/* * SPDX-License-Identifier: MIT * * Copyright © 2008,2010 Intel Corporation */ #include #include #include #include #include #include #include "display/intel_frontbuffer.h" #include "gem/i915_gem_ioctls.h" #include "gt/intel_context.h" #include "gt/intel_engine_pool.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "i915_drv.h" #include "i915_gem_clflush.h" #include "i915_gem_context.h" #include "i915_gem_ioctls.h" #include "i915_trace.h" enum { FORCE_CPU_RELOC = 1, FORCE_GTT_RELOC, FORCE_GPU_RELOC, #define DBG_FORCE_RELOC 0 /* choose one of the above! */ }; #define __EXEC_OBJECT_HAS_REF BIT(31) #define __EXEC_OBJECT_HAS_PIN BIT(30) #define __EXEC_OBJECT_HAS_FENCE BIT(29) #define __EXEC_OBJECT_NEEDS_MAP BIT(28) #define __EXEC_OBJECT_NEEDS_BIAS BIT(27) #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) #define __EXEC_HAS_RELOC BIT(31) #define __EXEC_VALIDATED BIT(30) #define __EXEC_INTERNAL_FLAGS (~0u << 30) #define UPDATE PIN_OFFSET_FIXED #define BATCH_OFFSET_BIAS (256*1024) #define __I915_EXEC_ILLEGAL_FLAGS \ (__I915_EXEC_UNKNOWN_FLAGS | \ I915_EXEC_CONSTANTS_MASK | \ I915_EXEC_RESOURCE_STREAMER) /* Catch emission of unexpected errors for CI! */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) #undef EINVAL #define EINVAL ({ \ DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 22; \ }) #endif /** * DOC: User command execution * * Userspace submits commands to be executed on the GPU as an instruction * stream within a GEM object we call a batchbuffer. This instructions may * refer to other GEM objects containing auxiliary state such as kernels, * samplers, render targets and even secondary batchbuffers. Userspace does * not know where in the GPU memory these objects reside and so before the * batchbuffer is passed to the GPU for execution, those addresses in the * batchbuffer and auxiliary objects are updated. This is known as relocation, * or patching. To try and avoid having to relocate each object on the next * execution, userspace is told the location of those objects in this pass, * but this remains just a hint as the kernel may choose a new location for * any object in the future. * * At the level of talking to the hardware, submitting a batchbuffer for the * GPU to execute is to add content to a buffer from which the HW * command streamer is reading. * * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. * Execlists, this command is not placed on the same buffer as the * remaining items. * * 2. Add a command to invalidate caches to the buffer. * * 3. Add a batchbuffer start command to the buffer; the start command is * essentially a token together with the GPU address of the batchbuffer * to be executed. * * 4. Add a pipeline flush to the buffer. * * 5. Add a memory write command to the buffer to record when the GPU * is done executing the batchbuffer. The memory write writes the * global sequence number of the request, ``i915_request::global_seqno``; * the i915 driver uses the current value in the register to determine * if the GPU has completed the batchbuffer. * * 6. Add a user interrupt command to the buffer. This command instructs * the GPU to issue an interrupt when the command, pipeline flush and * memory write are completed. * * 7. Inform the hardware of the additional commands added to the buffer * (by updating the tail pointer). * * Processing an execbuf ioctl is conceptually split up into a few phases. * * 1. Validation - Ensure all the pointers, handles and flags are valid. * 2. Reservation - Assign GPU address space for every object * 3. Relocation - Update any addresses to point to the final locations * 4. Serialisation - Order the request with respect to its dependencies * 5. Construction - Construct a request to execute the batchbuffer * 6. Submission (at some point in the future execution) * * Reserving resources for the execbuf is the most complicated phase. We * neither want to have to migrate the object in the address space, nor do * we want to have to update any relocations pointing to this object. Ideally, * we want to leave the object where it is and for all the existing relocations * to match. If the object is given a new address, or if userspace thinks the * object is elsewhere, we have to parse all the relocation entries and update * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that * all the target addresses in all of its objects match the value in the * relocation entries and that they all match the presumed offsets given by the * list of execbuffer objects. Using this knowledge, we know that if we haven't * moved any buffers, all the relocation entries are valid and we can skip * the update. (If userspace is wrong, the likely outcome is an impromptu GPU * hang.) The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.presumed_offset which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. * * The reservation is done is multiple phases. First we try and keep any * object already bound in its current location - so as long as meets the * constraints imposed by the new execbuffer. Any object left unbound after the * first pass is then fitted into any available idle space. If an object does * not fit, all objects are removed from the reservation and the process rerun * after sorting the objects into a priority order (more difficult to fit * objects are tried first). Failing that, the entire VM is cleared and we try * to fit the execbuf once last time before concluding that it simply will not * fit. * * A small complication