ARQLEN_ARQLEN_M; \
(qinfo)->rq.len_ena_mask = prefix##_ARQLEN_ARQENABLE_M; \
(qinfo)->rq.head_mask = prefix##_ARQH_ARQH_M; \
} while (0)
/**
* ice_adminq_init_regs - Initialize AdminQ registers
* @hw: pointer to the hardware structure
*
* This assumes the alloc_sq and alloc_rq functions have already been called
*/
static void ice_adminq_init_regs(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->adminq;
ICE_CQ_INIT_REGS(cq, PF_FW);
}
/**
* ice_mailbox_init_regs - Initialize Mailbox registers
* @hw: pointer to the hardware structure
*
* This assumes the alloc_sq and alloc_rq functions have already been called
*/
static void ice_mailbox_init_regs(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->mailboxq;
ICE_CQ_INIT_REGS(cq, PF_MBX);
}
/**
* ice_check_sq_alive
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
*
* Returns true if Queue is enabled else false.
*/
bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
/* check both queue-length and queue-enable fields */
if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask)
return (rd32(hw, cq->sq.len) & (cq->sq.len_mask |
cq->sq.len_ena_mask)) ==
(cq->num_sq_entries | cq->sq.len_ena_mask);
return false;
}
/**
* ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc);
cq->sq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
&cq->sq.desc_buf.pa,
GFP_KERNEL | __GFP_ZERO);
if (!cq->sq.desc_buf.va)
return ICE_ERR_NO_MEMORY;
cq->sq.desc_buf.size = size;
cq->sq.cmd_buf = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries,
sizeof(struct ice_sq_cd), GFP_KERNEL);
if (!cq->sq.cmd_buf) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.desc_buf.size,
cq->sq.desc_buf.va, cq->sq.desc_buf.pa);
cq->sq.desc_buf.va = NULL;
cq->sq.desc_buf.pa = 0;
cq->sq.desc_buf.size = 0;
return ICE_ERR_NO_MEMORY;
}
return 0;
}
/**
* ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc);
cq->rq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
&cq->rq.desc_buf.pa,
GFP_KERNEL | __GFP_ZERO);
if (!cq->rq.desc_buf.va)
return ICE_ERR_NO_MEMORY;
cq->rq.desc_buf.size = size;
return 0;
}
/**
* ice_free_cq_ring - Free control queue ring
* @hw: pointer to the hardware structure
* @ring: pointer to the specific control queue ring
*
* This assumes the posted buffers have already been cleaned
* and de-allocated
*/
static void ice_free_cq_ring(struct ice_hw *hw, struct ice_ctl_q_ring *ring)
{
dmam_free_coherent(ice_hw_to_dev(hw), ring->desc_buf.size,
ring->desc_buf.va, ring->desc_buf.pa);
ring->desc_buf.va = NULL;
ring->desc_buf.pa = 0;
ring->desc_buf.size = 0;
}
/**
* ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* We'll be allocating the buffer info memory first, then we can
* allocate the mapped buffers for the event processing
*/
cq->rq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_rq_entries,
sizeof(cq->rq.desc_buf), GFP_KERNEL);
if (!cq->rq.dma_head)
return ICE_ERR_NO_MEMORY;
cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head;
/* allocate the mapped buffers */
for (i = 0; i < cq->num_rq_entries; i++) {
struct ice_aq_desc *desc;
struct ice_dma_mem *bi;
bi = &cq->rq.r.rq_bi[i];
bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
cq->rq_buf_size, &bi->pa,
GFP_KERNEL | __GFP_ZERO);
if (!bi->va)
goto unwind_alloc_rq_bufs;
bi->size = cq->rq_buf_size;
/* now configure the descriptors for use */
desc = ICE_CTL_Q_DESC(cq->rq, i);
desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
if (cq->rq_buf_size > ICE_AQ_LG_BUF)
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
desc->opcode = 0;
/* This is in accordance with Admin queue design, there is no
* register for buffer size configuration
*/
desc->datalen = cpu_to_le16(bi->size);
desc->retval = 0;
desc->cookie_high = 0;
desc->cookie_low = 0;
desc->params.generic.addr_high =
cpu_to_le32(upper_32_bits(bi->pa));
desc->params.generic.addr_low =
cpu_to_le32(lower_32_bits(bi->pa));
desc->params.generic.param0 = 0;
desc->params.generic.param1 = 0;
}
return 0;
unwind_alloc_rq_bufs:
/* don't try to free the one that failed... */
i--;
