linux/linux-5.4.31/drivers/dma/xilinx/xilinx_dma.c

2812 lines
76 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* DMA driver for Xilinx Video DMA Engine
*
* Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved.
*
* Based on the Freescale DMA driver.
*
* Description:
* The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP
* core that provides high-bandwidth direct memory access between memory
* and AXI4-Stream type video target peripherals. The core provides efficient
* two dimensional DMA operations with independent asynchronous read (S2MM)
* and write (MM2S) channel operation. It can be configured to have either
* one channel or two channels. If configured as two channels, one is to
* transmit to the video device (MM2S) and another is to receive from the
* video device (S2MM). Initialization, status, interrupt and management
* registers are accessed through an AXI4-Lite slave interface.
*
* The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that
* provides high-bandwidth one dimensional direct memory access between memory
* and AXI4-Stream target peripherals. It supports one receive and one
* transmit channel, both of them optional at synthesis time.
*
* The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory
* Access (DMA) between a memory-mapped source address and a memory-mapped
* destination address.
*/
#include <linux/bitops.h>
#include <linux/dmapool.h>
#include <linux/dma/xilinx_dma.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_dma.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include "../dmaengine.h"
/* Register/Descriptor Offsets */
#define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000
#define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030
#define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050
#define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0
/* Control Registers */
#define XILINX_DMA_REG_DMACR 0x0000
#define XILINX_DMA_DMACR_DELAY_MAX 0xff
#define XILINX_DMA_DMACR_DELAY_SHIFT 24
#define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff
#define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16
#define XILINX_DMA_DMACR_ERR_IRQ BIT(14)
#define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13)
#define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12)
#define XILINX_DMA_DMACR_MASTER_SHIFT 8
#define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5
#define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4)
#define XILINX_DMA_DMACR_GENLOCK_EN BIT(3)
#define XILINX_DMA_DMACR_RESET BIT(2)
#define XILINX_DMA_DMACR_CIRC_EN BIT(1)
#define XILINX_DMA_DMACR_RUNSTOP BIT(0)
#define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5)
#define XILINX_DMA_DMACR_DELAY_MASK GENMASK(31, 24)
#define XILINX_DMA_DMACR_FRAME_COUNT_MASK GENMASK(23, 16)
#define XILINX_DMA_DMACR_MASTER_MASK GENMASK(11, 8)
#define XILINX_DMA_REG_DMASR 0x0004
#define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15)
#define XILINX_DMA_DMASR_ERR_IRQ BIT(14)
#define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13)
#define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12)
#define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11)
#define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10)
#define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9)
#define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8)
#define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7)
#define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6)
#define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5)
#define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4)
#define XILINX_DMA_DMASR_SG_MASK BIT(3)
#define XILINX_DMA_DMASR_IDLE BIT(1)
#define XILINX_DMA_DMASR_HALTED BIT(0)
#define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24)
#define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16)
#define XILINX_DMA_REG_CURDESC 0x0008
#define XILINX_DMA_REG_TAILDESC 0x0010
#define XILINX_DMA_REG_REG_INDEX 0x0014
#define XILINX_DMA_REG_FRMSTORE 0x0018
#define XILINX_DMA_REG_THRESHOLD 0x001c
#define XILINX_DMA_REG_FRMPTR_STS 0x0024
#define XILINX_DMA_REG_PARK_PTR 0x0028
#define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8
#define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8)
#define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0
#define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0)
#define XILINX_DMA_REG_VDMA_VERSION 0x002c
/* Register Direct Mode Registers */
#define XILINX_DMA_REG_VSIZE 0x0000
#define XILINX_DMA_REG_HSIZE 0x0004
#define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008
#define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24
#define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0
#define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n))
#define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n))
#define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec
#define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0)
/* HW specific definitions */
#define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x20
#define XILINX_DMA_DMAXR_ALL_IRQ_MASK \
(XILINX_DMA_DMASR_FRM_CNT_IRQ | \
XILINX_DMA_DMASR_DLY_CNT_IRQ | \
XILINX_DMA_DMASR_ERR_IRQ)
#define XILINX_DMA_DMASR_ALL_ERR_MASK \
(XILINX_DMA_DMASR_EOL_LATE_ERR | \
XILINX_DMA_DMASR_SOF_LATE_ERR | \
XILINX_DMA_DMASR_SG_DEC_ERR | \
XILINX_DMA_DMASR_SG_SLV_ERR | \
XILINX_DMA_DMASR_EOF_EARLY_ERR | \
XILINX_DMA_DMASR_SOF_EARLY_ERR | \
XILINX_DMA_DMASR_DMA_DEC_ERR | \
XILINX_DMA_DMASR_DMA_SLAVE_ERR | \
XILINX_DMA_DMASR_DMA_INT_ERR)
/*
* Recoverable errors are DMA Internal error, SOF Early, EOF Early
* and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
* is enabled in the h/w system.
*/
#define XILINX_DMA_DMASR_ERR_RECOVER_MASK \
(XILINX_DMA_DMASR_SOF_LATE_ERR | \
XILINX_DMA_DMASR_EOF_EARLY_ERR | \
XILINX_DMA_DMASR_SOF_EARLY_ERR | \
XILINX_DMA_DMASR_DMA_INT_ERR)
/* Axi VDMA Flush on Fsync bits */
#define XILINX_DMA_FLUSH_S2MM 3
#define XILINX_DMA_FLUSH_MM2S 2
#define XILINX_DMA_FLUSH_BOTH 1
/* Delay loop counter to prevent hardware failure */
#define XILINX_DMA_LOOP_COUNT 1000000
/* AXI DMA Specific Registers/Offsets */
#define XILINX_DMA_REG_SRCDSTADDR 0x18
#define XILINX_DMA_REG_BTT 0x28
/* AXI DMA Specific Masks/Bit fields */
#define XILINX_DMA_MAX_TRANS_LEN_MIN 8
#define XILINX_DMA_MAX_TRANS_LEN_MAX 23
#define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26
#define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16)
#define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4)
#define XILINX_DMA_CR_COALESCE_SHIFT 16
#define XILINX_DMA_BD_SOP BIT(27)
#define XILINX_DMA_BD_EOP BIT(26)
#define XILINX_DMA_COALESCE_MAX 255
#define XILINX_DMA_NUM_DESCS 255
#define XILINX_DMA_NUM_APP_WORDS 5
/* Multi-Channel DMA Descriptor offsets*/
#define XILINX_DMA_MCRX_CDESC(x) (0x40 + (x-1) * 0x20)
#define XILINX_DMA_MCRX_TDESC(x) (0x48 + (x-1) * 0x20)
/* Multi-Channel DMA Masks/Shifts */
#define XILINX_DMA_BD_HSIZE_MASK GENMASK(15, 0)
#define XILINX_DMA_BD_STRIDE_MASK GENMASK(15, 0)
#define XILINX_DMA_BD_VSIZE_MASK GENMASK(31, 19)
#define XILINX_DMA_BD_TDEST_MASK GENMASK(4, 0)
#define XILINX_DMA_BD_STRIDE_SHIFT 0
#define XILINX_DMA_BD_VSIZE_SHIFT 19
/* AXI CDMA Specific Registers/Offsets */
#define XILINX_CDMA_REG_SRCADDR 0x18
#define XILINX_CDMA_REG_DSTADDR 0x20
/* AXI CDMA Specific Masks */
#define XILINX_CDMA_CR_SGMODE BIT(3)
#define xilinx_prep_dma_addr_t(addr) \
((dma_addr_t)((u64)addr##_##msb << 32 | (addr)))
/**
* struct xilinx_vdma_desc_hw - Hardware Descriptor
* @next_desc: Next Descriptor Pointer @0x00
* @pad1: Reserved @0x04
* @buf_addr: Buffer address @0x08
* @buf_addr_msb: MSB of Buffer address @0x0C
* @vsize: Vertical Size @0x10
* @hsize: Horizontal Size @0x14
* @stride: Number of bytes between the first
* pixels of each horizontal line @0x18
*/
struct xilinx_vdma_desc_hw {
u32 next_desc;
u32 pad1;
u32 buf_addr;
u32 buf_addr_msb;
u32 vsize;
u32 hsize;
u32 stride;
} __aligned(64);
/**
* struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA
* @next_desc: Next Descriptor Pointer @0x00
* @next_desc_msb: MSB of Next Descriptor Pointer @0x04
* @buf_addr: Buffer address @0x08
* @buf_addr_msb: MSB of Buffer address @0x0C
* @mcdma_control: Control field for mcdma @0x10
* @vsize_stride: Vsize and Stride field for mcdma @0x14
* @control: Control field @0x18
* @status: Status field @0x1C
* @app: APP Fields @0x20 - 0x30
*/
struct xilinx_axidma_desc_hw {
u32 next_desc;
u32 next_desc_msb;
u32 buf_addr;
u32 buf_addr_msb;
u32 mcdma_control;
u32 vsize_stride;
u32 control;
u32 status;
u32 app[XILINX_DMA_NUM_APP_WORDS];
} __aligned(64);
/**
* struct xilinx_cdma_desc_hw - Hardware Descriptor
* @next_desc: Next Descriptor Pointer @0x00
* @next_desc_msb: Next Descriptor Pointer MSB @0x04
* @src_addr: Source address @0x08
* @src_addr_msb: Source address MSB @0x0C
* @dest_addr: Destination address @0x10
* @dest_addr_msb: Destination address MSB @0x14
* @control: Control field @0x18
* @status: Status field @0x1C
*/
struct xilinx_cdma_desc_hw {
u32 next_desc;
u32 next_desc_msb;
u32 src_addr;
u32 src_addr_msb;
u32 dest_addr;
u32 dest_addr_msb;
u32 control;
u32 status;
} __aligned(64);
/**
* struct xilinx_vdma_tx_segment - Descriptor segment
* @hw: Hardware descriptor
* @node: Node in the descriptor segments list
* @phys: Physical address of segment
*/
struct xilinx_vdma_tx_segment {
struct xilinx_vdma_desc_hw hw;
struct list_head node;
dma_addr_t phys;
} __aligned(64);
/**
* struct xilinx_axidma_tx_segment - Descriptor segment
* @hw: Hardware descriptor
* @node: Node in the descriptor segments list
* @phys: Physical address of segment
*/
struct xilinx_axidma_tx_segment {
struct xilinx_axidma_desc_hw hw;
struct list_head node;
dma_addr_t phys;
} __aligned(64);
/**
* struct xilinx_cdma_tx_segment - Descriptor segment
* @hw: Hardware descriptor
* @node: Node in the descriptor segments list
* @phys: Physical address of segment
*/
struct xilinx_cdma_tx_segment {
struct xilinx_cdma_desc_hw hw;
struct list_head node;
dma_addr_t phys;
} __aligned(64);
/**
* struct xilinx_dma_tx_descriptor - Per Transaction structure
* @async_tx: Async transaction descriptor
* @segments: TX segments list
* @node: Node in the channel descriptors list
* @cyclic: Check for cyclic transfers.