to all of this is that we allow userspace not only to * specify an alignment and a size for the object in the address space, but * we also allow userspace to specify the exact offset. This objects are * simpler to place (the location is known a priori) all we have to do is make * sure the space is available. * * Once all the objects are in place, patching up the buried pointers to point * to the final locations is a fairly simple job of walking over the relocation * entry arrays, looking up the right address and rewriting the value into * the object. Simple! ... The relocation entries are stored in user memory * and so to access them we have to copy them into a local buffer. That copy * has to avoid taking any pagefaults as they may lead back to a GEM object * requiring the struct_mutex (i.e. recursive deadlock). So once again we split * the relocation into multiple passes. First we try to do everything within an * atomic context (avoid the pagefaults) which requires that we never wait. If * we detect that we may wait, or if we need to fault, then we have to fallback * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm * bells yet?) Dropping the mutex means that we lose all the state we have * built up so far for the execbuf and we must reset any global data. However, * we do leave the objects pinned in their final locations - which is a * potential issue for concurrent execbufs. Once we have left the mutex, we can * allocate and copy all the relocation entries into a large array at our * leisure, reacquire the mutex, reclaim all the objects and other state and * then proceed to update any incorrect addresses with the objects. * * As we process the relocation entries, we maintain a record of whether the * object is being written to. Using NORELOC, we expect userspace to provide * this information instead. We also check whether we can skip the relocation * by comparing the expected value inside the relocation entry with the target's * final address. If they differ, we have to map the current object and rewrite * the 4 or 8 byte pointer within. * * Serialising an execbuf is quite simple according to the rules of the GEM * ABI. Execution within each context is ordered by the order of submission. * Writes to any GEM object are in order of submission and are exclusive. Reads * from a GEM object are unordered with respect to other reads, but ordered by * writes. A write submitted after a read cannot occur before the read, and * similarly any read submitted after a write cannot occur before the write. * Writes are ordered between engines such that only one write occurs at any * time (completing any reads beforehand) - using semaphores where available * and CPU serialisation otherwise. Other GEM access obey the same rules, any * write (either via mmaps using set-domain, or via pwrite) must flush all GPU * reads before starting, and any read (either using set-domain or pread) must * flush all GPU writes before starting. (Note we only employ a barrier before, * we currently rely on userspace not concurrently starting a new execution * whilst reading or writing to an object. This may be an advantage or not * depending on how much you trust userspace not to shoot themselves in the * foot.) Serialisation may just result in the request being inserted into * a DAG awaiting its turn, but most simple is to wait on the CPU until * all dependencies are resolved. * * After all of that, is just a matter of closing the request and handing it to * the hardware (well, leaving it in a queue to be executed). However, we also * offer the ability for batchbuffers to be run with elevated privileges so * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) * Before any batch is given extra privileges we first must check that it * contains no nefarious instructions, we check that each instruction is from * our whitelist and all registers are also from an allowed list. We first * copy the user's batchbuffer to a shadow (so that the user doesn't have * access to it, either by the CPU or GPU as we scan it) and then parse each * instruction. If everything is ok, we set a flag telling the hardware to run * the batchbuffer in trusted mode, otherwise the ioctl is rejected. */ struct i915_execbuffer { struct drm_i915_private *i915; /** i915 backpointer */ struct drm_file *file; /** per-file lookup tables and limits */ struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ struct i915_vma **vma; unsigned int *flags; struct intel_engine_cs *engine; /** engine to queue the request to */ struct intel_context *context; /* logical state for the request */ struct i915_gem_context *gem_context; /** caller's context */ struct i915_request *request; /** our request to build */ struct i915_vma *batch; /** identity of the batch obj/vma */ /** actual size of execobj[] as we may extend it for the cmdparser */ unsigned int buffer_count; /** list of vma not yet bound during reservation phase */ struct list_head unbound; /** list of vma that have execobj.relocation_count */ struct list_head relocs; /** * Track the most recently used object for relocations, as we * frequently have to perform multiple relocations within the same * obj/page */ struct reloc_cache { struct drm_mm_node node; /** temporary GTT binding */ unsigned long vaddr; /** Current kmap address */ unsigned long page; /** Currently mapped page index */ unsigned int gen; /** Cached value of INTEL_GEN */ bool use_64bit_reloc : 1; bool has_llc : 1; bool has_fence : 