for (; i >= 0; i--) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.r.rq_bi[i].size,
cq->rq.r.rq_bi[i].va, cq->rq.r.rq_bi[i].pa);
cq->rq.r.rq_bi[i].va = NULL;
cq->rq.r.rq_bi[i].pa = 0;
cq->rq.r.rq_bi[i].size = 0;
}
devm_kfree(ice_hw_to_dev(hw), cq->rq.dma_head);
return ICE_ERR_NO_MEMORY;
}
/**
* ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* No mapped memory needed yet, just the buffer info structures */
cq->sq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries,
sizeof(cq->sq.desc_buf), GFP_KERNEL);
if (!cq->sq.dma_head)
return ICE_ERR_NO_MEMORY;
cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head;
/* allocate the mapped buffers */
for (i = 0; i < cq->num_sq_entries; i++) {
struct ice_dma_mem *bi;
bi = &cq->sq.r.sq_bi[i];
bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
cq->sq_buf_size, &bi->pa,
GFP_KERNEL | __GFP_ZERO);
if (!bi->va)
goto unwind_alloc_sq_bufs;
bi->size = cq->sq_buf_size;
}
return 0;
unwind_alloc_sq_bufs:
/* don't try to free the one that failed... */
i--;
for (; i >= 0; i--) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.r.sq_bi[i].size,
cq->sq.r.sq_bi[i].va, cq->sq.r.sq_bi[i].pa);
cq->sq.r.sq_bi[i].va = NULL;
cq->sq.r.sq_bi[i].pa = 0;
cq->sq.r.sq_bi[i].size = 0;
}
devm_kfree(ice_hw_to_dev(hw), cq->sq.dma_head);
return ICE_ERR_NO_MEMORY;
}
static enum ice_status
ice_cfg_cq_regs(struct ice_hw *hw, struct ice_ctl_q_ring *ring, u16 num_entries)
{
/* Clear Head and Tail */
wr32(hw, ring->head, 0);
wr32(hw, ring->tail, 0);
/* set starting point */
wr32(hw, ring->len, (num_entries | ring->len_ena_mask));
wr32(hw, ring->bal, lower_32_bits(ring->desc_buf.pa));
wr32(hw, ring->bah, upper_32_bits(ring->desc_buf.pa));
/* Check one register to verify that config was applied */
if (rd32(hw, ring->bal) != lower_32_bits(ring->desc_buf.pa))
return ICE_ERR_AQ_ERROR;
return 0;
}
/**
* ice_cfg_sq_regs - configure Control ATQ registers
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* Configure base address and length registers for the transmit queue
*/
static enum ice_status
ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
return ice_cfg_cq_regs(hw, &cq->sq, cq->num_sq_entries);
}
/**
* ice_cfg_rq_regs - configure Control ARQ register
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* Configure base address and length registers for the receive (event queue)
*/
static enum ice_status
ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status status;
status = ice_cfg_cq_regs(hw, &cq->rq, cq->num_rq_entries);
if (status)
return status;
/* Update tail in the HW to post pre-allocated buffers */
wr32(hw, cq->rq.tail, (u32)(cq->num_rq_entries - 1));
return 0;
}
/**
* ice_init_sq - main initialization routine for Control ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* This is the main initialization routine for the Control Send Queue
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure:
* - cq->num_sq_entries
* - cq->sq_buf_size
*
* Do *NOT* hold the lock when calling this as the memory allocation routines
* called are not going to be atomic context safe
*/
static enum ice_status ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code;
if (cq->sq.count > 0) {
/* queue already initialized */
ret_code = ICE_ERR_NOT_READY;
goto init_ctrlq_exit;
}
/* verify input for valid configuration */
if (!cq->num_sq_entries || !cq->sq_buf_size) {
ret_code = ICE_ERR_CFG;
goto init_ctrlq_exit;
}
cq->sq.next_to_use = 0;
cq->sq.next_to_clean = 0;
/* allocate the ring memory */
ret_code = ice_alloc_ctrlq_sq_ring(hw, cq);
if (ret_code)
goto init_ctrlq_exit;
/* allocate buffers in the rings */
ret_code = ice_alloc_sq_bufs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* initialize base registers */
ret_code = ice_cfg_sq_regs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* success! */
cq->sq.count = cq->num_sq_entries;
goto init_ctrlq_exit;
init_ctrlq_free_rings:
ice_free_cq_ring(hw, &cq->sq);
init_ctrlq_exit:
return ret_code;
}
/**
* ice_init_rq - initialize ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main initialization routine for the Admin Receive (Event) Queue.