*/
struct xilinx_dma_tx_descriptor {
struct dma_async_tx_descriptor async_tx;
struct list_head segments;
struct list_head node;
bool cyclic;
};
/**
* struct xilinx_dma_chan - Driver specific DMA channel structure
* @xdev: Driver specific device structure
* @ctrl_offset: Control registers offset
* @desc_offset: TX descriptor registers offset
* @lock: Descriptor operation lock
* @pending_list: Descriptors waiting
* @active_list: Descriptors ready to submit
* @done_list: Complete descriptors
* @free_seg_list: Free descriptors
* @common: DMA common channel
* @desc_pool: Descriptors pool
* @dev: The dma device
* @irq: Channel IRQ
* @id: Channel ID
* @direction: Transfer direction
* @num_frms: Number of frames
* @has_sg: Support scatter transfers
* @cyclic: Check for cyclic transfers.
* @genlock: Support genlock mode
* @err: Channel has errors
* @idle: Check for channel idle
* @tasklet: Cleanup work after irq
* @config: Device configuration info
* @flush_on_fsync: Flush on Frame sync
* @desc_pendingcount: Descriptor pending count
* @ext_addr: Indicates 64 bit addressing is supported by dma channel
* @desc_submitcount: Descriptor h/w submitted count
* @residue: Residue for AXI DMA
* @seg_v: Statically allocated segments base
* @seg_p: Physical allocated segments base
* @cyclic_seg_v: Statically allocated segment base for cyclic transfers
* @cyclic_seg_p: Physical allocated segments base for cyclic dma
* @start_transfer: Differentiate b/w DMA IP's transfer
* @stop_transfer: Differentiate b/w DMA IP's quiesce
* @tdest: TDEST value for mcdma
* @has_vflip: S2MM vertical flip
*/
struct xilinx_dma_chan {
struct xilinx_dma_device *xdev;
u32 ctrl_offset;
u32 desc_offset;
spinlock_t lock;
struct list_head pending_list;
struct list_head active_list;
struct list_head done_list;
struct list_head free_seg_list;
struct dma_chan common;
struct dma_pool *desc_pool;
struct device *dev;
int irq;
int id;
enum dma_transfer_direction direction;
int num_frms;
bool has_sg;
bool cyclic;
bool genlock;
bool err;
bool idle;
struct tasklet_struct tasklet;
struct xilinx_vdma_config config;
bool flush_on_fsync;
u32 desc_pendingcount;
bool ext_addr;
u32 desc_submitcount;
u32 residue;
struct xilinx_axidma_tx_segment *seg_v;
dma_addr_t seg_p;
struct xilinx_axidma_tx_segment *cyclic_seg_v;
dma_addr_t cyclic_seg_p;
void (*start_transfer)(struct xilinx_dma_chan *chan);
int (*stop_transfer)(struct xilinx_dma_chan *chan);
u16 tdest;
bool has_vflip;
};
/**
* enum xdma_ip_type - DMA IP type.
*
* @XDMA_TYPE_AXIDMA: Axi dma ip.
* @XDMA_TYPE_CDMA: Axi cdma ip.
* @XDMA_TYPE_VDMA: Axi vdma ip.
*
*/
enum xdma_ip_type {
XDMA_TYPE_AXIDMA = 0,
XDMA_TYPE_CDMA,
XDMA_TYPE_VDMA,
};
struct xilinx_dma_config {
enum xdma_ip_type dmatype;
int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
struct clk **tx_clk, struct clk **txs_clk,
struct clk **rx_clk, struct clk **rxs_clk);
};
/**
* struct xilinx_dma_device - DMA device structure
* @regs: I/O mapped base address
* @dev: Device Structure
* @common: DMA device structure
* @chan: Driver specific DMA channel
* @mcdma: Specifies whether Multi-Channel is present or not
* @flush_on_fsync: Flush on frame sync
* @ext_addr: Indicates 64 bit addressing is supported by dma device
* @pdev: Platform device structure pointer
* @dma_config: DMA config structure
* @axi_clk: DMA Axi4-lite interace clock
* @tx_clk: DMA mm2s clock
* @txs_clk: DMA mm2s stream clock
* @rx_clk: DMA s2mm clock
* @rxs_clk: DMA s2mm stream clock
* @nr_channels: Number of channels DMA device supports
* @chan_id: DMA channel identifier
* @max_buffer_len: Max buffer length
*/
struct xilinx_dma_device {
void __iomem *regs;
struct device *dev;
struct dma_device common;
struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE];
bool mcdma;
u32 flush_on_fsync;
bool ext_addr;
struct platform_device *pdev;
const struct xilinx_dma_config *dma_config;
struct clk *axi_clk;
struct clk *tx_clk;
struct clk *txs_clk;
struct clk *rx_clk;
struct clk *rxs_clk;
u32 nr_channels;
u32 chan_id;
u32 max_buffer_len;
};
/* Macros */
#define to_xilinx_chan(chan) \
container_of(chan, struct xilinx_dma_chan, common)
#define to_dma_tx_descriptor(tx) \
container_of(tx, struct xilinx_dma_tx_descriptor, async_tx)
#define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \
readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \
cond, delay_us, timeout_us)
/* IO accessors */
static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg)
{
return ioread32(chan->xdev->regs + reg);
}
static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value)
{
iowrite32(value, chan->xdev->regs + reg);
}
static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg,
u32 value)
{
dma_write(chan, chan->desc_offset + reg, value);
}
static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg)
{
return dma_read(chan, chan->ctrl_offset + reg);
}
static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg,
u32 value)
{
dma_write(chan, chan->ctrl_offset + reg, value);
}
static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg,
u32 clr)
{
dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr);
}
static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg,
u32 set)
{
dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set);
}
/**
* vdma_desc_write_64 - 64-bit descriptor write
* @chan: Driver specific VDMA channel
* @reg: Register to write
* @value_lsb: lower address of the descriptor.
* @value_msb: upper address of the descriptor.
*
* Since vdma driver is trying to write to a register offset which is not a
* multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits
* instead of a single 64 bit register write.
