432 lines
10 KiB
C
432 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Freescale LBC and UPM routines.
|
|
*
|
|
* Copyright © 2007-2008 MontaVista Software, Inc.
|
|
* Copyright © 2010 Freescale Semiconductor
|
|
*
|
|
* Author: Anton Vorontsov <avorontsov@ru.mvista.com>
|
|
* Author: Jack Lan <Jack.Lan@freescale.com>
|
|
* Author: Roy Zang <tie-fei.zang@freescale.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/fsl_lbc.h>
|
|
|
|
static DEFINE_SPINLOCK(fsl_lbc_lock);
|
|
struct fsl_lbc_ctrl *fsl_lbc_ctrl_dev;
|
|
EXPORT_SYMBOL(fsl_lbc_ctrl_dev);
|
|
|
|
/**
|
|
* fsl_lbc_addr - convert the base address
|
|
* @addr_base: base address of the memory bank
|
|
*
|
|
* This function converts a base address of lbc into the right format for the
|
|
* BR register. If the SOC has eLBC then it returns 32bit physical address
|
|
* else it convers a 34bit local bus physical address to correct format of
|
|
* 32bit address for BR register (Example: MPC8641).
|
|
*/
|
|
u32 fsl_lbc_addr(phys_addr_t addr_base)
|
|
{
|
|
struct device_node *np = fsl_lbc_ctrl_dev->dev->of_node;
|
|
u32 addr = addr_base & 0xffff8000;
|
|
|
|
if (of_device_is_compatible(np, "fsl,elbc"))
|
|
return addr;
|
|
|
|
return addr | ((addr_base & 0x300000000ull) >> 19);
|
|
}
|
|
EXPORT_SYMBOL(fsl_lbc_addr);
|
|
|
|
/**
|
|
* fsl_lbc_find - find Localbus bank
|
|
* @addr_base: base address of the memory bank
|
|
*
|
|
* This function walks LBC banks comparing "Base address" field of the BR
|
|
* registers with the supplied addr_base argument. When bases match this
|
|
* function returns bank number (starting with 0), otherwise it returns
|
|
* appropriate errno value.
|
|
*/
|
|
int fsl_lbc_find(phys_addr_t addr_base)
|
|
{
|
|
int i;
|
|
struct fsl_lbc_regs __iomem *lbc;
|
|
|
|
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
|
|
return -ENODEV;
|
|
|
|
lbc = fsl_lbc_ctrl_dev->regs;
|
|
for (i = 0; i < ARRAY_SIZE(lbc->bank); i++) {
|
|
u32 br = in_be32(&lbc->bank[i].br);
|
|
u32 or = in_be32(&lbc->bank[i].or);
|
|
|
|
if (br & BR_V && (br & or & BR_BA) == fsl_lbc_addr(addr_base))
|
|
return i;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
EXPORT_SYMBOL(fsl_lbc_find);
|
|
|
|
/**
|
|
* fsl_upm_find - find pre-programmed UPM via base address
|
|
* @addr_base: base address of the memory bank controlled by the UPM
|
|
* @upm: pointer to the allocated fsl_upm structure
|
|
*
|
|
* This function fills fsl_upm structure so you can use it with the rest of
|
|
* UPM API. On success this function returns 0, otherwise it returns
|
|
* appropriate errno value.
|
|
*/
|
|
int fsl_upm_find(phys_addr_t addr_base, struct fsl_upm *upm)
|
|
{
|
|
int bank;
|
|
u32 br;
|
|
struct fsl_lbc_regs __iomem *lbc;
|
|
|
|
bank = fsl_lbc_find(addr_base);
|
|
if (bank < 0)
|
|
return bank;
|
|
|
|
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
|
|
return -ENODEV;
|
|
|
|
lbc = fsl_lbc_ctrl_dev->regs;
|
|
br = in_be32(&lbc->bank[bank].br);
|
|
|
|
switch (br & BR_MSEL) {
|
|
case BR_MS_UPMA:
|
|
upm->mxmr = &lbc->mamr;
|
|
break;
|
|
case BR_MS_UPMB:
|
|
upm->mxmr = &lbc->mbmr;
|
|
break;
|
|
case BR_MS_UPMC:
|
|
upm->mxmr = &lbc->mcmr;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (br & BR_PS) {
|
|
case BR_PS_8:
|
|
upm->width = 8;
|
|
break;
|
|
case BR_PS_16:
|
|
upm->width = 16;
|
|
break;
|
|
case BR_PS_32:
|
|
upm->width = 32;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fsl_upm_find);
|
|
|
|
/**
|
|
* fsl_upm_run_pattern - actually run an UPM pattern
|
|
* @upm: pointer to the fsl_upm structure obtained via fsl_upm_find
|
|
* @io_base: remapped pointer to where memory access should happen
|
|
* @mar: MAR register content during pattern execution
|
|
*
|
|
* This function triggers dummy write to the memory specified by the io_base,
|
|
* thus UPM pattern actually executed. Note that mar usage depends on the
|
|
* pre-programmed AMX bits in the UPM RAM.