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure:
* - cq->num_rq_entries
* - cq->rq_buf_size
*
* Do *NOT* hold the lock when calling this as the memory allocation routines
* called are not going to be atomic context safe
*/
static enum ice_status ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code;
if (cq->rq.count > 0) {
/* queue already initialized */
ret_code = ICE_ERR_NOT_READY;
goto init_ctrlq_exit;
}
/* verify input for valid configuration */
if (!cq->num_rq_entries || !cq->rq_buf_size) {
ret_code = ICE_ERR_CFG;
goto init_ctrlq_exit;
}
cq->rq.next_to_use = 0;
cq->rq.next_to_clean = 0;
/* allocate the ring memory */
ret_code = ice_alloc_ctrlq_rq_ring(hw, cq);
if (ret_code)
goto init_ctrlq_exit;
/* allocate buffers in the rings */
ret_code = ice_alloc_rq_bufs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* initialize base registers */
ret_code = ice_cfg_rq_regs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* success! */
cq->rq.count = cq->num_rq_entries;
goto init_ctrlq_exit;
init_ctrlq_free_rings:
ice_free_cq_ring(hw, &cq->rq);
init_ctrlq_exit:
return ret_code;
}
#define ICE_FREE_CQ_BUFS(hw, qi, ring) \
do { \
int i; \
/* free descriptors */ \
for (i = 0; i < (qi)->num_##ring##_entries; i++) \
if ((qi)->ring.r.ring##_bi[i].pa) { \
dmam_free_coherent(ice_hw_to_dev(hw), \
(qi)->ring.r.ring##_bi[i].size,\
(qi)->ring.r.ring##_bi[i].va,\
(qi)->ring.r.ring##_bi[i].pa);\
(qi)->ring.r.ring##_bi[i].va = NULL; \
(qi)->ring.r.ring##_bi[i].pa = 0; \
(qi)->ring.r.ring##_bi[i].size = 0; \
} \
/* free the buffer info list */ \
if ((qi)->ring.cmd_buf) \
devm_kfree(ice_hw_to_dev(hw), (qi)->ring.cmd_buf); \
/* free DMA head */ \
devm_kfree(ice_hw_to_dev(hw), (qi)->ring.dma_head); \
} while (0)
/**
* ice_shutdown_sq - shutdown the Control ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main shutdown routine for the Control Transmit Queue
*/
static enum ice_status
ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code = 0;
mutex_lock(&cq->sq_lock);
if (!cq->sq.count) {
ret_code = ICE_ERR_NOT_READY;
goto shutdown_sq_out;
}
/* Stop firmware AdminQ processing */
wr32(hw, cq->sq.head, 0);
wr32(hw, cq->sq.tail, 0);
wr32(hw, cq->sq.len, 0);
wr32(hw, cq->sq.bal, 0);
wr32(hw, cq->sq.bah, 0);
cq->sq.count = 0; /* to indicate uninitialized queue */
/* free ring buffers and the ring itself */
ICE_FREE_CQ_BUFS(hw, cq, sq);
ice_free_cq_ring(hw, &cq->sq);
shutdown_sq_out:
mutex_unlock(&cq->sq_lock);
return ret_code;
}
/**
* ice_aq_ver_check - Check the reported AQ API version.
* @hw: pointer to the hardware structure
*
* Checks if the driver should load on a given AQ API version.
*
* Return: 'true' iff the driver should attempt to load. 'false' otherwise.