*/
static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg,
u32 value_lsb, u32 value_msb)
{
/* Write the lsb 32 bits*/
writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg);
/* Write the msb 32 bits */
writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4);
}
static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value)
{
lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg);
}
static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg,
dma_addr_t addr)
{
if (chan->ext_addr)
dma_writeq(chan, reg, addr);
else
dma_ctrl_write(chan, reg, addr);
}
static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan,
struct xilinx_axidma_desc_hw *hw,
dma_addr_t buf_addr, size_t sg_used,
size_t period_len)
{
if (chan->ext_addr) {
hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len);
hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used +
period_len);
} else {
hw->buf_addr = buf_addr + sg_used + period_len;
}
}
/* -----------------------------------------------------------------------------
* Descriptors and segments alloc and free
*/
/**
* xilinx_vdma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific DMA channel
*
* Return: The allocated segment on success and NULL on failure.
*/
static struct xilinx_vdma_tx_segment *
xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
struct xilinx_vdma_tx_segment *segment;
dma_addr_t phys;
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
if (!segment)
return NULL;
segment->phys = phys;
return segment;
}
/**
* xilinx_cdma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific DMA channel
*
* Return: The allocated segment on success and NULL on failure.
*/
static struct xilinx_cdma_tx_segment *
xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
struct xilinx_cdma_tx_segment *segment;
dma_addr_t phys;
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
if (!segment)
return NULL;
segment->phys = phys;
return segment;
}
/**
* xilinx_axidma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific DMA channel
*
* Return: The allocated segment on success and NULL on failure.
*/
static struct xilinx_axidma_tx_segment *
xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
struct xilinx_axidma_tx_segment *segment = NULL;
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
if (!list_empty(&chan->free_seg_list)) {
segment = list_first_entry(&chan->free_seg_list,
struct xilinx_axidma_tx_segment,
node);
list_del(&segment->node);
}
spin_unlock_irqrestore(&chan->lock, flags);
return segment;
}
static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw)
{
u32 next_desc = hw->next_desc;
u32 next_desc_msb = hw->next_desc_msb;
memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw));
hw->next_desc = next_desc;
hw->next_desc_msb = next_desc_msb;
}
/**
* xilinx_dma_free_tx_segment - Free transaction segment
* @chan: Driver specific DMA channel
* @segment: DMA transaction segment
*/
static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan,
struct xilinx_axidma_tx_segment *segment)
{
xilinx_dma_clean_hw_desc(&segment->hw);
list_add_tail(&segment->node, &chan->free_seg_list);
}
/**
* xilinx_cdma_free_tx_segment - Free transaction segment
* @chan: Driver specific DMA channel
* @segment: DMA transaction segment
*/
static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan,
struct xilinx_cdma_tx_segment *segment)
{
dma_pool_free(chan->desc_pool, segment, segment->phys);
}
/**
* xilinx_vdma_free_tx_segment - Free transaction segment
* @chan: Driver specific DMA channel
* @segment: DMA transaction segment
*/
static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan,
struct xilinx_vdma_tx_segment *segment)
{
dma_pool_free(chan->desc_pool, segment, segment->phys);
}
/**
* xilinx_dma_tx_descriptor - Allocate transaction descriptor
* @chan: Driver specific DMA channel
*
* Return: The allocated descriptor on success and NULL on failure.
*/
static struct xilinx_dma_tx_descriptor *
xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *desc;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return NULL;
INIT_LIST_HEAD(&desc->segments);
return desc;
}
/**
* xilinx_dma_free_tx_descriptor - Free transaction descriptor
* @chan: Driver specific DMA channel
* @desc: DMA transaction descriptor
*/
static void
xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan,
struct xilinx_dma_tx_descriptor *desc)
{
struct xilinx_vdma_tx_segment *segment, *next;
struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next;
struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next;
if (!desc)
return;
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
list_for_each_entry_safe(segment, next, &desc->segments, node) {
list_del(&segment->node);
xilinx_vdma_free_tx_segment(chan, segment);
}
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
list_for_each_entry_safe(cdma_segment, cdma_next,
&desc->segments, node) {
list_del(&cdma_segment->node);
xilinx_cdma_free_tx_segment(chan, cdma_segment);
}
} else {
list_for_each_entry_safe(axidma_segment, axidma_next,
&desc->segments, node) {
list_del(&axidma_segment->node);
xilinx_dma_free_tx_segment(chan, axidma_segment);
}
}
kfree(desc);
}
/* Required functions */
/**
* xilinx_dma_free_desc_list - Free descriptors list
* @chan: Driver specific DMA channel
* @list: List to parse and delete the descriptor
*/
static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan,
struct list_head *list)
{
struct xilinx_dma_tx_descriptor *desc, *next;
list_for_each_entry_safe(desc, next, list, node) {
list_del(&desc->node);
xilinx_dma_free_tx_descriptor(chan, desc);
}
}
/**
* xilinx_dma_free_descriptors - Free channel descriptors
* @chan: Driver specific DMA channel
*/
static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan)
{
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
xilinx_dma_free_desc_list(chan, &chan->pending_list);
xilinx_dma_free_desc_list(chan, &chan->done_list);
xilinx_dma_free_desc_list(chan, &chan->active_list);
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_dma_free_chan_resources - Free channel resources
* @dchan: DMA channel
*/
static void xilinx_dma_free_chan_resources(struct dma_chan *dchan)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
unsigned long flags;
dev_dbg(chan->dev, "Free all channel resources.\n");
xilinx_dma_free_descriptors(chan);
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
spin_lock_irqsave(&chan->lock, flags);
INIT_LIST_HEAD(&chan->free_seg_list);
spin_unlock_irqrestore(&chan->lock, flags);
/* Free memory that is allocated for BD */
dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
XILINX_DMA_NUM_DESCS, chan->seg_v,
chan->seg_p);
/* Free Memory that is allocated for cyclic DMA Mode */
dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v),
chan->cyclic_seg_v, chan->cyclic_seg_p);
}
if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) {
dma_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL;
}
}
/**
* xilinx_dma_chan_handle_cyclic - Cyclic dma callback
* @chan: Driver specific dma channel
* @desc: dma transaction descriptor
* @flags: flags for spin lock
*/
static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan,
struct xilinx_dma_tx_descriptor *desc,
unsigned long *flags)
{
dma_async_tx_callback callback;
void *callback_param;
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
if (callback) {
spin_unlock_irqrestore(&chan->lock, *flags);
callback(callback_param);
spin_lock_irqsave(&chan->lock, *flags);
}
}
/**
* xilinx_dma_chan_desc_cleanup - Clean channel descriptors
* @chan: Driver specific DMA channel
*/
static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *desc, *next;
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
list_for_each_entry_safe(desc, next, &chan->done_list, node) {
struct dmaengine_desc_callback cb;
if (desc->cyclic) {
xilinx_dma_chan_handle_cyclic(chan, desc, &flags);
break;
}
/* Remove from the list of running transactions */
list_del(&desc->node);
/* Run the link descriptor callback function */
dmaengine_desc_get_callback(&desc->async_tx, &cb);
if (dmaengine_desc_callback_valid(&cb)) {
spin_unlock_irqrestore(&chan->lock, flags);
dmaengine_desc_callback_invoke(&cb, NULL);
spin_lock_irqsave(&chan->lock, flags);
}
/* Run any dependencies, then free the descriptor */
dma_run_dependencies(&desc->async_tx);
xilinx_dma_free_tx_descriptor(chan, desc);
}
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_dma_do_tasklet - Schedule completion tasklet
* @data: Pointer to the Xilinx DMA channel structure
*/
static void xilinx_dma_do_tasklet(unsigned long data)
{
struct xilinx_dma_chan *chan = (struct xilinx_dma_chan *)data;
xilinx_dma_chan_desc_cleanup(chan);
}
/**
* xilinx_dma_alloc_chan_resources - Allocate channel resources
* @dchan: DMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
int i;
/* Has this channel already been allocated? */
if (chan->desc_pool)
return 0;
/*
* We need the descriptor to be aligned to 64bytes
* for meeting Xilinx VDMA specification requirement.
*/
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
/* Allocate the buffer descriptors. */
chan->seg_v = dma_alloc_coherent(chan->dev,
sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS,
&chan->seg_p, GFP_KERNEL);
if (!chan->seg_v) {
dev_err(chan->dev,
"unable to allocate channel %d descriptors\n",
chan->id);
return -ENOMEM;
}
/*
* For cyclic DMA mode we need to program the tail Descriptor
* register with a value which is not a part of the BD chain
* so allocating a desc segment during channel allocation for
* programming tail descriptor.
