linux/linux-5.4.31/drivers/net/ethernet/intel/fm10k/fm10k_pf.c

1826 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2019 Intel Corporation. */
#include "fm10k_pf.h"
#include "fm10k_vf.h"
/**
* fm10k_reset_hw_pf - PF hardware reset
* @hw: pointer to hardware structure
*
* This function should return the hardware to a state similar to the
* one it is in after being powered on.
**/
static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
{
s32 err;
u32 reg;
u16 i;
/* Disable interrupts */
fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
fm10k_write_reg(hw, FM10K_ITR2(0), 0);
fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
/* We assume here Tx and Rx queue 0 are owned by the PF */
/* Shut off VF access to their queues forcing them to queue 0 */
for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
}
/* shut down all rings */
err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
if (err == FM10K_ERR_REQUESTS_PENDING) {
hw->mac.reset_while_pending++;
goto force_reset;
} else if (err) {
return err;
}
/* Verify that DMA is no longer active */
reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
return FM10K_ERR_DMA_PENDING;
force_reset:
/* Inititate data path reset */
reg = FM10K_DMA_CTRL_DATAPATH_RESET;
fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
/* Flush write and allow 100us for reset to complete */
fm10k_write_flush(hw);
udelay(FM10K_RESET_TIMEOUT);
/* Verify we made it out of reset */
reg = fm10k_read_reg(hw, FM10K_IP);
if (!(reg & FM10K_IP_NOTINRESET))
return FM10K_ERR_RESET_FAILED;
return 0;
}
/**
* fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
* @hw: pointer to hardware structure
*
* Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
**/
static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
{
u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
}
/**
* fm10k_init_hw_pf - PF hardware initialization
* @hw: pointer to hardware structure
*
**/
static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
{
u32 dma_ctrl, txqctl;
u16 i;
/* Establish default VSI as valid */
fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
FM10K_DGLORTMAP_ANY);
/* Invalidate all other GLORT entries */
for (i = 1; i < FM10K_DGLORT_COUNT; i++)
fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
/* reset ITR2(0) to point to itself */
fm10k_write_reg(hw, FM10K_ITR2(0), 0);
/* reset VF ITR2(0) to point to 0 avoid PF registers */
fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
/* loop through all PF ITR2 registers pointing them to the previous */
for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
/* Enable interrupt moderator if not already enabled */
fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
/* compute the default txqctl configuration */
txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
(hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
for (i = 0; i < FM10K_MAX_QUEUES; i++) {
/* configure rings for 256 Queue / 32 Descriptor cache mode */
fm10k_write_reg(hw, FM10K_TQDLOC(i),
(i * FM10K_TQDLOC_BASE_32_DESC) |
FM10K_TQDLOC_SIZE_32_DESC);
fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
/* configure rings to provide TPH processing hints */
fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
FM10K_TPH_TXCTRL_DESC_TPHEN |
FM10K_TPH_TXCTRL_DESC_RROEN |
FM10K_TPH_TXCTRL_DESC_WROEN |
FM10K_TPH_TXCTRL_DATA_RROEN);
fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
FM10K_TPH_RXCTRL_DESC_TPHEN |
FM10K_TPH_RXCTRL_DESC_RROEN |
FM10K_TPH_RXCTRL_DATA_WROEN |
FM10K_TPH_RXCTRL_HDR_WROEN);
}
/* set max hold interval to align with 1.024 usec in all modes and
* store ITR scale
*/
switch (hw->bus.speed) {
case fm10k_bus_speed_2500:
dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
break;
case fm10k_bus_speed_5000:
dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
break;
case fm10k_bus_speed_8000:
dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
break;
default:
dma_ctrl = 0;
/* just in case, assume Gen3 ITR scale */
hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
break;
}
/* Configure TSO flags */
fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
/* Enable DMA engine
* Set Rx Descriptor size to 32
* Set Minimum MSS to 64
* Set Maximum number of Rx queues to 256 / 32 Descriptor
*/
dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
FM10K_DMA_CTRL_32_DESC;
fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
/* record maximum queue count, we limit ourselves to 128 */
hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
/* We support either 64 VFs or 7 VFs depending on if we have ARI */
hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
return 0;
}
/**
* fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
* @hw: pointer to hardware structure
* @vid: VLAN ID to add to table
* @vsi: Index indicating VF ID or PF ID in table
* @set: Indicates if this is a set or clear operation
*
* This function adds or removes the corresponding VLAN ID from the VLAN
* filter table for the corresponding function. In addition to the
* standard set/clear that supports one bit a multi-bit write is
* supported to set 64 bits at a time.
**/
static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
{
u32 vlan_table, reg, mask, bit, len;
/* verify the VSI index is valid */
if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
return FM10K_ERR_PARAM;
/* VLAN multi-bit write:
* The multi-bit write has several parts to it.
* 24 16 8 0
* 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | RSVD0 | Length |C|RSVD0| VLAN ID |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* VLAN ID: Vlan Starting value
* RSVD0: Reserved section, must be 0
* C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
* Length: Number of times to repeat the bit being set
*/
len = vid >> 16;
vid = (vid << 17) >> 17;
/* verify the reserved 0 fields are 0 */
if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
return FM10K_ERR_PARAM;
/* Loop through the table updating all required VLANs */
for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
len < FM10K_VLAN_TABLE_VID_MAX;
len -= 32 - bit, reg++, bit = 0) {
/* record the initial state of the register */
vlan_table = fm10k_read_reg(hw, reg);
/* truncate mask if we are at the start or end of the run */
mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
/* make necessary modifications to the register */
mask &= set ? ~vlan_table : vlan_table;
if (mask)
fm10k_write_reg(hw, reg, vlan_table ^ mask);
}
return 0;
}
/**
* fm10k_read_mac_addr_pf - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the SM_AREA and stores the value.