*/
static bool ice_aq_ver_check(struct ice_hw *hw)
{
if (hw->api_maj_ver > EXP_FW_API_VER_MAJOR) {
/* Major API version is newer than expected, don't load */
dev_warn(ice_hw_to_dev(hw),
"The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n");
return false;
} else if (hw->api_maj_ver == EXP_FW_API_VER_MAJOR) {
if (hw->api_min_ver > (EXP_FW_API_VER_MINOR + 2))
dev_info(ice_hw_to_dev(hw),
"The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n");
else if ((hw->api_min_ver + 2) < EXP_FW_API_VER_MINOR)
dev_info(ice_hw_to_dev(hw),
"The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n");
} else {
/* Major API version is older than expected, log a warning */
dev_info(ice_hw_to_dev(hw),
"The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n");
}
return true;
}
/**
* ice_shutdown_rq - shutdown Control ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main shutdown routine for the Control Receive Queue
*/
static enum ice_status
ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code = 0;
mutex_lock(&cq->rq_lock);
if (!cq->rq.count) {
ret_code = ICE_ERR_NOT_READY;
goto shutdown_rq_out;
}
/* Stop Control Queue processing */
wr32(hw, cq->rq.head, 0);
wr32(hw, cq->rq.tail, 0);
wr32(hw, cq->rq.len, 0);
wr32(hw, cq->rq.bal, 0);
wr32(hw, cq->rq.bah, 0);
/* set rq.count to 0 to indicate uninitialized queue */
cq->rq.count = 0;
/* free ring buffers and the ring itself */
ICE_FREE_CQ_BUFS(hw, cq, rq);
ice_free_cq_ring(hw, &cq->rq);
shutdown_rq_out:
mutex_unlock(&cq->rq_lock);
return ret_code;
}
/**
* ice_init_check_adminq - Check version for Admin Queue to know if its alive
* @hw: pointer to the hardware structure
*/
static enum ice_status ice_init_check_adminq(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->adminq;
enum ice_status status;
status = ice_aq_get_fw_ver(hw, NULL);
if (status)
goto init_ctrlq_free_rq;
if (!ice_aq_ver_check(hw)) {
status = ICE_ERR_FW_API_VER;
goto init_ctrlq_free_rq;
}
return 0;
init_ctrlq_free_rq:
ice_shutdown_rq(hw, cq);
ice_shutdown_sq(hw, cq);
return status;
}
/**
* ice_init_ctrlq - main initialization routine for any control Queue
* @hw: pointer to the hardware structure
* @q_type: specific Control queue type
*
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
* NOTE: this function does not initialize the controlq locks
*/
static enum ice_status ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
{
struct ice_ctl_q_info *cq;
enum ice_status ret_code;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
ice_adminq_init_regs(hw);
cq = &hw->adminq;
break;
case ICE_CTL_Q_MAILBOX:
ice_mailbox_init_regs(hw);
cq = &hw->mailboxq;
break;
default:
return ICE_ERR_PARAM;
}
cq->qtype = q_type;
/* verify input for valid configuration */
if (!cq->num_rq_entries || !cq->num_sq_entries ||
!cq->rq_buf_size || !cq->sq_buf_size) {
return ICE_ERR_CFG;
}
/* setup SQ command write back timeout */
cq->sq_cmd_timeout = ICE_CTL_Q_SQ_CMD_TIMEOUT;
/* allocate the ATQ */
ret_code = ice_init_sq(hw, cq);
if (ret_code)
return ret_code;
/* allocate the ARQ */
ret_code = ice_init_rq(hw, cq);
if (ret_code)
goto init_ctrlq_free_sq;
/* success! */
return 0;
init_ctrlq_free_sq:
ice_shutdown_sq(hw, cq);
return ret_code;
}
/**
* ice_init_all_ctrlq - main initialization routine for all control queues
* @hw: pointer to the hardware structure
*
* Prior to calling this function, the driver MUST* set the following fields
* in the cq->structure for all control queues:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
* NOTE: this function does not initialize the controlq locks.
*/
enum ice_status ice_init_all_ctrlq(struct ice_hw *hw)
{
enum ice_status ret_code;
/* Init FW admin queue */
ret_code = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN);
if (ret_code)
return ret_code;
ret_code = ice_init_check_adminq(hw);
if (ret_code)
return ret_code;
/* Init Mailbox queue */
return ice_init_ctrlq(hw, ICE_CTL_Q_MAILBOX);
}
/**
* ice_init_ctrlq_locks - Initialize locks for a control queue
* @cq: pointer to the control queue
*
* Initializes the send and receive queue locks for a given control queue.