|
|
*/
|
|
int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
|
|
return -ENODEV;
|
|
|
|
spin_lock_irqsave(&fsl_lbc_lock, flags);
|
|
|
|
out_be32(&fsl_lbc_ctrl_dev->regs->mar, mar);
|
|
|
|
switch (upm->width) {
|
|
case 8:
|
|
out_8(io_base, 0x0);
|
|
break;
|
|
case 16:
|
|
out_be16(io_base, 0x0);
|
|
break;
|
|
case 32:
|
|
out_be32(io_base, 0x0);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(fsl_upm_run_pattern);
|
|
|
|
static int fsl_lbc_ctrl_init(struct fsl_lbc_ctrl *ctrl,
|
|
struct device_node *node)
|
|
{
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
/* clear event registers */
|
|
setbits32(&lbc->ltesr, LTESR_CLEAR);
|
|
out_be32(&lbc->lteatr, 0);
|
|
out_be32(&lbc->ltear, 0);
|
|
out_be32(&lbc->lteccr, LTECCR_CLEAR);
|
|
out_be32(&lbc->ltedr, LTEDR_ENABLE);
|
|
|
|
/* Set the monitor timeout value to the maximum for erratum A001 */
|
|
if (of_device_is_compatible(node, "fsl,elbc"))
|
|
clrsetbits_be32(&lbc->lbcr, LBCR_BMT, LBCR_BMTPS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE: This interrupt is used to report localbus events of various kinds,
|
|
* such as transaction errors on the chipselects.
|
|
*/
|
|
|
|
static irqreturn_t fsl_lbc_ctrl_irq(int irqno, void *data)
|
|
{
|
|
struct fsl_lbc_ctrl *ctrl = data;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
u32 status;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fsl_lbc_lock, flags);
|
|
status = in_be32(&lbc->ltesr);
|
|
if (!status) {
|
|
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
out_be32(&lbc->ltesr, LTESR_CLEAR);
|
|
out_be32(&lbc->lteatr, 0);
|
|
out_be32(&lbc->ltear, 0);
|
|
ctrl->irq_status = status;
|
|
|
|
if (status & LTESR_BM)
|
|
dev_err(ctrl->dev, "Local bus monitor time-out: "
|
|
"LTESR 0x%08X\n", status);
|
|
if (status & LTESR_WP)
|
|
dev_err(ctrl->dev, "Write protect error: "
|
|
"LTESR 0x%08X\n", status);
|
|
if (status & LTESR_ATMW)
|
|
dev_err(ctrl->dev, "Atomic write error: "
|
|
"LTESR 0x%08X\n", status);
|
|
if (status & LTESR_ATMR)
|
|
dev_err(ctrl->dev, "Atomic read error: "
|
|
"LTESR 0x%08X\n", status);
|
|
if (status & LTESR_CS)
|
|
dev_err(ctrl->dev, "Chip select error: "
|
|
"LTESR 0x%08X\n", status);
|
|
if (status & LTESR_FCT) {
|
|
dev_err(ctrl->dev, "FCM command time-out: "
|
|
"LTESR 0x%08X\n", status);
|
|
smp_wmb();
|
|
wake_up(&ctrl->irq_wait);
|
|
}
|
|
if (status & LTESR_PAR) {
|
|
dev_err(ctrl->dev, "Parity or Uncorrectable ECC error: "
|
|
"LTESR 0x%08X\n", status);
|
|
smp_wmb();
|
|
wake_up(&ctrl->irq_wait);
|
|
}
|
|
if (status & LTESR_CC) {
|
|
smp_wmb();
|
|
wake_up(&ctrl->irq_wait);
|
|
}
|
|
if (status & ~LTESR_MASK)
|
|
dev_err(ctrl->dev, "Unknown error: "
|
|
"LTESR 0x%08X\n", status);
|
|
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* fsl_lbc_ctrl_probe
|
|
*
|
|
* called by device layer when it finds a device matching
|
|
* one our driver can handled. This code allocates all of
|
|
* the resources needed for the controller only. The
|
|
* resources for the NAND banks themselves are allocated
|
|
* in the chip probe function.