*/
chan->cyclic_seg_v = dma_alloc_coherent(chan->dev,
sizeof(*chan->cyclic_seg_v),
&chan->cyclic_seg_p,
GFP_KERNEL);
if (!chan->cyclic_seg_v) {
dev_err(chan->dev,
"unable to allocate desc segment for cyclic DMA\n");
dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
XILINX_DMA_NUM_DESCS, chan->seg_v,
chan->seg_p);
return -ENOMEM;
}
chan->cyclic_seg_v->phys = chan->cyclic_seg_p;
for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) {
chan->seg_v[i].hw.next_desc =
lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
((i + 1) % XILINX_DMA_NUM_DESCS));
chan->seg_v[i].hw.next_desc_msb =
upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
((i + 1) % XILINX_DMA_NUM_DESCS));
chan->seg_v[i].phys = chan->seg_p +
sizeof(*chan->seg_v) * i;
list_add_tail(&chan->seg_v[i].node,
&chan->free_seg_list);
}
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool",
chan->dev,
sizeof(struct xilinx_cdma_tx_segment),
__alignof__(struct xilinx_cdma_tx_segment),
0);
} else {
chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
chan->dev,
sizeof(struct xilinx_vdma_tx_segment),
__alignof__(struct xilinx_vdma_tx_segment),
0);
}
if (!chan->desc_pool &&
(chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA)) {
dev_err(chan->dev,
"unable to allocate channel %d descriptor pool\n",
chan->id);
return -ENOMEM;
}
dma_cookie_init(dchan);
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
/* For AXI DMA resetting once channel will reset the
* other channel as well so enable the interrupts here.
*/
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
}
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_CDMA_CR_SGMODE);
return 0;
}
/**
* xilinx_dma_calc_copysize - Calculate the amount of data to copy
* @chan: Driver specific DMA channel
* @size: Total data that needs to be copied
* @done: Amount of data that has been already copied
*
* Return: Amount of data that has to be copied
*/
static int xilinx_dma_calc_copysize(struct xilinx_dma_chan *chan,
int size, int done)
{
size_t copy;
copy = min_t(size_t, size - done,
chan->xdev->max_buffer_len);
if ((copy + done < size) &&
chan->xdev->common.copy_align) {
/*
* If this is not the last descriptor, make sure
* the next one will be properly aligned
*/
copy = rounddown(copy,
(1 << chan->xdev->common.copy_align));
}
return copy;
}
/**
* xilinx_dma_tx_status - Get DMA transaction status
* @dchan: DMA channel
* @cookie: Transaction identifier
* @txstate: Transaction state
*
* Return: DMA transaction status
*/
static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_axidma_tx_segment *segment;
struct xilinx_axidma_desc_hw *hw;
enum dma_status ret;
unsigned long flags;
u32 residue = 0;
ret = dma_cookie_status(dchan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
spin_lock_irqsave(&chan->lock, flags);
desc = list_last_entry(&chan->active_list,
struct xilinx_dma_tx_descriptor, node);
if (chan->has_sg) {
list_for_each_entry(segment, &desc->segments, node) {
hw = &segment->hw;
residue += (hw->control - hw->status) &
chan->xdev->max_buffer_len;
}
}
spin_unlock_irqrestore(&chan->lock, flags);
chan->residue = residue;
dma_set_residue(txstate, chan->residue);
}
return ret;
}
/**
* xilinx_dma_stop_transfer - Halt DMA channel
* @chan: Driver specific DMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan)
{
u32 val;
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
/* Wait for the hardware to halt */
return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
val & XILINX_DMA_DMASR_HALTED, 0,
XILINX_DMA_LOOP_COUNT);
}
/**
* xilinx_cdma_stop_transfer - Wait for the current transfer to complete
* @chan: Driver specific DMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan)
{
u32 val;
return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
val & XILINX_DMA_DMASR_IDLE, 0,
XILINX_DMA_LOOP_COUNT);
}
/**
* xilinx_dma_start - Start DMA channel
* @chan: Driver specific DMA channel
*/
static void xilinx_dma_start(struct xilinx_dma_chan *chan)
{
int err;
u32 val;
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
/* Wait for the hardware to start */
err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
!(val & XILINX_DMA_DMASR_HALTED), 0,
XILINX_DMA_LOOP_COUNT);
if (err) {
dev_err(chan->dev, "Cannot start channel %p: %x\n",
chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
chan->err = true;
}
}
/**
* xilinx_vdma_start_transfer - Starts VDMA transfer
* @chan: Driver specific channel struct pointer
*/
static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
{
struct xilinx_vdma_config *config = &chan->config;
struct xilinx_dma_tx_descriptor *desc;
u32 reg, j;
struct xilinx_vdma_tx_segment *segment, *last = NULL;
int i = 0;
/* This function was invoked with lock held */
if (chan->err)
return;
if (!chan->idle)
return;
if (list_empty(&chan->pending_list))
return;
desc = list_first_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
/* Configure the hardware using info in the config structure */
if (chan->has_vflip) {
reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP);
reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP;
reg |= config->vflip_en;
dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP,
reg);
}
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
if (config->frm_cnt_en)
reg |= XILINX_DMA_DMACR_FRAMECNT_EN;
else
reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
/* If not parking, enable circular mode */
if (config->park)
reg &= ~XILINX_DMA_DMACR_CIRC_EN;
else
reg |= XILINX_DMA_DMACR_CIRC_EN;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
j = chan->desc_submitcount;
reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR);
if (chan->direction == DMA_MEM_TO_DEV) {
reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK;
reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT;
} else {
reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK;
reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT;
}
dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg);
/* Start the hardware */
xilinx_dma_start(chan);
if (chan->err)
return;
/* Start the transfer */
if (chan->desc_submitcount < chan->num_frms)
i = chan->desc_submitcount;
list_for_each_entry(segment, &desc->segments, node) {
if (chan->ext_addr)
vdma_desc_write_64(chan,
XILINX_VDMA_REG_START_ADDRESS_64(i++),
segment->hw.buf_addr,
segment->hw.buf_addr_msb);
else
vdma_desc_write(chan,
XILINX_VDMA_REG_START_ADDRESS(i++),
segment->hw.buf_addr);
last = segment;
}
if (!last)
return;
/* HW expects these parameters to be same for one transaction */
vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
last->hw.stride);
vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
chan->desc_submitcount++;
chan->desc_pendingcount--;
list_del(&desc->node);
list_add_tail(&desc->node, &chan->active_list);
if (chan->desc_submitcount == chan->num_frms)
chan->desc_submitcount = 0;
chan->idle = false;
}
/**
* xilinx_cdma_start_transfer - Starts cdma transfer
* @chan: Driver specific channel struct pointer
*/
static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
struct xilinx_cdma_tx_segment *tail_segment;
u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR);
if (chan->err)
return;
if (!chan->idle)
return;
if (list_empty(&chan->pending_list))
return;
head_desc = list_first_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_cdma_tx_segment, node);
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX;
ctrl_reg |= chan->desc_pendingcount <<
XILINX_DMA_CR_COALESCE_SHIFT;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg);
}
if (chan->has_sg) {
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
XILINX_CDMA_CR_SGMODE);
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_CDMA_CR_SGMODE);
xilinx_write(chan, XILINX_DMA_REG_CURDESC,
head_desc->async_tx.phys);
/* Update tail ptr register which will start the transfer */
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys);
} else {
/* In simple mode */
struct xilinx_cdma_tx_segment *segment;
struct xilinx_cdma_desc_hw *hw;
segment = list_first_entry(&head_desc->segments,
struct xilinx_cdma_tx_segment,