**/
static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
{
u8 perm_addr[ETH_ALEN];
u32 serial_num;
serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
/* last byte should be all 1's */
if ((~serial_num) << 24)
return FM10K_ERR_INVALID_MAC_ADDR;
perm_addr[0] = (u8)(serial_num >> 24);
perm_addr[1] = (u8)(serial_num >> 16);
perm_addr[2] = (u8)(serial_num >> 8);
serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
/* first byte should be all 1's */
if ((~serial_num) >> 24)
return FM10K_ERR_INVALID_MAC_ADDR;
perm_addr[3] = (u8)(serial_num >> 16);
perm_addr[4] = (u8)(serial_num >> 8);
perm_addr[5] = (u8)(serial_num);
ether_addr_copy(hw->mac.perm_addr, perm_addr);
ether_addr_copy(hw->mac.addr, perm_addr);
return 0;
}
/**
* fm10k_glort_valid_pf - Validate that the provided glort is valid
* @hw: pointer to the HW structure
* @glort: base glort to be validated
*
* This function will return an error if the provided glort is invalid
**/
bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
{
glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
}
/**
* fm10k_update_xc_addr_pf - Update device addresses
* @hw: pointer to the HW structure
* @glort: base resource tag for this request
* @mac: MAC address to add/remove from table
* @vid: VLAN ID to add/remove from table
* @add: Indicates if this is an add or remove operation
* @flags: flags field to indicate add and secure
*
* This function generates a message to the Switch API requesting
* that the given logical port add/remove the given L2 MAC/VLAN address.
**/
static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
const u8 *mac, u16 vid, bool add, u8 flags)
{
struct fm10k_mbx_info *mbx = &hw->mbx;
struct fm10k_mac_update mac_update;
u32 msg[5];
/* clear set bit from VLAN ID */
vid &= ~FM10K_VLAN_CLEAR;
/* if glort or VLAN are not valid return error */
if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
return FM10K_ERR_PARAM;
/* record fields */
mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
((u32)mac[3] << 16) |
((u32)mac[4] << 8) |
((u32)mac[5]));
mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
((u16)mac[1]));
mac_update.vlan = cpu_to_le16(vid);
mac_update.glort = cpu_to_le16(glort);
mac_update.action = add ? 0 : 1;
mac_update.flags = flags;
/* populate mac_update fields */
fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
&mac_update, sizeof(mac_update));
/* load onto outgoing mailbox */
return mbx->ops.enqueue_tx(hw, mbx, msg);
}
/**
* fm10k_update_uc_addr_pf - Update device unicast addresses
* @hw: pointer to the HW structure
* @glort: base resource tag for this request
* @mac: MAC address to add/remove from table
* @vid: VLAN ID to add/remove from table
* @add: Indicates if this is an add or remove operation
* @flags: flags field to indicate add and secure
*
* This function is used to add or remove unicast addresses for
* the PF.
**/
static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
const u8 *mac, u16 vid, bool add, u8 flags)
{
/* verify MAC address is valid */
if (!is_valid_ether_addr(mac))
return FM10K_ERR_PARAM;
return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
}
/**
* fm10k_update_mc_addr_pf - Update device multicast addresses
* @hw: pointer to the HW structure
* @glort: base resource tag for this request
* @mac: MAC address to add/remove from table
* @vid: VLAN ID to add/remove from table
* @add: Indicates if this is an add or remove operation
*
* This function is used to add or remove multicast MAC addresses for
* the PF.
**/
static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
const u8 *mac, u16 vid, bool add)
{
/* verify multicast address is valid */
if (!is_multicast_ether_addr(mac))
return FM10K_ERR_PARAM;
return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
}
/**
* fm10k_update_xcast_mode_pf - Request update of multicast mode
* @hw: pointer to hardware structure
* @glort: base resource tag for this request
* @mode: integer value indicating mode being requested
*
* This function will attempt to request a higher mode for the port
* so that it can enable either multicast, multicast promiscuous, or
* promiscuous mode of operation.
**/
static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
{
struct fm10k_mbx_info *mbx = &hw->mbx;
u32 msg[3], xcast_mode;
if (mode > FM10K_XCAST_MODE_NONE)
return FM10K_ERR_PARAM;
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
/* write xcast mode as a single u32 value,
* lower 16 bits: glort
* upper 16 bits: mode
*/
xcast_mode = ((u32)mode << 16) | glort;
/* generate message requesting to change xcast mode */
fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
/* load onto outgoing mailbox */
return mbx->ops.enqueue_tx(hw, mbx, msg);
}
/**
* fm10k_update_int_moderator_pf - Update interrupt moderator linked list
* @hw: pointer to hardware structure
*
* This function walks through the MSI-X vector table to determine the
* number of active interrupts and based on that information updates the
* interrupt moderator linked list.