*/
static void ice_init_ctrlq_locks(struct ice_ctl_q_info *cq)
{
mutex_init(&cq->sq_lock);
mutex_init(&cq->rq_lock);
}
/**
* ice_create_all_ctrlq - main initialization routine for all control queues
* @hw: pointer to the hardware structure
*
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure for all control queues:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
* This function creates all the control queue locks and then calls
* ice_init_all_ctrlq. It should be called once during driver load. If the
* driver needs to re-initialize control queues at run time it should call
* ice_init_all_ctrlq instead.
*/
enum ice_status ice_create_all_ctrlq(struct ice_hw *hw)
{
ice_init_ctrlq_locks(&hw->adminq);
ice_init_ctrlq_locks(&hw->mailboxq);
return ice_init_all_ctrlq(hw);
}
/**
* ice_shutdown_ctrlq - shutdown routine for any control queue
* @hw: pointer to the hardware structure
* @q_type: specific Control queue type
*
* NOTE: this function does not destroy the control queue locks.
*/
static void ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
{
struct ice_ctl_q_info *cq;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
if (ice_check_sq_alive(hw, cq))
ice_aq_q_shutdown(hw, true);
break;
case ICE_CTL_Q_MAILBOX:
cq = &hw->mailboxq;
break;
default:
return;
}
ice_shutdown_sq(hw, cq);
ice_shutdown_rq(hw, cq);
}
/**
* ice_shutdown_all_ctrlq - shutdown routine for all control queues
* @hw: pointer to the hardware structure
*
* NOTE: this function does not destroy the control queue locks. The driver
* may call this at runtime to shutdown and later restart control queues, such
* as in response to a reset event.
*/
void ice_shutdown_all_ctrlq(struct ice_hw *hw)
{
/* Shutdown FW admin queue */
ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN);
/* Shutdown PF-VF Mailbox */
ice_shutdown_ctrlq(hw, ICE_CTL_Q_MAILBOX);
}
/**
* ice_destroy_ctrlq_locks - Destroy locks for a control queue
* @cq: pointer to the control queue
*
* Destroys the send and receive queue locks for a given control queue.
*/
static void
ice_destroy_ctrlq_locks(struct ice_ctl_q_info *cq)
{
mutex_destroy(&cq->sq_lock);
mutex_destroy(&cq->rq_lock);
}
/**
* ice_destroy_all_ctrlq - exit routine for all control queues
* @hw: pointer to the hardware structure
*
* This function shuts down all the control queues and then destroys the
* control queue locks. It should be called once during driver unload. The
* driver should call ice_shutdown_all_ctrlq if it needs to shut down and
* reinitialize control queues, such as in response to a reset event.
*/
void ice_destroy_all_ctrlq(struct ice_hw *hw)
{
/* shut down all the control queues first */
ice_shutdown_all_ctrlq(hw);
ice_destroy_ctrlq_locks(&hw->adminq);
ice_destroy_ctrlq_locks(&hw->mailboxq);
}
/**
* ice_clean_sq - cleans Admin send queue (ATQ)
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* returns the number of free desc
*/
static u16 ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
struct ice_ctl_q_ring *sq = &cq->sq;
u16 ntc = sq->next_to_clean;
struct ice_sq_cd *details;
struct ice_aq_desc *desc;
desc = ICE_CTL_Q_DESC(*sq, ntc);
details = ICE_CTL_Q_DETAILS(*sq, ntc);
while (rd32(hw, cq->sq.head) != ntc) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"ntc %d head %d.\n", ntc, rd32(hw, cq->sq.head));
memset(desc, 0, sizeof(*desc));
memset(details, 0, sizeof(*details));
ntc++;
if (ntc == sq->count)
ntc = 0;
desc = ICE_CTL_Q_DESC(*sq, ntc);
details = ICE_CTL_Q_DETAILS(*sq, ntc);
}
sq->next_to_clean = ntc;
return ICE_CTL_Q_DESC_UNUSED(sq);
}
/**
* ice_sq_done - check if FW has processed the Admin Send Queue (ATQ)
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
*
* Returns true if the firmware has processed all descriptors on the
* admin send queue. Returns false if there are still requests pending.
*/
static bool ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
/* AQ designers suggest use of head for better
* timing reliability than DD bit
*/
return rd32(hw, cq->sq.head) == cq->sq.next_to_use;
}
/**
* ice_sq_send_cmd - send command to Control Queue (ATQ)
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @desc: prefilled descriptor describing the command (non DMA mem)
* @buf: buffer to use for indirect commands (or NULL for direct commands)
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
* @cd: pointer to command details structure
*
* This is the main send command routine for the ATQ. It runs the queue,
* cleans the queue, etc.