1; bool needs_unfenced : 1; struct i915_request *rq; u32 *rq_cmd; unsigned int rq_size; } reloc_cache; u64 invalid_flags; /** Set of execobj.flags that are invalid */ u32 context_flags; /** Set of execobj.flags to insert from the ctx */ u32 batch_start_offset; /** Location within object of batch */ u32 batch_len; /** Length of batch within object */ u32 batch_flags; /** Flags composed for emit_bb_start() */ /** * Indicate either the size of the hastable used to resolve * relocation handles, or if negative that we are using a direct * index into the execobj[]. */ int lut_size; struct hlist_head *buckets; /** ht for relocation handles */ }; #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) /* * Used to convert any address to canonical form. * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the * addresses to be in a canonical form: * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct * canonical form [63:48] == [47]." */ #define GEN8_HIGH_ADDRESS_BIT 47 static inline u64 gen8_canonical_addr(u64 address) { return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); } static inline u64 gen8_noncanonical_addr(u64 address) { return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); } static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) { return intel_engine_requires_cmd_parser(eb->engine) || (intel_engine_using_cmd_parser(eb->engine) && eb->args->batch_len); } static int eb_create(struct i915_execbuffer *eb) { if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { unsigned int size = 1 + ilog2(eb->buffer_count); /* * Without a 1:1 association between relocation handles and * the execobject[] index, we instead create a hashtable. * We size it dynamically based on available memory, starting * first with 1:1 assocative hash and scaling back until * the allocation succeeds. * * Later on we use a positive lut_size to indicate we are * using this hashtable, and a negative value to indicate a * direct lookup. */ do { gfp_t flags; /* While we can still reduce the allocation size, don't * raise a warning and allow the allocation to fail. * On the last pass though, we want to try as hard * as possible to perform the allocation and warn * if it fails. */ flags = GFP_KERNEL; if (size > 1) flags |= __GFP_NORETRY | __GFP_NOWARN; eb->buckets = kzalloc(sizeof(struct hlist_head) << size, flags); if (eb->buckets) break; } while (--size); if (unlikely(!size)) return -ENOMEM; eb->lut_size = size; } else { eb->lut_size = -eb->buffer_count; } return 0; } static bool eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, const struct i915_vma *vma, unsigned int flags) { if (vma->node.size < entry->pad_to_size) return true; if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) return true; if (flags & EXEC_OBJECT_PINNED && vma->node.start != entry->offset) return true; if (flags & __EXEC_OBJECT_NEEDS_BIAS && vma->node.start < BATCH_OFFSET_BIAS) return true; if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && (vma->node.start + vma->node.size - 1) >> 32) return true; if (flags & __EXEC_OBJECT_NEEDS_MAP && !i915_vma_is_map_and_fenceable(vma)) return true; return false; } static inline bool eb_pin_vma(struct i915_execbuffer *eb, const struct drm_i915_gem_exec_object2 *entry, struct i915_vma *vma) { unsigned int exec_flags = *vma->exec_flags; u64 pin_flags; if (vma->node.size) pin_flags = vma->node.start; else pin_flags = entry->offset & PIN_OFFSET_MASK; pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) pin_flags |= PIN_GLOBAL; if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) return false; if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { if (unlikely(i915_vma_pin_fence(vma))) { i915_vma_unpin(vma); return false; } if (vma->fence) exec_flags |= __EXEC_OBJECT_HAS_FENCE; } *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; return !eb_vma_misplaced(entry, vma, exec_flags); } static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) { GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) __i915_vma_unpin_fence(vma); __i915_vma_unpin(vma); } static inline void eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) { if (!(*flags & __EXEC_OBJECT_HAS_PIN)) return; __eb_unreserve_vma(vma, *flags); *flags &= ~__EXEC_OBJECT_RESERVED; } static int eb_validate_vma(struct i915_execbuffer *eb, struct drm_i915_gem_exec_object2 *entry, struct i915_vma *vma) { if (unlikely(entry->flags & eb->invalid_flags)) return -EINVAL; if (unlikely(entry->alignment && !is_power_of_2_u64(entry->alignment))) return -EINVAL; /* * Offset can be used as input (EXEC_OBJECT_PINNED), reject * any non-page-aligned or non-canonical addresses. */ if (unlikely(entry->flags & EXEC_OBJECT_PINNED && entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) return -EINVAL; /* pad_to_size was once a reserved field, so sanitize it */ if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { if (unlikely(offset_in_page(entry->pad_to_size))) return -EINVAL; } else { entry->pad_to_size = 0; } if (unlikely(vma->exec_flags)) { DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", entry->handle, (int)(entry - eb->exec)); return -EINVAL; } /* * From drm_mm perspective address space is continuous, * so from this point we're always using non-canonical * form internally. */ entry->offset = gen8_noncanonical_addr(entry->offset); if (!eb->reloc_cache.has_fence) { entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; } else { if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || eb->reloc_cache.needs_unfenced) && i915_gem_object_is_tiled(vma->obj)) entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; } if (!