**/
static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
{
u32 i;
/* Disable interrupt moderator */
fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
/* loop through PF from last to first looking enabled vectors */
for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
break;
}
/* always reset VFITR2[0] to point to last enabled PF vector */
fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
/* reset ITR2[0] to point to last enabled PF vector */
if (!hw->iov.num_vfs)
fm10k_write_reg(hw, FM10K_ITR2(0), i);
/* Enable interrupt moderator */
fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
}
/**
* fm10k_update_lport_state_pf - Notify the switch of a change in port state
* @hw: pointer to the HW structure
* @glort: base resource tag for this request
* @count: number of logical ports being updated
* @enable: boolean value indicating enable or disable
*
* This function is used to add/remove a logical port from the switch.
**/
static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
u16 count, bool enable)
{
struct fm10k_mbx_info *mbx = &hw->mbx;
u32 msg[3], lport_msg;
/* do nothing if we are being asked to create or destroy 0 ports */
if (!count)
return 0;
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
/* reset multicast mode if deleting lport */
if (!enable)
fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
/* construct the lport message from the 2 pieces of data we have */
lport_msg = ((u32)count << 16) | glort;
/* generate lport create/delete message */
fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
FM10K_PF_MSG_ID_LPORT_DELETE);
fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
/* load onto outgoing mailbox */
return mbx->ops.enqueue_tx(hw, mbx, msg);
}
/**
* fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
* @hw: pointer to hardware structure
* @dglort: pointer to dglort configuration structure
*
* Reads the configuration structure contained in dglort_cfg and uses
* that information to then populate a DGLORTMAP/DEC entry and the queues
* to which it has been assigned.
**/
static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
struct fm10k_dglort_cfg *dglort)
{
u16 glort, queue_count, vsi_count, pc_count;
u16 vsi, queue, pc, q_idx;
u32 txqctl, dglortdec, dglortmap;
/* verify the dglort pointer */
if (!dglort)
return FM10K_ERR_PARAM;
/* verify the dglort values */
if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
(dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
(dglort->queue_l > 8) || (dglort->queue_b >= 256))
return FM10K_ERR_PARAM;
/* determine count of VSIs and queues */
queue_count = BIT(dglort->rss_l + dglort->pc_l);
vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
glort = dglort->glort;
q_idx = dglort->queue_b;
/* configure SGLORT for queues */
for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
for (queue = 0; queue < queue_count; queue++, q_idx++) {
if (q_idx >= FM10K_MAX_QUEUES)
break;
fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
}
}
/* determine count of PCs and queues */
queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
pc_count = BIT(dglort->pc_l);
/* configure PC for Tx queues */
for (pc = 0; pc < pc_count; pc++) {
q_idx = pc + dglort->queue_b;
for (queue = 0; queue < queue_count; queue++) {
if (q_idx >= FM10K_MAX_QUEUES)
break;
txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
txqctl &= ~FM10K_TXQCTL_PC_MASK;
txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
q_idx += pc_count;
}
}
/* configure DGLORTDEC */
dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
((u32)(dglort->queue_l));
if (dglort->inner_rss)
dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
/* configure DGLORTMAP */
dglortmap = (dglort->idx == fm10k_dglort_default) ?
FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
dglortmap |= dglort->glort;
/* write values to hardware */
fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
return 0;
}
u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
{
u16 num_pools = hw->iov.num_pools;
return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
8 : FM10K_MAX_QUEUES_POOL;
}
u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
{
u16 num_vfs = hw->iov.num_vfs;
u16 vf_q_idx = FM10K_MAX_QUEUES;
vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
return vf_q_idx;
}
static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
{
u16 num_pools = hw->iov.num_pools;
return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
FM10K_MAX_VECTORS_POOL;
}
static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
{
u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
return vf_v_idx;
}
/**
* fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
* @hw: pointer to the HW structure
* @num_vfs: number of VFs to be allocated
* @num_pools: number of virtualization pools to be allocated
*
* Allocates queues and traffic classes to virtualization entities to prepare
* the PF for SR-IOV and VMDq
**/
static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
u16 num_pools)
{
u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
int i, j;
/* hardware only supports up to 64 pools */
if (num_pools > 64)
return FM10K_ERR_PARAM;
/* the number of VFs cannot exceed the number of pools */
if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
return FM10K_ERR_PARAM;
/* record number of virtualization entities */
hw->iov.num_vfs = num_vfs;
hw->iov.num_pools = num_pools;
/* determine qmap offsets and counts */
qmap_stride = (num_vfs > 8) ? 32 : 256;
qpp = fm10k_queues_per_pool(hw);
vpp = fm10k_vectors_per_pool(hw);
/* calculate starting index for queues */
vf_q_idx = fm10k_vf_queue_index(hw, 0);
qmap_idx = 0;
/* establish TCs with -1 credits and no quanta to prevent transmit */
for (i = 0; i < num_vfs; i++) {
fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
FM10K_TC_CREDIT_CREDIT_MASK);
}
/* zero out all mbmem registers */
for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
/* clear event notification of VF FLR */
fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
/* loop through unallocated rings assigning them back to PF */
for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
FM10K_TXQCTL_UNLIMITED_BW | vid);
fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
}
/* PF should have already updated VFITR2[0] */
/* update all ITR registers to flow to VFITR2[0] */
for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
if (!(i & (vpp - 1)))
fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
else
fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
}
/* update PF ITR2[0] to reference the last vector */
fm10k_write_reg(hw, FM10K_ITR2(0),
fm10k_vf_vector_index(hw, num_vfs - 1));
/* loop through rings populating rings and TCs */
for (i = 0; i < num_vfs; i++) {
/* record index for VF queue 0 for use in end of loop */
vf_q_idx0 = vf_q_idx;
for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
/* assign VF and locked TC to queues */
fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
(i << FM10K_TXQCTL_TC_SHIFT) | i |
FM10K_TXQCTL_VF | vid);
fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
FM10K_RXDCTL_DROP_ON_EMPTY);
fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
(i << FM10K_RXQCTL_VF_SHIFT) |
FM10K_RXQCTL_VF);
/* map queue pair to VF */
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
}
/* repeat the first ring for all of the remaining VF rings */
for (; j < qmap_stride; j++, qmap_idx++) {
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
}
}
/* loop through remaining indexes assigning all to queue 0 */
while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
qmap_idx++;
}
return 0;
}
/**
* fm10k_iov_configure_tc_pf - Configure the shaping group for VF
* @hw: pointer to the HW structure
* @vf_idx: index of VF receiving GLORT
* @rate: Rate indicated in Mb/s
*
* Configured the TC for a given VF to allow only up to a given number
* of Mb/s of outgoing Tx throughput.