*/
enum ice_status
ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_aq_desc *desc, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_dma_mem *dma_buf = NULL;
struct ice_aq_desc *desc_on_ring;
bool cmd_completed = false;
enum ice_status status = 0;
struct ice_sq_cd *details;
u32 total_delay = 0;
u16 retval = 0;
u32 val = 0;
/* if reset is in progress return a soft error */
if (hw->reset_ongoing)
return ICE_ERR_RESET_ONGOING;
mutex_lock(&cq->sq_lock);
cq->sq_last_status = ICE_AQ_RC_OK;
if (!cq->sq.count) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Send queue not initialized.\n");
status = ICE_ERR_AQ_EMPTY;
goto sq_send_command_error;
}
if ((buf && !buf_size) || (!buf && buf_size)) {
status = ICE_ERR_PARAM;
goto sq_send_command_error;
}
if (buf) {
if (buf_size > cq->sq_buf_size) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Invalid buffer size for Control Send queue: %d.\n",
buf_size);
status = ICE_ERR_INVAL_SIZE;
goto sq_send_command_error;
}
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
if (buf_size > ICE_AQ_LG_BUF)
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
}
val = rd32(hw, cq->sq.head);
if (val >= cq->num_sq_entries) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"head overrun at %d in the Control Send Queue ring\n",
val);
status = ICE_ERR_AQ_EMPTY;
goto sq_send_command_error;
}
details = ICE_CTL_Q_DETAILS(cq->sq, cq->sq.next_to_use);
if (cd)
*details = *cd;
else
memset(details, 0, sizeof(*details));
/* Call clean and check queue available function to reclaim the
* descriptors that were processed by FW/MBX; the function returns the
* number of desc available. The clean function called here could be
* called in a separate thread in case of asynchronous completions.
*/
if (ice_clean_sq(hw, cq) == 0) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Error: Control Send Queue is full.\n");
status = ICE_ERR_AQ_FULL;
goto sq_send_command_error;
}
/* initialize the temp desc pointer with the right desc */
desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use);
/* if the desc is available copy the temp desc to the right place */
memcpy(desc_on_ring, desc, sizeof(*desc_on_ring));
/* if buf is not NULL assume indirect command */
if (buf) {
dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use];
/* copy the user buf into the respective DMA buf */
memcpy(dma_buf->va, buf, buf_size);
desc_on_ring->datalen = cpu_to_le16(buf_size);
/* Update the address values in the desc with the pa value
* for respective buffer
*/
desc_on_ring->params.generic.addr_high =
cpu_to_le32(upper_32_bits(dma_buf->pa));
desc_on_ring->params.generic.addr_low =
cpu_to_le32(lower_32_bits(dma_buf->pa));
}
/* Debug desc and buffer */
ice_debug(hw, ICE_DBG_AQ_MSG,
"ATQ: Control Send queue desc and buffer:\n");
ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc_on_ring, buf, buf_size);
(cq->sq.next_to_use)++;
if (cq->sq.next_to_use == cq->sq.count)
cq->sq.next_to_use = 0;
wr32(hw, cq->sq.tail, cq->sq.next_to_use);
do {
if (ice_sq_done(hw, cq))
break;
udelay(ICE_CTL_Q_SQ_CMD_USEC);
total_delay++;
} while (total_delay < cq->sq_cmd_timeout);
/* if ready, copy the desc back to temp */
if (ice_sq_done(hw, cq)) {
memcpy(desc, desc_on_ring, sizeof(*desc));
if (buf) {
/* get returned length to copy */
u16 copy_size = le16_to_cpu(desc->datalen);
if (copy_size > buf_size) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Return len %d > than buf len %d\n",
copy_size, buf_size);
status = ICE_ERR_AQ_ERROR;
} else {
memcpy(buf, dma_buf->va, copy_size);
}
}
retval = le16_to_cpu(desc->retval);
if (retval) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Send Queue command completed with error 0x%x\n",
retval);
/* strip off FW internal code */
retval &= 0xff;
}
cmd_completed = true;
if (!status && retval != ICE_AQ_RC_OK)
status = ICE_ERR_AQ_ERROR;
cq->sq_last_status = (enum ice_aq_err)retval;
}