(entry->flags & EXEC_OBJECT_PINNED)) entry->flags |= eb->context_flags; return 0; } static int eb_add_vma(struct i915_execbuffer *eb, unsigned int i, unsigned batch_idx, struct i915_vma *vma) { struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; int err; GEM_BUG_ON(i915_vma_is_closed(vma)); if (!(eb->args->flags & __EXEC_VALIDATED)) { err = eb_validate_vma(eb, entry, vma); if (unlikely(err)) return err; } if (eb->lut_size > 0) { vma->exec_handle = entry->handle; hlist_add_head(&vma->exec_node, &eb->buckets[hash_32(entry->handle, eb->lut_size)]); } if (entry->relocation_count) list_add_tail(&vma->reloc_link, &eb->relocs); /* * Stash a pointer from the vma to execobj, so we can query its flags, * size, alignment etc as provided by the user. Also we stash a pointer * to the vma inside the execobj so that we can use a direct lookup * to find the right target VMA when doing relocations. */ eb->vma[i] = vma; eb->flags[i] = entry->flags; vma->exec_flags = &eb->flags[i]; /* * SNA is doing fancy tricks with compressing batch buffers, which leads * to negative relocation deltas. Usually that works out ok since the * relocate address is still positive, except when the batch is placed * very low in the GTT. Ensure this doesn't happen. * * Note that actual hangs have only been observed on gen7, but for * paranoia do it everywhere. */ if (i == batch_idx) { if (entry->relocation_count && !(eb->flags[i] & EXEC_OBJECT_PINNED)) eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; if (eb->reloc_cache.has_fence) eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; eb->batch = vma; } err = 0; if (eb_pin_vma(eb, entry, vma)) { if (entry->offset != vma->node.start) { entry->offset = vma->node.start | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } } else { eb_unreserve_vma(vma, vma->exec_flags); list_add_tail(&vma->exec_link, &eb->unbound); if (drm_mm_node_allocated(&vma->node)) err = i915_vma_unbind(vma); if (unlikely(err)) vma->exec_flags = NULL; } return err; } static inline int use_cpu_reloc(const struct reloc_cache *cache, const struct drm_i915_gem_object *obj) { if (!i915_gem_object_has_struct_page(obj)) return false; if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) return true; if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) return false; return (cache->has_llc || obj->cache_dirty || obj->cache_level != I915_CACHE_NONE); } static int eb_reserve_vma(const struct i915_execbuffer *eb, struct i915_vma *vma) { struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); unsigned int exec_flags = *vma->exec_flags; u64 pin_flags; int err; pin_flags = PIN_USER | PIN_NONBLOCK; if (exec_flags & EXEC_OBJECT_NEEDS_GTT) pin_flags |= PIN_GLOBAL; /* * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, * limit address to the first 4GBs for unflagged objects. */ if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) pin_flags |= PIN_ZONE_4G; if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) pin_flags |= PIN_MAPPABLE; if (exec_flags & EXEC_OBJECT_PINNED) { pin_flags |= entry->offset | PIN_OFFSET_FIXED; pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; } err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, pin_flags); if (err) return err; if (entry->offset != vma->node.start) { entry->offset = vma->node.start | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { err = i915_vma_pin_fence(vma); if (unlikely(err)) { i915_vma_unpin(vma); return err; } if (vma->fence) exec_flags |= __EXEC_OBJECT_HAS_FENCE; } *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); return 0; } static int eb_reserve(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; struct list_head last; struct i915_vma *vma; unsigned int i, pass; int err; /* * Attempt to pin all of the buffers into the GTT. * This is done in 3 phases: * * 1a. Unbind all objects that do not match the GTT constraints for * the execbuffer (fenceable, mappable, alignment etc). * 1b. Increment pin count for already bound objects. * 2. Bind new objects. * 3. Decrement pin count. * * This avoid unnecessary unbinding of later objects in order to make * room for the earlier objects *unless* we need to defragment. */ pass = 0; err = 0; do { list_for_each_entry(vma, &eb->unbound, exec_link) { err = eb_reserve_vma(eb, vma); if (err) break; } if (err != -ENOSPC) return err; /* Resort *all* the objects into priority order */ INIT_LIST_HEAD(&eb->unbound); INIT_LIST_HEAD(&last); for (i = 0; i < count; i++) { unsigned int flags = eb->flags[i]; struct i915_vma *vma = eb->vma[i]; if (flags & EXEC_OBJECT_PINNED && flags & __EXEC_OBJECT_HAS_PIN) continue; eb_unreserve_vma(vma, &eb->flags[i]); if (flags & EXEC_OBJECT_PINNED) /* Pinned must have their slot */ list_add(&vma->exec_link, &eb->unbound); else if (flags & __EXEC_OBJECT_NEEDS_MAP) /* Map require the lowest 256MiB (aperture) */ list_add_tail(&vma->exec_link, &eb->unbound); else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) /* Prioritise 4GiB region for restricted bo */ list_add(&vma->exec_link, &last); else list_add_tail(&vma->exec_link, &last); } list_splice_tail(&last, &eb->unbound); switch (pass++) { case 0: break; case 1: /* Too fragmented, unbind everything and retry */ err = i915_gem_evict_vm(eb->context->vm); if (err) return err; break; default: return -ENOSPC; } } while (1); } static unsigned int eb_batch_index(const struct i915_execbuffer *eb) { if (eb->args->flags & I915_EXEC_BATCH_FIRST) return 0; else return eb->buffer_count - 1; } static int eb_select_context(struct i915_execbuffer *eb) { struct i915_gem_context *ctx; ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); if (unlikely(!ctx)) return -ENOENT; eb->gem_context = ctx; if (ctx->vm) eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; eb->context_flags = 0; if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; return 0; } static int eb_lookup_vmas(struct i915_execbuffer *eb) { struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; struct drm_i915_gem_object *obj; unsigned int i, batch; int err; if (unlikely(i915_gem_context_is_banned(eb->gem_context))) return -EIO; INIT_LIST_HEAD(&eb->relocs); INIT_LIST_HEAD(&eb->unbound); batch = eb_batch_index(eb); mutex_lock(&eb->gem_context->mutex); if (unlikely(i915_gem_context_is_closed(eb->gem_context))) { err = -ENOENT; goto err_ctx; } for (i = 0; i < eb->buffer_count; i++) { u32 handle = eb->exec[i].handle; struct i915_lut_handle *lut; struct i915_vma *vma; vma = radix_tree_lookup(handles_vma, handle); if (likely(vma)) goto add_vma; obj = i915_gem_object_lookup(eb->file, handle); if (unlikely(!obj)) { err = -ENOENT; goto err_vma; } vma = i915_vma_instance(obj, eb->context->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } lut = i915_lut_handle_alloc(); if (unlikely(!lut)) { err = -ENOMEM; goto err_obj; } err = radix_tree_insert(handles_vma, handle, vma); if (unlikely(err)) { i915_lut_handle_free(lut); goto err_obj; } /* transfer ref to lut */ if (!atomic_fetch_inc(&vma->open_count)) i915_vma_reopen(vma); lut->handle = handle; lut->ctx = eb->gem_context; i915_gem_object_lock(obj); list_add(&lut->obj_link, &obj->lut_list); i915_gem_object_unlock(obj); add_vma: err = eb_add_vma(eb, i, batch, vma); if (unlikely(err)) goto err_vma; GEM_BUG_ON(vma != eb->vma[i]); GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); } mutex_unlock(&eb->gem_context->mutex); eb->args->flags |= __EXEC_VALIDATED; return eb_reserve(eb); err_obj: i915_gem_object_put(obj); err_vma: eb->vma[i] = NULL; err_ctx: mutex_unlock(&eb->gem_context->mutex); return err; } static struct i915_vma * eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) { if (eb->lut_size < 0) { if (handle >= -eb->lut_size) return NULL; return eb->vma[handle]; } else { struct hlist_head *head; struct i915_vma *vma; head = &eb->buckets[hash_32(handle, eb->lut_size)]; hlist_for_each_entry(vma, head, exec_node) { if (vma->exec_handle == handle) return vma; } return NULL; } } static void eb_release_vmas(const struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { struct i915_vma *vma = eb->vma[i]; unsigned int flags = eb->flags[i]; if (!vma) break; GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); vma->exec_flags = NULL; eb->vma[i] = NULL; if (flags & __EXEC_OBJECT_HAS_PIN) __eb_unreserve_vma(vma, flags); if (flags & __EXEC_OBJECT_HAS_REF) i915_vma_put(vma); } } static void eb_reset_vmas(const struct i915_execbuffer *eb) { eb_release_vmas(eb); if (eb->lut_size > 0) memset(eb->buckets, 0, sizeof(struct hlist_head) << eb->lut_size); } static void eb_destroy(const struct i915_execbuffer *eb) { GEM_BUG_ON(eb->reloc_cache.rq); if (eb->lut_size > 0) kfree(eb->buckets); } static inline u64 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, const struct i915_vma *target) { return gen8_canonical_addr((int)reloc->delta + target->node.start); } static void reloc_cache_init(struct reloc_cache *cache, struct drm_i915_private *i915) { cache->page = -1; cache->vaddr = 0; /* Must be a variable in the struct to allow GCC to unroll. */ cache->gen = INTEL_GEN(i915); cache->has_llc = HAS_LLC(i915); cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); cache->has_fence = cache->gen < 4; cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; cache->node.allocated = false; cache->rq = NULL; cache->rq_size = 0; } static inline void *unmask_page(unsigned long p) { return (void *)(uintptr_t)(p & PAGE_MASK); } static inline unsigned int unmask_flags(unsigned long p) { return p & ~PAGE_MASK; } #define KMAP 0x4 /* after CLFLUSH_FLAGS */ static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) { struct drm_i915_private *i915 = container_of(cache, struct i915_execbuffer, reloc_cache)->i915; return &i915->ggtt; } static void reloc_gpu_flush(struct reloc_cache *cache) { GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size); i915_gem_object_unpin_map(cache->rq->batch->obj); intel_gt_chipset_flush(cache->rq->engine->gt); i915_request_add(cache->rq); cache->rq = NULL; } static void reloc_cache_reset(struct reloc_cache *cache) { void *vaddr; if (cache->rq) reloc_gpu_flush(cache); if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) { if (cache->vaddr & CLFLUSH_AFTER) mb(); kunmap_atomic(vaddr); i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); } else { struct i915_ggtt *ggtt = cache_to_ggtt(cache); intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __iomem *)vaddr); if (cache->node.allocated) { ggtt->vm.clear_range(&ggtt->vm, cache->node.start, cache->node.size); drm_mm_remove_node(&cache->node); } else { i915_vma_unpin((struct i915_vma *)cache->node.mm); } } cache->vaddr = 0; cache->page = -1; } static void *reloc_kmap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long page) { void *vaddr; if (cache->vaddr) { kunmap_atomic(unmask_page(cache->vaddr)); } else { unsigned int flushes; int err; err = i915_gem_object_prepare_write(obj, &flushes); if (err) return ERR_PTR(err); BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); cache->vaddr = flushes | KMAP; cache->node.mm = (void *)obj; if (flushes) mb(); } vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; cache->page = page; return vaddr; } static void *reloc_iomap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long page) { struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; void *vaddr; if (cache->vaddr) { intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); } else { struct i915_vma *vma; int err; if (i915_gem_object_is_tiled(obj)) return ERR_PTR(-EINVAL); if (use_cpu_reloc(cache, obj)) return NULL; i915_gem_object_lock(obj); err = i915_gem_object_set_to_gtt_domain(obj, true); i915_gem_object_unlock(obj); if (err) return ERR_PTR(err); vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK /* NOWARN */ | PIN_NOEVICT); if (IS_ERR(vma)) { memset(&cache->node, 0, sizeof(cache->node)); err = drm_mm_insert_node_in_range (&ggtt->vm.mm, &cache->node, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); if (err) /* no inactive aperture space, use cpu reloc */ return NULL; } else { cache->node.start = vma->node.start; cache->node.mm = (void *)vma; } } offset = cache->node.start; if (cache->node.allocated) { ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, page), offset, I915_CACHE_NONE, 0); } else { offset += page << PAGE_SHIFT; } vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, offset); cache->page = page; cache->vaddr = (unsigned long)vaddr; return vaddr; } static void *reloc_vaddr(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long page) { void *vaddr; if (cache->page == page) { vaddr = unmask_page(cache->vaddr); } else { vaddr = NULL; if ((cache->vaddr & KMAP) == 0) vaddr = reloc_iomap(obj, cache, page); if (!vaddr) vaddr = reloc_kmap(obj, cache, page); } return vaddr; } static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) { if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { if (flushes & CLFLUSH_BEFORE) { clflushopt(addr); mb(); } *addr = value; /* * Writes to the same cacheline are serialised by the CPU * (including clflush). On the write path, we only require * that it hits memory in an orderly fashion and place * mb barriers at the start and end of the relocation phase * to ensure ordering of clflush wrt to the system. */ if (flushes & CLFLUSH_AFTER) clflushopt(addr); } else *addr = value; } static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; int err; i915_vma_lock(vma); if (obj->cache_dirty & ~obj->cache_coherent) i915_gem_clflush_object(obj, 0); obj->write_domain = 0; err = i915_request_await_object(rq, vma->obj, true); if (err == 0) err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); i915_vma_unlock(vma); return err; } static int __reloc_gpu_alloc(struct i915_execbuffer *eb, struct i915_vma *vma, unsigned int len) { struct reloc_cache *cache = &eb->reloc_cache; struct intel_engine_pool_node *pool; struct i915_request *rq; struct i915_vma *batch; u32 *cmd; int err; pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE); if (IS_ERR(pool)) return PTR_ERR(pool); cmd = i915_gem_object_pin_map(pool->obj, cache->has_llc ? I915_MAP_FORCE_WB : I915_MAP_FORCE_WC); if (IS_ERR(cmd)) { err = PTR_ERR(cmd); goto out_pool; } batch = i915_vma_instance(pool->obj, vma->vm, NULL); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto err_unmap; } err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); if (err) goto err_unmap; rq = i915_request_create(eb->context); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = intel_engine_pool_mark_active(pool, rq); if (err) goto err_request; err = reloc_move_to_gpu(rq, vma); if (err) goto err_request; err = eb->engine->emit_bb_start(rq, batch->node.start, PAGE_SIZE, cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); if (err) goto skip_request; i915_vma_lock(batch); err = i915_request_await_object(rq, batch->obj, false); if (err == 0) err = i915_vma_move_to_active(batch, rq, 0); i915_vma_unlock(batch); if (err) goto skip_request; rq->batch = batch; i915_vma_unpin(batch); cache->rq = rq; cache->rq_cmd = cmd; cache->rq_size = 0; /* Return with batch mapping (cmd) still pinned */ goto out_pool; skip_request: i915_request_skip(rq, err); err_request: i915_request_add(rq); err_unpin: i915_vma_unpin(batch); err_unmap: i915_gem_object_unpin_map(pool->obj); out_pool: intel_engine_pool_put(pool); return err; } static u32 *reloc_gpu(struct i915_execbuffer *eb, struct i915_vma *vma, unsigned int len) { struct reloc_cache *cache = &eb->reloc_cache; u32 *cmd; if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) reloc_gpu_flush(cache); if (unlikely(!cache->rq)) { int err; /* If we need to copy for the cmdparser, we will stall anyway */ if (eb_use_cmdparser(eb)) return ERR_PTR(-EWOULDBLOCK); if (!intel_engine_can_store_dword(eb->engine)) return ERR_PTR(-ENODEV); err = __reloc_gpu_alloc(eb, vma, len); if (unlikely(err)) return ERR_PTR(err); } cmd = cache->rq_cmd + cache->rq_size; cache->rq_size += len; return cmd; } static u64 relocate_entry(struct i915_vma *vma, const struct drm_i915_gem_relocation_entry *reloc, struct i915_execbuffer *eb, const struct i915_vma *target) { u64 offset = reloc->offset; u64 target_offset = relocation_target(reloc, target); bool wide = eb->reloc_cache.use_64bit_reloc; void *vaddr; if (!eb->reloc_cache.vaddr && (DBG_FORCE_RELOC == FORCE_GPU_RELOC || !dma_resv_test_signaled_rcu(vma->resv, true))) { const unsigned int gen = eb->reloc_cache.gen; unsigned int len; u32 *batch; u64 addr; if (wide) len = offset & 7 ? 