**/
static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
{
/* configure defaults */
u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
/* verify vf is in range */
if (vf_idx >= hw->iov.num_vfs)
return FM10K_ERR_PARAM;
/* set interval to align with 4.096 usec in all modes */
switch (hw->bus.speed) {
case fm10k_bus_speed_2500:
interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
break;
case fm10k_bus_speed_5000:
interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
break;
default:
break;
}
if (rate) {
if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
return FM10K_ERR_PARAM;
/* The quanta is measured in Bytes per 4.096 or 8.192 usec
* The rate is provided in Mbits per second
* To tralslate from rate to quanta we need to multiply the
* rate by 8.192 usec and divide by 8 bits/byte. To avoid
* dealing with floating point we can round the values up
* to the nearest whole number ratio which gives us 128 / 125.
*/
tc_rate = (rate * 128) / 125;
/* try to keep the rate limiting accurate by increasing
* the number of credits and interval for rates less than 4Gb/s
*/
if (rate < 4000)
interval <<= 1;
else
tc_rate >>= 1;
}
/* update rate limiter with new values */
fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
return 0;
}
/**
* fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
* @hw: pointer to the HW structure
* @vf_idx: index of VF receiving GLORT
*
* Update the interrupt moderator linked list to include any MSI-X
* interrupts which the VF has enabled in the MSI-X vector table.
**/
static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
{
u16 vf_v_idx, vf_v_limit, i;
/* verify vf is in range */
if (vf_idx >= hw->iov.num_vfs)
return FM10K_ERR_PARAM;
/* determine vector offset and count */
vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
/* search for first vector that is not masked */
for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
break;
}
/* reset linked list so it now includes our active vectors */
if (vf_idx == (hw->iov.num_vfs - 1))
fm10k_write_reg(hw, FM10K_ITR2(0), i);
else
fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
return 0;
}
/**
* fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
* @hw: pointer to the HW structure
* @vf_info: pointer to VF information structure
*
* Assign a MAC address and default VLAN to a VF and notify it of the update
**/
static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
struct fm10k_vf_info *vf_info)
{
u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
s32 err = 0;
u16 vf_idx, vf_vid;
/* verify vf is in range */
if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
return FM10K_ERR_PARAM;
/* determine qmap offsets and counts */
qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
queues_per_pool = fm10k_queues_per_pool(hw);
/* calculate starting index for queues */
vf_idx = vf_info->vf_idx;
vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
qmap_idx = qmap_stride * vf_idx;
/* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
* used here to indicate to the VF that it will not have privilege to
* write VLAN_TABLE. All policy is enforced on the PF but this allows
* the VF to correctly report errors to userspace requests.
*/
if (vf_info->pf_vid)
vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
else
vf_vid = vf_info->sw_vid;
/* generate MAC_ADDR request */
fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
vf_info->mac, vf_vid);
/* Configure Queue control register with new VLAN ID. The TXQCTL
* register is RO from the VF, so the PF must do this even in the
* case of notifying the VF of a new VID via the mailbox.
*/
txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
FM10K_TXQCTL_VID_MASK;
txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
FM10K_TXQCTL_VF | vf_idx;
for (i = 0; i < queues_per_pool; i++)
fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
/* try loading a message onto outgoing mailbox first */
if (vf_info->mbx.ops.enqueue_tx) {
err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
if (err != FM10K_MBX_ERR_NO_MBX)
return err;
err = 0;
}
/* If we aren't connected to a mailbox, this is most likely because
* the VF driver is not running. It should thus be safe to re-map
* queues and use the registers to pass the MAC address so that the VF
* driver gets correct information during its initialization.