|
|
*/
|
|
|
|
static int fsl_lbc_ctrl_probe(struct platform_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (!dev->dev.of_node) {
|
|
dev_err(&dev->dev, "Device OF-Node is NULL");
|
|
return -EFAULT;
|
|
}
|
|
|
|
fsl_lbc_ctrl_dev = kzalloc(sizeof(*fsl_lbc_ctrl_dev), GFP_KERNEL);
|
|
if (!fsl_lbc_ctrl_dev)
|
|
return -ENOMEM;
|
|
|
|
dev_set_drvdata(&dev->dev, fsl_lbc_ctrl_dev);
|
|
|
|
spin_lock_init(&fsl_lbc_ctrl_dev->lock);
|
|
init_waitqueue_head(&fsl_lbc_ctrl_dev->irq_wait);
|
|
|
|
fsl_lbc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
|
|
if (!fsl_lbc_ctrl_dev->regs) {
|
|
dev_err(&dev->dev, "failed to get memory region\n");
|
|
ret = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
fsl_lbc_ctrl_dev->irq[0] = irq_of_parse_and_map(dev->dev.of_node, 0);
|
|
if (!fsl_lbc_ctrl_dev->irq[0]) {
|
|
dev_err(&dev->dev, "failed to get irq resource\n");
|
|
ret = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
fsl_lbc_ctrl_dev->dev = &dev->dev;
|
|
|
|
ret = fsl_lbc_ctrl_init(fsl_lbc_ctrl_dev, dev->dev.of_node);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = request_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_irq, 0,
|
|
"fsl-lbc", fsl_lbc_ctrl_dev);
|
|
if (ret != 0) {
|
|
dev_err(&dev->dev, "failed to install irq (%d)\n",
|
|
fsl_lbc_ctrl_dev->irq[0]);
|
|
ret = fsl_lbc_ctrl_dev->irq[0];
|
|
goto err;
|
|
}
|
|
|
|
fsl_lbc_ctrl_dev->irq[1] = irq_of_parse_and_map(dev->dev.of_node, 1);
|
|
if (fsl_lbc_ctrl_dev->irq[1]) {
|
|
ret = request_irq(fsl_lbc_ctrl_dev->irq[1], fsl_lbc_ctrl_irq,
|
|
IRQF_SHARED, "fsl-lbc-err", fsl_lbc_ctrl_dev);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "failed to install irq (%d)\n",
|
|
fsl_lbc_ctrl_dev->irq[1]);
|
|
ret = fsl_lbc_ctrl_dev->irq[1];
|
|
goto err1;
|
|
}
|
|
}
|
|
|
|
/* Enable interrupts for any detected events */
|
|
out_be32(&fsl_lbc_ctrl_dev->regs->lteir, LTEIR_ENABLE);
|
|
|
|
return 0;
|
|
|
|
err1:
|
|
free_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_dev);
|
|
err:
|
|
iounmap(fsl_lbc_ctrl_dev->regs);
|
|
kfree(fsl_lbc_ctrl_dev);
|
|
fsl_lbc_ctrl_dev = NULL;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
|
|
/* save lbc registers */
|
|
static int fsl_lbc_syscore_suspend(void)
|
|
{
|
|
struct fsl_lbc_ctrl *ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc;
|
|
|
|
ctrl = fsl_lbc_ctrl_dev;
|
|
if (!ctrl)
|
|
goto out;
|
|
|
|
lbc = ctrl->regs;
|
|
if (!lbc)
|
|
goto out;
|
|
|
|
ctrl->saved_regs = kmalloc(sizeof(struct fsl_lbc_regs), GFP_KERNEL);
|
|
if (!ctrl->saved_regs)
|
|
return -ENOMEM;
|
|
|
|
_memcpy_fromio(ctrl->saved_regs, lbc, sizeof(struct fsl_lbc_regs));
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/* restore lbc registers */
|
|
static void fsl_lbc_syscore_resume(void)
|
|
{
|
|
struct fsl_lbc_ctrl *ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc;
|
|
|
|
ctrl = fsl_lbc_ctrl_dev;
|
|
if (!ctrl)
|
|
goto out;
|
|
|
|
lbc = ctrl->regs;
|
|
if (!lbc)
|
|
goto out;
|
|
|
|
if (ctrl->saved_regs) {
|
|
_memcpy_toio(lbc, ctrl->saved_regs,
|
|
sizeof(struct fsl_lbc_regs));
|
|
kfree(ctrl->saved_regs);
|
|
ctrl->saved_regs = NULL;
|
|
}
|
|
|
|
out:
|
|
return;
|
|
}
|
|
#endif /* CONFIG_SUSPEND */
|
|
|
|
static const struct of_device_id fsl_lbc_match[] = {
|
|
{ .compatible = "fsl,elbc", },
|
|
{ .compatible = "fsl,pq3-localbus", },
|
|
{ .compatible = "fsl,pq2-localbus", },
|
|
{ .compatible = "fsl,pq2pro-localbus", },
|
|
{},
|
|
};
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
static struct syscore_ops lbc_syscore_pm_ops = {
|
|
.suspend = fsl_lbc_syscore_suspend,
|
|
.resume = fsl_lbc_syscore_resume,
|
|
};
|
|
#endif
|
|
|
|
static struct platform_driver fsl_lbc_ctrl_driver = {
|
|
.driver = {
|
|
.name = "fsl-lbc",
|
|
.of_match_table = fsl_lbc_match,
|
|
},
|
|
.probe = fsl_lbc_ctrl_probe,
|
|
};
|
|
|
|
static int __init fsl_lbc_init(void)
|
|
{
|
|
#ifdef CONFIG_SUSPEND
|
|
register_syscore_ops(&lbc_syscore_pm_ops);
|
|
#endif
|
|
return platform_driver_register(&fsl_lbc_ctrl_driver);
|
|
}
|
|
subsys_initcall(fsl_lbc_init);
|