8 : 5; else if (gen >= 4) len = 4; else len = 3; batch = reloc_gpu(eb, vma, len); if (IS_ERR(batch)) goto repeat; addr = gen8_canonical_addr(vma->node.start + offset); if (wide) { if (offset & 7) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = lower_32_bits(addr); *batch++ = upper_32_bits(addr); *batch++ = lower_32_bits(target_offset); addr = gen8_canonical_addr(addr + 4); *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = lower_32_bits(addr); *batch++ = upper_32_bits(addr); *batch++ = upper_32_bits(target_offset); } else { *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; *batch++ = lower_32_bits(addr); *batch++ = upper_32_bits(addr); *batch++ = lower_32_bits(target_offset); *batch++ = upper_32_bits(target_offset); } } else if (gen >= 6) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = 0; *batch++ = addr; *batch++ = target_offset; } else if (gen >= 4) { *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *batch++ = 0; *batch++ = addr; *batch++ = target_offset; } else { *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *batch++ = addr; *batch++ = target_offset; } goto out; } repeat: vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); clflush_write32(vaddr + offset_in_page(offset), lower_32_bits(target_offset), eb->reloc_cache.vaddr); if (wide) { offset += sizeof(u32); target_offset >>= 32; wide = false; goto repeat; } out: return target->node.start | UPDATE; } static u64 eb_relocate_entry(struct i915_execbuffer *eb, struct i915_vma *vma, const struct drm_i915_gem_relocation_entry *reloc) { struct i915_vma *target; int err; /* we've already hold a reference to all valid objects */ target = eb_get_vma(eb, reloc->target_handle); if (unlikely(!target)) return -ENOENT; /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { DRM_DEBUG("reloc with multiple write domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (unlikely((reloc->write_domain | reloc->read_domains) & ~I915_GEM_GPU_DOMAINS)) { DRM_DEBUG("reloc with read/write non-GPU domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (reloc->write_domain) { *target->exec_flags |= EXEC_OBJECT_WRITE; /* * Sandybridge PPGTT errata: We need a global gtt mapping * for MI and pipe_control writes because the gpu doesn't * properly redirect them through the ppgtt for non_secure * batchbuffers. */ if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && IS_GEN(eb->i915, 6)) { err = i915_vma_bind(target, target->obj->cache_level, PIN_GLOBAL); if (WARN_ONCE(err, "Unexpected failure to bind target VMA!")) return err; } } /* * If the relocation already has the right value in it, no * more work needs to be done. */ if (!DBG_FORCE_RELOC && gen8_canonical_addr(target->node.start) == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { DRM_DEBUG("Relocation beyond object bounds: " "target %d offset %d size %d.\n", reloc->target_handle, (int)reloc->offset, (int)vma->size); return -EINVAL; } if (unlikely(reloc->offset & 3)) { DRM_DEBUG("Relocation not 4-byte aligned: " "target %d offset %d.\n", reloc->target_handle, (int)reloc->offset); return -EINVAL; } /* * If we write into the object, we need to force the synchronisation * barrier, either with an asynchronous clflush or if we executed the * patching using the GPU (though that should be serialised by the * timeline). To be completely sure, and since we are required to * do relocations we are already stalling, disable the user's opt * out of our synchronisation. */ *vma->exec_flags &= ~EXEC_OBJECT_ASYNC; /* and update the user's relocation entry */ return relocate_entry(vma, reloc, eb, target); } static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) { #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; struct drm_i915_gem_relocation_entry __user *urelocs; const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); unsigned int remain; urelocs = u64_to_user_ptr(entry->relocs_ptr); remain = entry->relocation_count; if (unlikely(remain > N_RELOC(ULONG_MAX))) return -EINVAL; /* * We must check that the entire relocation array is safe * to read. However, if the array is not writable the user loses * the updated relocation values. */ if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) return -EFAULT; do { struct drm_i915_gem_relocation_entry *r = stack; unsigned int count = min_t(unsigned int, remain, ARRAY_SIZE(stack)); unsigned int copied; /* * This is the fast path and we cannot handle a pagefault * whilst holding the struct mutex lest the user pass in the * relocations contained within a mmaped bo. For in such a case * we, the page fault handler would call i915_gem_fault() and * we would try to acquire the struct mutex again. Obviously * this is bad and so lockdep complains vehemently. */ pagefault_disable(); copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); pagefault_enable(); if (unlikely(copied)) { remain = -EFAULT; goto out; } remain -= count; do { u64 offset = eb_relocate_entry(eb, vma, r); if (likely(offset == 0)) { } else if ((s64)offset < 0) { remain = (int)offset; goto out; } else { /* * Note that reporting an error now * leaves everything in an inconsistent * state as we have *already* changed * the relocation value inside the * object. As we have not changed the * reloc.presumed_offset or will not * change the execobject.offset, on the * call we may not rewrite the value * inside the object, leaving it * dangling and causing a GPU hang. Unless * userspace dynamically