*/
/* MAP Tx queue back to 0 temporarily, and disable it */
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
/* verify ring has disabled before modifying base address registers */
txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
/* limit ourselves to a 1ms timeout */
if (timeout == 10) {
err = FM10K_ERR_DMA_PENDING;
goto err_out;
}
usleep_range(100, 200);
txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
}
/* Update base address registers to contain MAC address */
if (is_valid_ether_addr(vf_info->mac)) {
tdbal = (((u32)vf_info->mac[3]) << 24) |
(((u32)vf_info->mac[4]) << 16) |
(((u32)vf_info->mac[5]) << 8);
tdbah = (((u32)0xFF) << 24) |
(((u32)vf_info->mac[0]) << 16) |
(((u32)vf_info->mac[1]) << 8) |
((u32)vf_info->mac[2]);
}
/* Record the base address into queue 0 */
fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
/* Provide the VF the ITR scale, using software-defined fields in TDLEN
* to pass the information during VF initialization. See definition of
* FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
*/
fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
FM10K_TDLEN_ITR_SCALE_SHIFT);
err_out:
/* restore the queue back to VF ownership */
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
return err;
}
/**
* fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
* @hw: pointer to the HW structure
* @vf_info: pointer to VF information structure
*
* Reassign the interrupts and queues to a VF following an FLR
**/
static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
struct fm10k_vf_info *vf_info)
{
u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
u16 vf_v_idx, vf_v_limit, vf_vid;
u8 vf_idx = vf_info->vf_idx;
int i;
/* verify vf is in range */
if (vf_idx >= hw->iov.num_vfs)
return FM10K_ERR_PARAM;
/* clear event notification of VF FLR */
fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
/* force timeout and then disconnect the mailbox */
vf_info->mbx.timeout = 0;
if (vf_info->mbx.ops.disconnect)
vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
/* determine vector offset and count */
vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
/* determine qmap offsets and counts */
qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
queues_per_pool = fm10k_queues_per_pool(hw);
qmap_idx = qmap_stride * vf_idx;
/* make all the queues inaccessible to the VF */
for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
}
/* calculate starting index for queues */
vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
/* determine correct default VLAN ID */
if (vf_info->pf_vid)
vf_vid = vf_info->pf_vid;
else
vf_vid = vf_info->sw_vid;
/* configure Queue control register */
txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
(vf_idx << FM10K_TXQCTL_TC_SHIFT) |
FM10K_TXQCTL_VF | vf_idx;
rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
/* stop further DMA and reset queue ownership back to VF */
for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
fm10k_write_reg(hw, FM10K_RXDCTL(i),
FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
FM10K_RXDCTL_DROP_ON_EMPTY);
fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
}
/* reset TC with -1 credits and no quanta to prevent transmit */
fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
FM10K_TC_CREDIT_CREDIT_MASK);
/* update our first entry in the table based on previous VF */
if (!vf_idx)
hw->mac.ops.update_int_moderator(hw);
else
hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
/* reset linked list so it now includes our active vectors */
if (vf_idx == (hw->iov.num_vfs - 1))
fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
else
fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
/* link remaining vectors so that next points to previous */
for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
for (i = FM10K_VFMBMEM_LEN; i--;)
fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
for (i = FM10K_VLAN_TABLE_SIZE; i--;)
fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
for (i = FM10K_RETA_SIZE; i--;)
fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
for (i = FM10K_RSSRK_SIZE; i--;)
fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
/* Update base address registers to contain MAC address */
if (is_valid_ether_addr(vf_info->mac)) {
tdbal = (((u32)vf_info->mac[3]) << 24) |
(((u32)vf_info->mac[4]) << 16) |
(((u32)vf_info->mac[5]) << 8);
tdbah = (((u32)0xFF) << 24) |
(((u32)vf_info->mac[0]) << 16) |
(((u32)vf_info->mac[1]) << 8) |
((u32)vf_info->mac[2]);
}
/* map queue pairs back to VF from last to first */
for (i = queues_per_pool; i--;) {
fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
* explanation of how TDLEN is used.
*/
fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
hw->mac.itr_scale <<
FM10K_TDLEN_ITR_SCALE_SHIFT);
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
}
/* repeat the first ring for all the remaining VF rings */
for (i = queues_per_pool; i < qmap_stride; i++) {
fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
}
return 0;
}
/**
* fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
* @hw: pointer to hardware structure
* @vf_info: pointer to VF information structure
* @lport_idx: Logical port offset from the hardware glort
* @flags: Set of capability flags to extend port beyond basic functionality
*
* This function allows enabling a VF port by assigning it a GLORT and
* setting the flags so that it can enable an Rx mode.
**/
static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
struct fm10k_vf_info *vf_info,
u16 lport_idx, u8 flags)
{
u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
vf_info->glort = glort;
return 0;
}
/**
* fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
* @hw: pointer to hardware structure
* @vf_info: pointer to VF information structure
*
* This function disables a VF port by stripping it of a GLORT and
* setting the flags so that it cannot enable any Rx mode.
**/
static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
struct fm10k_vf_info *vf_info)
{
u32 msg[1];
/* need to disable the port if it is already enabled */
if (FM10K_VF_FLAG_ENABLED(vf_info)) {
/* notify switch that this port has been disabled */
fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
/* generate port state response to notify VF it is not ready */
fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
}
/* clear flags and glort if it exists */
vf_info->vf_flags = 0;
vf_info->glort = 0;
}
/**
* fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
* @hw: pointer to hardware structure
* @q: stats for all queues of a VF
* @vf_idx: index of VF
*
* This function collects queue stats for VFs.
**/
static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
struct fm10k_hw_stats_q *q,
u16 vf_idx)
{
u32 idx, qpp;
/* get stats for all of the queues */
qpp = fm10k_queues_per_pool(hw);
idx = fm10k_vf_queue_index(hw, vf_idx);
fm10k_update_hw_stats_q(hw, q, idx, qpp);
}
/**
* fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
* @hw: Pointer to hardware structure
* @results: Pointer array to message, results[0] is pointer to message
* @mbx: Pointer to mailbox information structure
*
* This function is a default handler for MSI-X requests from the VF. The
* assumption is that in this case it is acceptable to just directly
* hand off the message from the VF to the underlying shared code.