node);
hw = &segment->hw;
xilinx_write(chan, XILINX_CDMA_REG_SRCADDR,
xilinx_prep_dma_addr_t(hw->src_addr));
xilinx_write(chan, XILINX_CDMA_REG_DSTADDR,
xilinx_prep_dma_addr_t(hw->dest_addr));
/* Start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
hw->control & chan->xdev->max_buffer_len);
}
list_splice_tail_init(&chan->pending_list, &chan->active_list);
chan->desc_pendingcount = 0;
chan->idle = false;
}
/**
* xilinx_dma_start_transfer - Starts DMA transfer
* @chan: Driver specific channel struct pointer
*/
static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
struct xilinx_axidma_tx_segment *tail_segment;
u32 reg;
if (chan->err)
return;
if (list_empty(&chan->pending_list))
return;
if (!chan->idle)
return;
head_desc = list_first_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_axidma_tx_segment, node);
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
reg &= ~XILINX_DMA_CR_COALESCE_MAX;
reg |= chan->desc_pendingcount <<
XILINX_DMA_CR_COALESCE_SHIFT;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
}
if (chan->has_sg && !chan->xdev->mcdma)
xilinx_write(chan, XILINX_DMA_REG_CURDESC,
head_desc->async_tx.phys);
if (chan->has_sg && chan->xdev->mcdma) {
if (chan->direction == DMA_MEM_TO_DEV) {
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
head_desc->async_tx.phys);
} else {
if (!chan->tdest) {
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
head_desc->async_tx.phys);
} else {
dma_ctrl_write(chan,
XILINX_DMA_MCRX_CDESC(chan->tdest),
head_desc->async_tx.phys);
}
}
}
xilinx_dma_start(chan);
if (chan->err)
return;
/* Start the transfer */
if (chan->has_sg && !chan->xdev->mcdma) {
if (chan->cyclic)
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
chan->cyclic_seg_v->phys);
else
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys);
} else if (chan->has_sg && chan->xdev->mcdma) {
if (chan->direction == DMA_MEM_TO_DEV) {
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys);
} else {
if (!chan->tdest) {
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys);
} else {
dma_ctrl_write(chan,
XILINX_DMA_MCRX_TDESC(chan->tdest),
tail_segment->phys);
}
}
} else {
struct xilinx_axidma_tx_segment *segment;
struct xilinx_axidma_desc_hw *hw;
segment = list_first_entry(&head_desc->segments,
struct xilinx_axidma_tx_segment,
node);
hw = &segment->hw;
xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR,
xilinx_prep_dma_addr_t(hw->buf_addr));
/* Start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
hw->control & chan->xdev->max_buffer_len);
}
list_splice_tail_init(&chan->pending_list, &chan->active_list);
chan->desc_pendingcount = 0;
chan->idle = false;
}
/**
* xilinx_dma_issue_pending - Issue pending transactions
* @dchan: DMA channel
*/
static void xilinx_dma_issue_pending(struct dma_chan *dchan)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
chan->start_transfer(chan);
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_dma_complete_descriptor - Mark the active descriptor as complete
* @chan : xilinx DMA channel
*
* CONTEXT: hardirq
*/
static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *desc, *next;
/* This function was invoked with lock held */
if (list_empty(&chan->active_list))
return;
list_for_each_entry_safe(desc, next, &chan->active_list, node) {
list_del(&desc->node);
if (!desc->cyclic)
dma_cookie_complete(&desc->async_tx);
list_add_tail(&desc->node, &chan->done_list);
}
}
/**
* xilinx_dma_reset - Reset DMA channel
* @chan: Driver specific DMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_dma_reset(struct xilinx_dma_chan *chan)
{
int err;
u32 tmp;
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET);
/* Wait for the hardware to finish reset */
err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp,
!(tmp & XILINX_DMA_DMACR_RESET), 0,
XILINX_DMA_LOOP_COUNT);
if (err) {
dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
dma_ctrl_read(chan, XILINX_DMA_REG_DMACR),
dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
return -ETIMEDOUT;
}
chan->err = false;
chan->idle = true;
chan->desc_pendingcount = 0;
chan->desc_submitcount = 0;
return err;
}
/**
* xilinx_dma_chan_reset - Reset DMA channel and enable interrupts
* @chan: Driver specific DMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan)
{
int err;
/* Reset VDMA */
err = xilinx_dma_reset(chan);
if (err)
return err;
/* Enable interrupts */
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
return 0;
}
/**
* xilinx_dma_irq_handler - DMA Interrupt handler
* @irq: IRQ number
* @data: Pointer to the Xilinx DMA channel structure
*
* Return: IRQ_HANDLED/IRQ_NONE
*/
static irqreturn_t xilinx_dma_irq_handler(int irq, void *data)
{
struct xilinx_dma_chan *chan = data;
u32 status;
/* Read the status and ack the interrupts. */
status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR);
if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK))
return IRQ_NONE;
dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
status & XILINX_DMA_DMAXR_ALL_IRQ_MASK);
if (status & XILINX_DMA_DMASR_ERR_IRQ) {
/*
* An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
* error is recoverable, ignore it. Otherwise flag the error.
*
* Only recoverable errors can be cleared in the DMASR register,
* make sure not to write to other error bits to 1.
*/
u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK;
dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK);
if (!chan->flush_on_fsync ||
(errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) {
dev_err(chan->dev,
"Channel %p has errors %x, cdr %x tdr %x\n",
chan, errors,
dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC),
dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC));
chan->err = true;
}
}
if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) {
/*
* Device takes too long to do the transfer when user requires
* responsiveness.
*/
dev_dbg(chan->dev, "Inter-packet latency too long\n");
}
if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) {
spin_lock(&chan->lock);
xilinx_dma_complete_descriptor(chan);
chan->idle = true;
chan->start_transfer(chan);
spin_unlock(&chan->lock);
}
tasklet_schedule(&chan->tasklet);
return IRQ_HANDLED;
}
/**
* append_desc_queue - Queuing descriptor
* @chan: Driver specific dma channel
* @desc: dma transaction descriptor
*/
static void append_desc_queue(struct xilinx_dma_chan *chan,
struct xilinx_dma_tx_descriptor *desc)
{
struct xilinx_vdma_tx_segment *tail_segment;
struct xilinx_dma_tx_descriptor *tail_desc;
struct xilinx_axidma_tx_segment *axidma_tail_segment;
struct xilinx_cdma_tx_segment *cdma_tail_segment;
if (list_empty(&chan->pending_list))
goto append;
/*
* Add the hardware descriptor to the chain of hardware descriptors
* that already exists in memory.
*/
tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_vdma_tx_segment,
node);
tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
cdma_tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_cdma_tx_segment,
node);
cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
} else {
axidma_tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_axidma_tx_segment,
node);
axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
}
/*
* Add the software descriptor and all children to the list
* of pending transactions
*/
append:
list_add_tail(&desc->node, &chan->pending_list);
chan->desc_pendingcount++;
if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA)
&& unlikely(chan->desc_pendingcount > chan->num_frms)) {
dev_dbg(chan->dev, "desc pendingcount is too high\n");
chan->desc_pendingcount = chan->num_frms;
}
}
/**
* xilinx_dma_tx_submit - Submit DMA transaction
* @tx: Async transaction descriptor
*
* Return: cookie value on success and failure value on error
*/
static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx);
struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan);
dma_cookie_t cookie;
unsigned long flags;
int err;
if (chan->cyclic) {
xilinx_dma_free_tx_descriptor(chan, desc);
return -EBUSY;
}
if (chan->err) {
/*
* If reset fails, need to hard reset the system.