ice_debug(hw, ICE_DBG_AQ_MSG,
"ATQ: desc and buffer writeback:\n");
ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc, buf, buf_size);
/* save writeback AQ if requested */
if (details->wb_desc)
memcpy(details->wb_desc, desc_on_ring,
sizeof(*details->wb_desc));
/* update the error if time out occurred */
if (!cmd_completed) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Send Queue Writeback timeout.\n");
status = ICE_ERR_AQ_TIMEOUT;
}
sq_send_command_error:
mutex_unlock(&cq->sq_lock);
return status;
}
/**
* ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function
* @desc: pointer to the temp descriptor (non DMA mem)
* @opcode: the opcode can be used to decide which flags to turn off or on
*
* Fill the desc with default values
*/
void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode)
{
/* zero out the desc */
memset(desc, 0, sizeof(*desc));
desc->opcode = cpu_to_le16(opcode);
desc->flags = cpu_to_le16(ICE_AQ_FLAG_SI);
}
/**
* ice_clean_rq_elem
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @e: event info from the receive descriptor, includes any buffers
* @pending: number of events that could be left to process
*
* This function cleans one Admin Receive Queue element and returns
* the contents through e. It can also return how many events are
* left to process through 'pending'.
*/
enum ice_status
ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_rq_event_info *e, u16 *pending)
{
u16 ntc = cq->rq.next_to_clean;
enum ice_status ret_code = 0;
struct ice_aq_desc *desc;
struct ice_dma_mem *bi;
u16 desc_idx;
u16 datalen;
u16 flags;
u16 ntu;
/* pre-clean the event info */
memset(&e->desc, 0, sizeof(e->desc));
/* take the lock before we start messing with the ring */
mutex_lock(&cq->rq_lock);
if (!cq->rq.count) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Receive queue not initialized.\n");
ret_code = ICE_ERR_AQ_EMPTY;
goto clean_rq_elem_err;
}
/* set next_to_use to head */
ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
if (ntu == ntc) {
/* nothing to do - shouldn't need to update ring's values */
ret_code = ICE_ERR_AQ_NO_WORK;
goto clean_rq_elem_out;
}
/* now clean the next descriptor */
desc = ICE_CTL_Q_DESC(cq->rq, ntc);
desc_idx = ntc;
cq->rq_last_status = (enum ice_aq_err)le16_to_cpu(desc->retval);
flags = le16_to_cpu(desc->flags);
if (flags & ICE_AQ_FLAG_ERR) {
ret_code = ICE_ERR_AQ_ERROR;
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Receive Queue Event received with error 0x%x\n",
cq->rq_last_status);
}
memcpy(&e->desc, desc, sizeof(e->desc));
datalen = le16_to_cpu(desc->datalen);
e->msg_len = min(datalen, e->buf_len);
if (e->msg_buf && e->msg_len)
memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len);
ice_debug(hw, ICE_DBG_AQ_MSG, "ARQ: desc and buffer:\n");
ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc, e->msg_buf,
cq->rq_buf_size);
/* Restore the original datalen and buffer address in the desc,
* FW updates datalen to indicate the event message size
*/
bi = &cq->rq.r.rq_bi[ntc];
memset(desc, 0, sizeof(*desc));
desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
if (cq->rq_buf_size > ICE_AQ_LG_BUF)
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
desc->datalen = cpu_to_le16(bi->size);
desc->params.generic.addr_high = cpu_to_le32(upper_32_bits(bi->pa));
desc->params.generic.addr_low = cpu_to_le32(lower_32_bits(bi->pa));
/* set tail = the last cleaned desc index. */
wr32(hw, cq->rq.tail, ntc);
/* ntc is updated to tail + 1 */
ntc++;
if (ntc == cq->num_rq_entries)
ntc = 0;
cq->rq.next_to_clean = ntc;
cq->rq.next_to_use = ntu;
clean_rq_elem_out:
/* Set pending if needed, unlock and return */
if (pending) {
/* re-read HW head to calculate actual pending messages */
ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
*pending = (u16)((ntc > ntu ? cq->rq.count : 0) + (ntu - ntc));
}
clean_rq_elem_err:
mutex_unlock(&cq->rq_lock);
return ret_code;
}