**/
s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 __always_unused **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
u8 vf_idx = vf_info->vf_idx;
return hw->iov.ops.assign_int_moderator(hw, vf_idx);
}
/**
* fm10k_iov_select_vid - Select correct default VLAN ID
* @vf_info: pointer to VF information structure
* @vid: VLAN ID to correct
*
* Will report an error if the VLAN ID is out of range. For VID = 0, it will
* return either the pf_vid or sw_vid depending on which one is set.
*/
s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
{
if (!vid)
return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
else if (vf_info->pf_vid && vid != vf_info->pf_vid)
return FM10K_ERR_PARAM;
else
return vid;
}
/**
* fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
* @hw: Pointer to hardware structure
* @results: Pointer array to message, results[0] is pointer to message
* @mbx: Pointer to mailbox information structure
*
* This function is a default handler for MAC/VLAN requests from the VF.
* The assumption is that in this case it is acceptable to just directly
* hand off the message from the VF to the underlying shared code.
**/
s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
u8 mac[ETH_ALEN];
u32 *result;
int err = 0;
bool set;
u16 vlan;
u32 vid;
/* we shouldn't be updating rules on a disabled interface */
if (!FM10K_VF_FLAG_ENABLED(vf_info))
err = FM10K_ERR_PARAM;
if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
result = results[FM10K_MAC_VLAN_MSG_VLAN];
/* record VLAN id requested */
err = fm10k_tlv_attr_get_u32(result, &vid);
if (err)
return err;
set = !(vid & FM10K_VLAN_CLEAR);
vid &= ~FM10K_VLAN_CLEAR;
/* if the length field has been set, this is a multi-bit
* update request. For multi-bit requests, simply disallow
* them when the pf_vid has been set. In this case, the PF
* should have already cleared the VLAN_TABLE, and if we
* allowed them, it could allow a rogue VF to receive traffic
* on a VLAN it was not assigned. In the single-bit case, we
* need to modify requests for VLAN 0 to use the default PF or
* SW vid when assigned.
*/
if (vid >> 16) {
/* prevent multi-bit requests when PF has
* administratively set the VLAN for this VF
*/
if (vf_info->pf_vid)
return FM10K_ERR_PARAM;
} else {
err = fm10k_iov_select_vid(vf_info, (u16)vid);
if (err < 0)
return err;
vid = err;
}
/* update VSI info for VF in regards to VLAN table */
err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
}
if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
result = results[FM10K_MAC_VLAN_MSG_MAC];
/* record unicast MAC address requested */
err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
if (err)
return err;
/* block attempts to set MAC for a locked device */
if (is_valid_ether_addr(vf_info->mac) &&
!ether_addr_equal(mac, vf_info->mac))
return FM10K_ERR_PARAM;
set = !(vlan & FM10K_VLAN_CLEAR);
vlan &= ~FM10K_VLAN_CLEAR;
err = fm10k_iov_select_vid(vf_info, vlan);
if (err < 0)
return err;
vlan = (u16)err;
/* notify switch of request for new unicast address */
err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
mac, vlan, set, 0);
}
if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
/* record multicast MAC address requested */
err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
if (err)
return err;
/* verify that the VF is allowed to request multicast */
if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
return FM10K_ERR_PARAM;
set = !(vlan & FM10K_VLAN_CLEAR);
vlan &= ~FM10K_VLAN_CLEAR;
err = fm10k_iov_select_vid(vf_info, vlan);
if (err < 0)
return err;
vlan = (u16)err;
/* notify switch of request for new multicast address */
err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
mac, vlan, set);
}
return err;
}
/**
* fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
* @vf_info: VF info structure containing capability flags
* @mode: Requested xcast mode
*
* This function outputs the mode that most closely matches the requested
* mode. If not modes match it will request we disable the port
**/
static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
u8 mode)
{
u8 vf_flags = vf_info->vf_flags;
/* match up mode to capabilities as best as possible */
switch (mode) {
case FM10K_XCAST_MODE_PROMISC:
if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
return FM10K_XCAST_MODE_PROMISC;
/* fall through */
case FM10K_XCAST_MODE_ALLMULTI:
if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
return FM10K_XCAST_MODE_ALLMULTI;
/* fall through */
case FM10K_XCAST_MODE_MULTI:
if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
return FM10K_XCAST_MODE_MULTI;
/* fall through */
case FM10K_XCAST_MODE_NONE:
if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
return FM10K_XCAST_MODE_NONE;
/* fall through */
default:
break;
}
/* disable interface as it should not be able to request any */
return FM10K_XCAST_MODE_DISABLE;
}
/**
* fm10k_iov_msg_lport_state_pf - Message handler for port state requests
* @hw: Pointer to hardware structure
* @results: Pointer array to message, results[0] is pointer to message
* @mbx: Pointer to mailbox information structure
*
* This function is a default handler for port state requests. The port
* state requests for now are basic and consist of enabling or disabling
* the port.