* Channel is no longer functional
*/
err = xilinx_dma_chan_reset(chan);
if (err < 0)
return err;
}
spin_lock_irqsave(&chan->lock, flags);
cookie = dma_cookie_assign(tx);
/* Put this transaction onto the tail of the pending queue */
append_desc_queue(chan, desc);
if (desc->cyclic)
chan->cyclic = true;
spin_unlock_irqrestore(&chan->lock, flags);
return cookie;
}
/**
* xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a
* DMA_SLAVE transaction
* @dchan: DMA channel
* @xt: Interleaved template pointer
* @flags: transfer ack flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
struct dma_interleaved_template *xt,
unsigned long flags)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_vdma_tx_segment *segment;
struct xilinx_vdma_desc_hw *hw;
if (!is_slave_direction(xt->dir))
return NULL;
if (!xt->numf || !xt->sgl[0].size)
return NULL;
if (xt->frame_size != 1)
return NULL;
/* Allocate a transaction descriptor. */
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
async_tx_ack(&desc->async_tx);
/* Allocate the link descriptor from DMA pool */
segment = xilinx_vdma_alloc_tx_segment(chan);
if (!segment)
goto error;
/* Fill in the hardware descriptor */
hw = &segment->hw;
hw->vsize = xt->numf;
hw->hsize = xt->sgl[0].size;
hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) <<
XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT;
hw->stride |= chan->config.frm_dly <<
XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
if (xt->dir != DMA_MEM_TO_DEV) {
if (chan->ext_addr) {
hw->buf_addr = lower_32_bits(xt->dst_start);
hw->buf_addr_msb = upper_32_bits(xt->dst_start);
} else {
hw->buf_addr = xt->dst_start;
}
} else {
if (chan->ext_addr) {
hw->buf_addr = lower_32_bits(xt->src_start);
hw->buf_addr_msb = upper_32_bits(xt->src_start);
} else {
hw->buf_addr = xt->src_start;
}
}
/* Insert the segment into the descriptor segments list. */
list_add_tail(&segment->node, &desc->segments);
/* Link the last hardware descriptor with the first. */
segment = list_first_entry(&desc->segments,
struct xilinx_vdma_tx_segment, node);
desc->async_tx.phys = segment->phys;
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction
* @dchan: DMA channel
* @dma_dst: destination address
* @dma_src: source address
* @len: transfer length
* @flags: transfer ack flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_cdma_tx_segment *segment;
struct xilinx_cdma_desc_hw *hw;
if (!len || len > chan->xdev->max_buffer_len)
return NULL;
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
/* Allocate the link descriptor from DMA pool */
segment = xilinx_cdma_alloc_tx_segment(chan);
if (!segment)
goto error;
hw = &segment->hw;
hw->control = len;
hw->src_addr = dma_src;
hw->dest_addr = dma_dst;
if (chan->ext_addr) {
hw->src_addr_msb = upper_32_bits(dma_src);
hw->dest_addr_msb = upper_32_bits(dma_dst);
}
/* Insert the segment into the descriptor segments list. */
list_add_tail(&segment->node, &desc->segments);
desc->async_tx.phys = segment->phys;
hw->next_desc = segment->phys;
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
* @dchan: DMA channel
* @sgl: scatterlist to transfer to/from
* @sg_len: number of entries in @scatterlist
* @direction: DMA direction
* @flags: transfer ack flags
* @context: APP words of the descriptor
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction direction, unsigned long flags,
void *context)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_axidma_tx_segment *segment = NULL;
u32 *app_w = (u32 *)context;
struct scatterlist *sg;
size_t copy;
size_t sg_used;
unsigned int i;
if (!is_slave_direction(direction))
return NULL;
/* Allocate a transaction descriptor. */
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
/* Build transactions using information in the scatter gather list */
for_each_sg(sgl, sg, sg_len, i) {
sg_used = 0;
/* Loop until the entire scatterlist entry is used */
while (sg_used < sg_dma_len(sg)) {
struct xilinx_axidma_desc_hw *hw;
/* Get a free segment */
segment = xilinx_axidma_alloc_tx_segment(chan);
if (!segment)
goto error;
/*
* Calculate the maximum number of bytes to transfer,
* making sure it is less than the hw limit
*/
copy = xilinx_dma_calc_copysize(chan, sg_dma_len(sg),
sg_used);
hw = &segment->hw;
/* Fill in the descriptor */
xilinx_axidma_buf(chan, hw, sg_dma_address(sg),
sg_used, 0);
hw->control = copy;
if (chan->direction == DMA_MEM_TO_DEV) {
if (app_w)
memcpy(hw->app, app_w, sizeof(u32) *
XILINX_DMA_NUM_APP_WORDS);
}
sg_used += copy;
/*
* Insert the segment into the descriptor segments
* list.
*/
list_add_tail(&segment->node, &desc->segments);
}
}
segment = list_first_entry(&desc->segments,
struct xilinx_axidma_tx_segment, node);
desc->async_tx.phys = segment->phys;
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
if (chan->direction == DMA_MEM_TO_DEV) {
segment->hw.control |= XILINX_DMA_BD_SOP;
segment = list_last_entry(&desc->segments,
struct xilinx_axidma_tx_segment,
node);
segment->hw.control |= XILINX_DMA_BD_EOP;
}
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction
* @dchan: DMA channel
* @buf_addr: Physical address of the buffer
* @buf_len: Total length of the cyclic buffers
* @period_len: length of individual cyclic buffer
* @direction: DMA direction
* @flags: transfer ack flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic(
struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL;
size_t copy, sg_used;
unsigned int num_periods;
int i;
u32 reg;
if (!period_len)
return NULL;
num_periods = buf_len / period_len;
if (!num_periods)
return NULL;
if (!is_slave_direction(direction))
return NULL;
/* Allocate a transaction descriptor. */
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
chan->direction = direction;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
for (i = 0; i < num_periods; ++i) {
sg_used = 0;
while (sg_used < period_len) {
struct xilinx_axidma_desc_hw *hw;
/* Get a free segment */
segment = xilinx_axidma_alloc_tx_segment(chan);
if (!segment)
goto error;
/*
* Calculate the maximum number of bytes to transfer,
* making sure it is less than the hw limit
*/
copy = xilinx_dma_calc_copysize(chan, period_len,
sg_used);
hw = &segment->hw;
xilinx_axidma_buf(chan, hw, buf_addr, sg_used,
period_len * i);
hw->control = copy;
if (prev)
prev->hw.next_desc = segment->phys;
prev = segment;
sg_used += copy;
/*
* Insert the segment into the descriptor segments
* list.
*/
list_add_tail(&segment->node, &desc->segments);
}
}
head_segment = list_first_entry(&desc->segments,
struct xilinx_axidma_tx_segment, node);
desc->async_tx.phys = head_segment->phys;
desc->cyclic = true;
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
segment = list_last_entry(&desc->segments,
struct xilinx_axidma_tx_segment,
node);
segment->hw.next_desc = (u32) head_segment->phys;
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
if (direction == DMA_MEM_TO_DEV) {
head_segment->hw.control |= XILINX_DMA_BD_SOP;
segment->hw.control |= XILINX_DMA_BD_EOP;
}
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_dma_prep_interleaved - prepare a descriptor for a
* DMA_SLAVE transaction
* @dchan: DMA channel
* @xt: Interleaved template pointer
* @flags: transfer ack flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
xilinx_dma_prep_interleaved(struct dma_chan *dchan,
struct dma_interleaved_template *xt,
unsigned long flags)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_axidma_tx_segment *segment;
struct xilinx_axidma_desc_hw *hw;
if (!is_slave_direction(xt->dir))
return NULL;
if (!xt->numf || !xt->sgl[0].size)
return NULL;
if (xt->frame_size != 1)
return NULL;
/* Allocate a transaction descriptor. */
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
chan->direction = xt->dir;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
/* Get a free segment */
segment = xilinx_axidma_alloc_tx_segment(chan);
if (!segment)
goto error;
hw = &segment->hw;
/* Fill in the descriptor */
if (xt->dir != DMA_MEM_TO_DEV)
hw->buf_addr = xt->dst_start;
else
hw->buf_addr = xt->src_start;
hw->mcdma_control = chan->tdest & XILINX_DMA_BD_TDEST_MASK;
hw->vsize_stride = (xt->numf << XILINX_DMA_BD_VSIZE_SHIFT) &
XILINX_DMA_BD_VSIZE_MASK;
hw->vsize_stride |= (xt->sgl[0].icg + xt->sgl[0].size) &
XILINX_DMA_BD_STRIDE_MASK;
hw->control = xt->sgl[0].size & XILINX_DMA_BD_HSIZE_MASK;
/*
* Insert the segment into the descriptor segments
* list.
*/
list_add_tail(&segment->node, &desc->segments);
segment = list_first_entry(&desc->segments,
struct xilinx_axidma_tx_segment, node);
desc->async_tx.phys = segment->phys;
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
if (xt->dir == DMA_MEM_TO_DEV) {
segment->hw.control |= XILINX_DMA_BD_SOP;
segment = list_last_entry(&desc->segments,
struct xilinx_axidma_tx_segment,
node);
segment->hw.control |= XILINX_DMA_BD_EOP;
}
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_dma_terminate_all - Halt the channel and free descriptors
* @dchan: Driver specific DMA Channel pointer
*
* Return: '0' always.
*/
static int xilinx_dma_terminate_all(struct dma_chan *dchan)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
u32 reg;
int err;
if (chan->cyclic)
xilinx_dma_chan_reset(chan);
err = chan->stop_transfer(chan);
if (err) {
dev_err(chan->dev, "Cannot stop channel %p: %x\n",
chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
chan->err = true;
}
/* Remove and free all of the descriptors in the lists */
xilinx_dma_free_descriptors(chan);
chan->idle = true;
if (chan->cyclic) {
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
chan->cyclic = false;
}
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
XILINX_CDMA_CR_SGMODE);
return 0;
}
/**
* xilinx_dma_channel_set_config - Configure VDMA channel
* Run-time configuration for Axi VDMA, supports:
* . halt the channel
* . configure interrupt coalescing and inter-packet delay threshold
* . start/stop parking
* . enable genlock
*
* @dchan: DMA channel
* @cfg: VDMA device configuration pointer
*
* Return: '0' on success and failure value on error
*/
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
struct xilinx_vdma_config *cfg)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
u32 dmacr;
if (cfg->reset)
return xilinx_dma_chan_reset(chan);
dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
chan->config.frm_dly = cfg->frm_dly;
chan->config.park = cfg->park;
/* genlock settings */
chan->config.gen_lock = cfg->gen_lock;
chan->config.master = cfg->master;
dmacr &= ~XILINX_DMA_DMACR_GENLOCK_EN;
if (cfg->gen_lock && chan->genlock) {
dmacr |= XILINX_DMA_DMACR_GENLOCK_EN;
dmacr &= ~XILINX_DMA_DMACR_MASTER_MASK;
dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT;
}
chan->config.frm_cnt_en = cfg->frm_cnt_en;
chan->config.vflip_en = cfg->vflip_en;
if (cfg->park)
chan->config.park_frm = cfg->park_frm;
else
chan->config.park_frm = -1;
chan->config.coalesc = cfg->coalesc;
chan->config.delay = cfg->delay;
if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) {
dmacr &= ~XILINX_DMA_DMACR_FRAME_COUNT_MASK;
dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT;
chan->config.coalesc = cfg->coalesc;
}
if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) {
dmacr &= ~XILINX_DMA_DMACR_DELAY_MASK;
dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT;
chan->config.delay = cfg->delay;
}
/* FSync Source selection */
dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK;
dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr);
return 0;
}
EXPORT_SYMBOL(xilinx_vdma_channel_set_config);
/* -----------------------------------------------------------------------------
* Probe and remove
*/
/**
* xilinx_dma_chan_remove - Per Channel remove function
* @chan: Driver specific DMA channel
*/
static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan)
{
/* Disable all interrupts */
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
if (chan->irq > 0)
free_irq(chan->irq, chan);
tasklet_kill(&chan->tasklet);
list_del(&chan->common.device_node);
}
static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
struct clk **tx_clk, struct clk **rx_clk,
struct clk **sg_clk, struct clk **tmp_clk)
{
int err;
*tmp_clk = NULL;
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
if (IS_ERR(*axi_clk)) {
err = PTR_ERR(*axi_clk);
dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
return err;
}
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
if (IS_ERR(*tx_clk))
*tx_clk = NULL;
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
if (IS_ERR(*rx_clk))
*rx_clk = NULL;
*sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk");
if (IS_ERR(*sg_clk))
*sg_clk = NULL;
err = clk_prepare_enable(*axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
return err;
}
err = clk_prepare_enable(*tx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
goto err_disable_axiclk;
}
err = clk_prepare_enable(*rx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
goto err_disable_txclk;
}
err = clk_prepare_enable(*sg_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err);
goto err_disable_rxclk;
}
return 0;
err_disable_rxclk:
clk_disable_unprepare(*rx_clk);
err_disable_txclk:
clk_disable_unprepare(*tx_clk);
err_disable_axiclk:
clk_disable_unprepare(*axi_clk);
return err;
}
static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
struct clk **dev_clk, struct clk **tmp_clk,
struct clk **tmp1_clk, struct clk **tmp2_clk)
{
int err;
*tmp_clk = NULL;
*tmp1_clk = NULL;
*tmp2_clk = NULL;
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
if (IS_ERR(*axi_clk)) {
err = PTR_ERR(*axi_clk);
dev_err(&pdev->dev, "failed to get axi_clk (%d)\n", err);
return err;
}
*dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk");
if (IS_ERR(*dev_clk)) {
err = PTR_ERR(*dev_clk);
dev_err(&pdev->dev, "failed to get dev_clk (%d)\n", err);
return err;
}
err = clk_prepare_enable(*axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
return err;
}
err = clk_prepare_enable(*dev_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err);
goto err_disable_axiclk;
}
return 0;
err_disable_axiclk:
clk_disable_unprepare(*axi_clk);
return err;
}
static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
struct clk **tx_clk, struct clk **txs_clk,
struct clk **rx_clk, struct clk **rxs_clk)
{
int err;
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
if (IS_ERR(*axi_clk)) {
err = PTR_ERR(*axi_clk);
dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
return err;
}
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
if (IS_ERR(*tx_clk))
*tx_clk = NULL;
*txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk");
if (IS_ERR(*txs_clk))
*txs_clk = NULL;
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
if (IS_ERR(*rx_clk))
*rx_clk = NULL;
*rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk");
if (IS_ERR(*rxs_clk))
*rxs_clk = NULL;
err = clk_prepare_enable(*axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
return err;
}
err = clk_prepare_enable(*tx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
goto err_disable_axiclk;
}
err = clk_prepare_enable(*txs_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err);
goto err_disable_txclk;
}
err = clk_prepare_enable(*rx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
goto err_disable_txsclk;
}
err = clk_prepare_enable(*rxs_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err);
goto err_disable_rxclk;
}
return 0;
err_disable_rxclk:
clk_disable_unprepare(*rx_clk);
err_disable_txsclk:
clk_disable_unprepare(*txs_clk);
err_disable_txclk:
clk_disable_unprepare(*tx_clk);
err_disable_axiclk:
clk_disable_unprepare(*axi_clk);
return err;
}
static void xdma_disable_allclks(struct xilinx_dma_device *xdev)
{
clk_disable_unprepare(xdev->rxs_clk);
clk_disable_unprepare(xdev->rx_clk);
clk_disable_unprepare(xdev->txs_clk);
clk_disable_unprepare(xdev->tx_clk);
clk_disable_unprepare(xdev->axi_clk);
}
/**
* xilinx_dma_chan_probe - Per Channel Probing
* It get channel features from the device tree entry and
* initialize special channel handling routines
*
* @xdev: Driver specific device structure
* @node: Device node
* @chan_id: DMA Channel id
*
* Return: '0' on success and failure value on error
*/
static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
struct device_node *node, int chan_id)
{
struct xilinx_dma_chan *chan;
bool has_dre = false;
u32 value, width;
int err;
/* Allocate and initialize the channel structure */
chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
chan->dev = xdev->dev;
chan->xdev = xdev;
chan->desc_pendingcount = 0x0;
chan->ext_addr = xdev->ext_addr;
/* This variable ensures that descriptors are not
* Submitted when dma engine is in progress. This variable is
* Added to avoid polling for a bit in the status register to
* Know dma state in the driver hot path.
*/
chan->idle = true;
spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->pending_list);
INIT_LIST_HEAD(&chan->done_list);
INIT_LIST_HEAD(&chan->active_list);
INIT_LIST_HEAD(&chan->free_seg_list);
/* Retrieve the channel properties from the device tree */
has_dre = of_property_read_bool(node, "xlnx,include-dre");
chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode");
err = of_property_read_u32(node, "xlnx,datawidth", &value);
if (err) {
dev_err(xdev->dev, "missing xlnx,datawidth property\n");
return err;
}
width = value >> 3; /* Convert bits to bytes */
/* If data width is greater than 8 bytes, DRE is not in hw */
if (width > 8)
has_dre = false;
if (!has_dre)
xdev->common.copy_align = fls(width - 1);
if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") ||
of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") ||
of_device_is_compatible(node, "xlnx,axi-cdma-channel")) {
chan->direction = DMA_MEM_TO_DEV;
chan->id = chan_id;
chan->tdest = chan_id;
chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET;
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
chan->config.park = 1;
if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S)
chan->flush_on_fsync = true;
}
} else if (of_device_is_compatible(node,
"xlnx,axi-vdma-s2mm-channel") ||
of_device_is_compatible(node,
"xlnx,axi-dma-s2mm-channel")) {
chan->direction = DMA_DEV_TO_MEM;
chan->id = chan_id;
chan->tdest = chan_id - xdev->nr_channels;
chan->has_vflip = of_property_read_bool(node,
"xlnx,enable-vert-flip");
if (chan->has_vflip) {
chan->config.vflip_en = dma_read(chan,
XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) &
XILINX_VDMA_ENABLE_VERTICAL_FLIP;
}
chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
chan->config.park = 1;
if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM)
chan->flush_on_fsync = true;
}
} else {
dev_err(xdev->dev, "Invalid channel compatible node\n");
return -EINVAL;
}
/* Request the interrupt */
chan->irq = irq_of_parse_and_map(node, 0);
err = request_irq(chan->irq, xilinx_dma_irq_handler, IRQF_SHARED,
"xilinx-dma-controller", chan);
if (err) {
dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
return err;
}
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
chan->start_transfer = xilinx_dma_start_transfer;
chan->stop_transfer = xilinx_dma_stop_transfer;
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
chan->start_transfer = xilinx_cdma_start_transfer;
chan->stop_transfer = xilinx_cdma_stop_transfer;
} else {
chan->start_transfer = xilinx_vdma_start_transfer;
chan->stop_transfer = xilinx_dma_stop_transfer;
}
/* check if SG is enabled (only for AXIDMA and CDMA) */
if (xdev->dma_config->dmatype != XDMA_TYPE_VDMA) {
if (dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) &
XILINX_DMA_DMASR_SG_MASK)
chan->has_sg = true;
dev_dbg(chan->dev, "ch %d: SG %s\n", chan->id,
chan->has_sg ? "enabled" : "disabled");
}
/* Initialize the tasklet */
tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet,
(unsigned long)chan);
/*
* Initialize the DMA channel and add it to the DMA engine channels
* list.