**/
s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
s32 err = 0;
u32 msg[2];
u8 mode = 0;
/* verify VF is allowed to enable even minimal mode */
if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
return FM10K_ERR_PARAM;
if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
u32 *result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
/* XCAST mode update requested */
err = fm10k_tlv_attr_get_u8(result, &mode);
if (err)
return FM10K_ERR_PARAM;
/* prep for possible demotion depending on capabilities */
mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
/* if mode is not currently enabled, enable it */
if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
/* swap mode back to a bit flag */
mode = FM10K_VF_FLAG_SET_MODE(mode);
} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
/* need to disable the port if it is already enabled */
if (FM10K_VF_FLAG_ENABLED(vf_info))
err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1, false);
/* we need to clear VF_FLAG_ENABLED flags in order to ensure
* that we actually re-enable the LPORT state below. Note that
* this has no impact if the VF is already disabled, as the
* flags are already cleared.
*/
if (!err)
vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
/* when enabling the port we should reset the rate limiters */
hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
/* set mode for minimal functionality */
mode = FM10K_VF_FLAG_SET_MODE_NONE;
/* generate port state response to notify VF it is ready */
fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
mbx->ops.enqueue_tx(hw, mbx, msg);
}
/* if enable state toggled note the update */
if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
!!mode);
/* if state change succeeded, then update our stored state */
mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
if (!err)
vf_info->vf_flags = mode;
return err;
}
/**
* fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
* @hw: pointer to hardware structure
* @stats: pointer to the stats structure to update
*
* This function collects and aggregates global and per queue hardware
* statistics.
**/
static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
struct fm10k_hw_stats *stats)
{
u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
u32 id, id_prev;
/* Use Tx queue 0 as a canary to detect a reset */
id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
/* Read Global Statistics */
do {
timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
&stats->timeout);
ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
&stats->vlan_drop);
loopback_drop =
fm10k_read_hw_stats_32b(hw,
FM10K_STATS_LOOPBACK_DROP,
&stats->loopback_drop);
nodesc_drop = fm10k_read_hw_stats_32b(hw,
FM10K_STATS_NODESC_DROP,
&stats->nodesc_drop);
/* if value has not changed then we have consistent data */
id_prev = id;
id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
/* drop non-ID bits and set VALID ID bit */
id &= FM10K_TXQCTL_ID_MASK;
id |= FM10K_STAT_VALID;
/* Update Global Statistics */
if (stats->stats_idx == id) {
stats->timeout.count += timeout;
stats->ur.count += ur;
stats->ca.count += ca;
stats->um.count += um;
stats->xec.count += xec;
stats->vlan_drop.count += vlan_drop;
stats->loopback_drop.count += loopback_drop;
stats->nodesc_drop.count += nodesc_drop;
}
/* Update bases and record current PF id */
fm10k_update_hw_base_32b(&stats->timeout, timeout);
fm10k_update_hw_base_32b(&stats->ur, ur);
fm10k_update_hw_base_32b(&stats->ca, ca);
fm10k_update_hw_base_32b(&stats->um, um);
fm10k_update_hw_base_32b(&stats->xec, xec);
fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
stats->stats_idx = id;
/* Update Queue Statistics */
fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
}
/**
* fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
* @hw: pointer to hardware structure
* @stats: pointer to the stats structure to update
*
* This function resets the base for global and per queue hardware
* statistics.
**/
static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
struct fm10k_hw_stats *stats)
{
/* Unbind Global Statistics */
fm10k_unbind_hw_stats_32b(&stats->timeout);
fm10k_unbind_hw_stats_32b(&stats->ur);
fm10k_unbind_hw_stats_32b(&stats->ca);
fm10k_unbind_hw_stats_32b(&stats->um);
fm10k_unbind_hw_stats_32b(&stats->xec);
fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
/* Unbind Queue Statistics */
fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
/* Reinitialize bases for all stats */
fm10k_update_hw_stats_pf(hw, stats);
}
/**
* fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
* @hw: pointer to hardware structure
* @dma_mask: 64 bit DMA mask required for platform
*
* This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
* to limit the access to memory beyond what is physically in the system.
**/
static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
{
/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
u32 phyaddr = (u32)(dma_mask >> 32);
fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
}
/**
* fm10k_get_fault_pf - Record a fault in one of the interface units
* @hw: pointer to hardware structure
* @type: pointer to fault type register offset
* @fault: pointer to memory location to record the fault
*
* Record the fault register contents to the fault data structure and
* clear the entry from the register.
*
* Returns ERR_PARAM if invalid register is specified or no error is present.
**/
static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
struct fm10k_fault *fault)
{
u32 func;
/* verify the fault register is in range and is aligned */
switch (type) {
case FM10K_PCA_FAULT:
case FM10K_THI_FAULT:
case FM10K_FUM_FAULT:
break;
default:
return FM10K_ERR_PARAM;
}
/* only service faults that are valid */
func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
if (!(func & FM10K_FAULT_FUNC_VALID))
return FM10K_ERR_PARAM;
/* read remaining fields */
fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
fault->address <<= 32;
fault->address |= fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
/* clear valid bit to allow for next error */
fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
/* Record which function triggered the error */
if (func & FM10K_FAULT_FUNC_PF)
fault->func = 0;
else
fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
FM10K_FAULT_FUNC_VF_SHIFT);
/* record fault type */
fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
return 0;
}
/**
* fm10k_request_lport_map_pf - Request LPORT map from the switch API
* @hw: pointer to hardware structure
*
**/
static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
{
struct fm10k_mbx_info *mbx = &hw->mbx;
u32 msg[1];
/* issue request asking for LPORT map */
fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
/* load onto outgoing mailbox */
return mbx->ops.enqueue_tx(hw, mbx, msg);
}
/**
* fm10k_get_host_state_pf - Returns the state of the switch and mailbox
* @hw: pointer to hardware structure
* @switch_ready: pointer to boolean value that will record switch state
*
* This function will check the DMA_CTRL2 register and mailbox in order
* to determine if the switch is ready for the PF to begin requesting
* addresses and mapping traffic to the local interface.
**/
static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
{
u32 dma_ctrl2;
/* verify the switch is ready for interaction */
dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
return 0;
/* retrieve generic host state info */
return fm10k_get_host_state_generic(hw, switch_ready);
}
/* This structure defines the attibutes to be parsed below */
const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
sizeof(struct fm10k_swapi_error)),
FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
FM10K_TLV_ATTR_LAST
};
/**
* fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
* @hw: Pointer to hardware structure
* @results: pointer array containing parsed data
* @mbx: Pointer to mailbox information structure
*
* This handler configures the lport mapping based on the reply from the
* switch API.
**/
s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
u16 glort, mask;
u32 dglort_map;
s32 err;
err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
&dglort_map);
if (err)
return err;
/* extract values out of the header */
glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
/* verify mask is set and none of the masked bits in glort are set */
if (!mask || (glort & ~mask))
return FM10K_ERR_PARAM;
/* verify the mask is contiguous, and that it is 1's followed by 0's */
if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
return FM10K_ERR_PARAM;
/* record the glort, mask, and port count */
hw->mac.dglort_map = dglort_map;
return 0;
}
const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
FM10K_TLV_ATTR_LAST
};
/**
* fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
* @hw: Pointer to hardware structure
* @results: pointer array containing parsed data
* @mbx: Pointer to mailbox information structure
*
* This handler configures the default VLAN for the PF
**/
static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
u16 glort, pvid;
u32 pvid_update;
s32 err;
err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
&pvid_update);
if (err)
return err;
/* extract values from the pvid update */
glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
/* verify VLAN ID is valid */
if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
return FM10K_ERR_PARAM;
/* record the port VLAN ID value */
hw->mac.default_vid = pvid;
return 0;
}
/**
* fm10k_record_global_table_data - Move global table data to swapi table info
* @from: pointer to source table data structure
* @to: pointer to destination table info structure
*
* This function is will copy table_data to the table_info contained in
* the hw struct.
**/
static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
struct fm10k_swapi_table_info *to)
{
/* convert from le32 struct to CPU byte ordered values */
to->used = le32_to_cpu(from->used);
to->avail = le32_to_cpu(from->avail);
}
const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
sizeof(struct fm10k_swapi_error)),
FM10K_TLV_ATTR_LAST
};
/**
* fm10k_msg_err_pf - Message handler for error reply
* @hw: Pointer to hardware structure
* @results: pointer array containing parsed data
* @mbx: Pointer to mailbox information structure
*
* This handler will capture the data for any error replies to previous
* messages that the PF has sent.
**/
s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_swapi_error err_msg;
s32 err;
/* extract structure from message */
err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
&err_msg, sizeof(err_msg));
if (err)
return err;
/* record table status */
fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
/* record SW API status value */
hw->swapi.status = le32_to_cpu(err_msg.status);
return 0;
}
static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
};
static const struct fm10k_mac_ops mac_ops_pf = {
.get_bus_info = fm10k_get_bus_info_generic,
.reset_hw = fm10k_reset_hw_pf,
.init_hw = fm10k_init_hw_pf,
.start_hw = fm10k_start_hw_generic,
.stop_hw = fm10k_stop_hw_generic,
.update_vlan = fm10k_update_vlan_pf,
.read_mac_addr = fm10k_read_mac_addr_pf,
.update_uc_addr = fm10k_update_uc_addr_pf,
.update_mc_addr = fm10k_update_mc_addr_pf,
.update_xcast_mode = fm10k_update_xcast_mode_pf,
.update_int_moderator = fm10k_update_int_moderator_pf,
.update_lport_state = fm10k_update_lport_state_pf,
.update_hw_stats = fm10k_update_hw_stats_pf,
.rebind_hw_stats = fm10k_rebind_hw_stats_pf,
.configure_dglort_map = fm10k_configure_dglort_map_pf,
.set_dma_mask = fm10k_set_dma_mask_pf,
.get_fault = fm10k_get_fault_pf,
.get_host_state = fm10k_get_host_state_pf,
.request_lport_map = fm10k_request_lport_map_pf,
};
static const struct fm10k_iov_ops iov_ops_pf = {
.assign_resources = fm10k_iov_assign_resources_pf,
.configure_tc = fm10k_iov_configure_tc_pf,
.assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
.assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
.reset_resources = fm10k_iov_reset_resources_pf,
.set_lport = fm10k_iov_set_lport_pf,
.reset_lport = fm10k_iov_reset_lport_pf,
.update_stats = fm10k_iov_update_stats_pf,
};
static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
{
fm10k_get_invariants_generic(hw);
return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
}
const struct fm10k_info fm10k_pf_info = {
.mac = fm10k_mac_pf,
.get_invariants = fm10k_get_invariants_pf,
.mac_ops = &mac_ops_pf,
.iov_ops = &iov_ops_pf,
};