*/
chan->common.device = &xdev->common;
list_add_tail(&chan->common.device_node, &xdev->common.channels);
xdev->chan[chan->id] = chan;
/* Reset the channel */
err = xilinx_dma_chan_reset(chan);
if (err < 0) {
dev_err(xdev->dev, "Reset channel failed\n");
return err;
}
return 0;
}
/**
* xilinx_dma_child_probe - Per child node probe
* It get number of dma-channels per child node from
* device-tree and initializes all the channels.
*
* @xdev: Driver specific device structure
* @node: Device node
*
* Return: 0 always.
*/
static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev,
struct device_node *node)
{
int ret, i, nr_channels = 1;
ret = of_property_read_u32(node, "dma-channels", &nr_channels);
if ((ret < 0) && xdev->mcdma)
dev_warn(xdev->dev, "missing dma-channels property\n");
for (i = 0; i < nr_channels; i++)
xilinx_dma_chan_probe(xdev, node, xdev->chan_id++);
xdev->nr_channels += nr_channels;
return 0;
}
/**
* of_dma_xilinx_xlate - Translation function
* @dma_spec: Pointer to DMA specifier as found in the device tree
* @ofdma: Pointer to DMA controller data
*
* Return: DMA channel pointer on success and NULL on error
*/
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct xilinx_dma_device *xdev = ofdma->of_dma_data;
int chan_id = dma_spec->args[0];
if (chan_id >= xdev->nr_channels || !xdev->chan[chan_id])
return NULL;
return dma_get_slave_channel(&xdev->chan[chan_id]->common);
}
static const struct xilinx_dma_config axidma_config = {
.dmatype = XDMA_TYPE_AXIDMA,
.clk_init = axidma_clk_init,
};
static const struct xilinx_dma_config axicdma_config = {
.dmatype = XDMA_TYPE_CDMA,
.clk_init = axicdma_clk_init,
};
static const struct xilinx_dma_config axivdma_config = {
.dmatype = XDMA_TYPE_VDMA,
.clk_init = axivdma_clk_init,
};
static const struct of_device_id xilinx_dma_of_ids[] = {
{ .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config },
{ .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config },
{ .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config },
{}
};
MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids);
/**
* xilinx_dma_probe - Driver probe function
* @pdev: Pointer to the platform_device structure
*
* Return: '0' on success and failure value on error
*/
static int xilinx_dma_probe(struct platform_device *pdev)
{
int (*clk_init)(struct platform_device *, struct clk **, struct clk **,
struct clk **, struct clk **, struct clk **)
= axivdma_clk_init;
struct device_node *node = pdev->dev.of_node;
struct xilinx_dma_device *xdev;
struct device_node *child, *np = pdev->dev.of_node;
struct resource *io;
u32 num_frames, addr_width, len_width;
int i, err;
/* Allocate and initialize the DMA engine structure */
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
if (!xdev)
return -ENOMEM;
xdev->dev = &pdev->dev;
if (np) {
const struct of_device_id *match;
match = of_match_node(xilinx_dma_of_ids, np);
if (match && match->data) {
xdev->dma_config = match->data;
clk_init = xdev->dma_config->clk_init;
}
}
err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk,
&xdev->rx_clk, &xdev->rxs_clk);
if (err)
return err;
/* Request and map I/O memory */
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xdev->regs = devm_ioremap_resource(&pdev->dev, io);
if (IS_ERR(xdev->regs))
return PTR_ERR(xdev->regs);
/* Retrieve the DMA engine properties from the device tree */
xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0);
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
xdev->mcdma = of_property_read_bool(node, "xlnx,mcdma");
if (!of_property_read_u32(node, "xlnx,sg-length-width",
&len_width)) {
if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN ||
len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) {
dev_warn(xdev->dev,
"invalid xlnx,sg-length-width property value. Using default width\n");
} else {
if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX)
dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n");
xdev->max_buffer_len =
GENMASK(len_width - 1, 0);
}
}
}
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
err = of_property_read_u32(node, "xlnx,num-fstores",
&num_frames);
if (err < 0) {
dev_err(xdev->dev,
"missing xlnx,num-fstores property\n");
return err;
}
err = of_property_read_u32(node, "xlnx,flush-fsync",
&xdev->flush_on_fsync);
if (err < 0)
dev_warn(xdev->dev,
"missing xlnx,flush-fsync property\n");
}
err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width);
if (err < 0)
dev_warn(xdev->dev, "missing xlnx,addrwidth property\n");
if (addr_width > 32)
xdev->ext_addr = true;
else
xdev->ext_addr = false;
/* Set the dma mask bits */
dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width));
/* Initialize the DMA engine */
xdev->common.dev = &pdev->dev;
INIT_LIST_HEAD(&xdev->common.channels);
if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) {
dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
}
xdev->common.device_alloc_chan_resources =
xilinx_dma_alloc_chan_resources;
xdev->common.device_free_chan_resources =
xilinx_dma_free_chan_resources;
xdev->common.device_terminate_all = xilinx_dma_terminate_all;
xdev->common.device_tx_status = xilinx_dma_tx_status;
xdev->common.device_issue_pending = xilinx_dma_issue_pending;
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask);
xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg;
xdev->common.device_prep_dma_cyclic =
xilinx_dma_prep_dma_cyclic;
xdev->common.device_prep_interleaved_dma =
xilinx_dma_prep_interleaved;
/* Residue calculation is supported by only AXI DMA */
xdev->common.residue_granularity =
DMA_RESIDUE_GRANULARITY_SEGMENT;
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask);
xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy;
} else {
xdev->common.device_prep_interleaved_dma =
xilinx_vdma_dma_prep_interleaved;
}
platform_set_drvdata(pdev, xdev);
/* Initialize the channels */
for_each_child_of_node(node, child) {
err = xilinx_dma_child_probe(xdev, child);
if (err < 0)
goto disable_clks;
}
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
for (i = 0; i < xdev->nr_channels; i++)
if (xdev->chan[i])
xdev->chan[i]->num_frms = num_frames;
}
/* Register the DMA engine with the core */
dma_async_device_register(&xdev->common);
err = of_dma_controller_register(node, of_dma_xilinx_xlate,
xdev);
if (err < 0) {
dev_err(&pdev->dev, "Unable to register DMA to DT\n");
dma_async_device_unregister(&xdev->common);
goto error;
}
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n");
else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA)
dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n");
else
dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n");
return 0;
disable_clks:
xdma_disable_allclks(xdev);
error:
for (i = 0; i < xdev->nr_channels; i++)
if (xdev->chan[i])
xilinx_dma_chan_remove(xdev->chan[i]);
return err;
}
/**
* xilinx_dma_remove - Driver remove function
* @pdev: Pointer to the platform_device structure
*
* Return: Always '0'
*/
static int xilinx_dma_remove(struct platform_device *pdev)
{
struct xilinx_dma_device *xdev = platform_get_drvdata(pdev);
int i;
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&xdev->common);
for (i = 0; i < xdev->nr_channels; i++)
if (xdev->chan[i])
xilinx_dma_chan_remove(xdev->chan[i]);
xdma_disable_allclks(xdev);
return 0;
}
static struct platform_driver xilinx_vdma_driver = {
.driver = {
.name = "xilinx-vdma",
.of_match_table = xilinx_dma_of_ids,
},
.probe = xilinx_dma_probe,
.remove = xilinx_dma_remove,
};
module_platform_driver(xilinx_vdma_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx VDMA driver");
MODULE_LICENSE("GPL v2");