rebuilds the * relocations on each execbuf rather than * presume a static tree. * * We did previously check if the relocations * were writable (access_ok), an error now * would be a strange race with mprotect, * having already demonstrated that we * can read from this userspace address. */ offset = gen8_canonical_addr(offset & ~UPDATE); if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) { remain = -EFAULT; goto out; } } } while (r++, --count); urelocs += ARRAY_SIZE(stack); } while (remain); out: reloc_cache_reset(&eb->reloc_cache); return remain; } static int eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) { const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); struct drm_i915_gem_relocation_entry *relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); unsigned int i; int err; for (i = 0; i < entry->relocation_count; i++) { u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); if ((s64)offset < 0) { err = (int)offset; goto err; } } err = 0; err: reloc_cache_reset(&eb->reloc_cache); return err; } static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) { const char __user *addr, *end; unsigned long size; char __maybe_unused c; size = entry->relocation_count; if (size == 0) return 0; if (size > N_RELOC(ULONG_MAX)) return -EINVAL; addr = u64_to_user_ptr(entry->relocs_ptr); size *= sizeof(struct drm_i915_gem_relocation_entry); if (!access_ok(addr, size)) return -EFAULT; end = addr + size; for (; addr < end; addr += PAGE_SIZE) { int err = __get_user(c, addr); if (err) return err; } return __get_user(c, end - 1); } static int eb_copy_relocations(const struct i915_execbuffer *eb) { struct drm_i915_gem_relocation_entry *relocs; const unsigned int count = eb->buffer_count; unsigned int i; int err; for (i = 0; i < count; i++) { const unsigned int nreloc = eb->exec[i].relocation_count; struct drm_i915_gem_relocation_entry __user *urelocs; unsigned long size; unsigned long copied; if (nreloc == 0) continue; err = check_relocations(&eb->exec[i]); if (err) goto err; urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); size = nreloc * sizeof(*relocs); relocs = kvmalloc_array(size, 1, GFP_KERNEL); if (!relocs) { err = -ENOMEM; goto err; } /* copy_from_user is limited to < 4GiB */ copied = 0; do { unsigned int len = min_t(u64, BIT_ULL(31), size - copied); if (__copy_from_user((char *)relocs + copied, (char __user *)urelocs + copied, len)) goto end; copied += len; } while (copied < size); /* * As we do not update the known relocation offsets after * relocating (due to the complexities in lock handling), * we need to mark them as invalid now so that we force the * relocation processing next time. Just in case the target * object is evicted and then rebound into its old * presumed_offset before the next execbuffer - if that * happened we would make the mistake of assuming that the * relocations were valid. */ if (!user_access_begin(urelocs, size)) goto end; for (copied = 0; copied < nreloc; copied++) unsafe_put_user(-1, &urelocs[copied].presumed_offset, end_user); user_access_end(); eb->exec[i].relocs_ptr = (uintptr_t)relocs; } return 0; end_user: user_access_end(); end: kvfree(relocs); err = -EFAULT; err: while (i--) { relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); if (eb->exec[i].relocation_count) kvfree(relocs); } return err; } static int eb_prefault_relocations(const struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i; if (unlikely(i915_modparams.prefault_disable)) return 0; for (i = 0; i < count; i++) { int err; err = check_relocations(&eb->exec[i]); if (err) return err; } return 0; } static noinline int eb_relocate_slow(struct i915_execbuffer *eb) { struct drm_device *dev = &eb->i915->drm; bool have_copy = false; struct i915_vma *vma; int err = 0; repeat: if (signal_pending(current)) { err = -ERESTARTSYS; goto out; } /* We may process another execbuffer during the unlock... */ eb_reset_vmas(eb); mutex_unlock(&dev->struct_mutex); /* * We take 3 passes through the slowpatch. * * 1 - we try to just prefault all the user relocation entries and * then attempt to reuse the atomic pagefault disabled fast path again. * * 2 - we copy the user entries to a local buffer here outside of the * local and allow ourselves to wait upon any rendering before * relocations * * 3 - we already have a local copy of the relocation entries, but * were interrupted (EAGAIN) whilst waiting for the objects, try again. */ if (!err) { err = eb_prefault_relocations(eb); } else if (!have_copy) { err = eb_copy_relocations(eb); have_copy = err == 0; } else { cond_resched(); err = 0; } if (err) { mutex_lock(&dev->struct_mutex); goto out; } /* A frequent cause for EAGAIN are currently unavailable client pages */ flush_workqueue(eb->i915->mm.userptr_wq); err = i915_mutex_lock_interruptible(dev); if (err) { mutex_lock(&dev->struct_mutex); goto out; } /* reacquire the objects */ err = eb_lookup_vmas(eb); if (err) goto err; GEM_BUG_ON(!eb->batch); list_for_each_entry(vma, &eb->relocs, reloc_link) { if (!have_copy) { pagefault_disable(); err = eb_relocate_vma(eb, vma); pagefault_enable(); if (err) goto repeat; } else { err = eb_relocate_vma_slow(eb, vma); if (err) goto err; } } /* * Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: if (err == -EAGAIN) goto repeat; out: if (have_copy) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct drm_i915_gem_relocation_entry *relocs; if (!entry->relocation_count) continue; relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); kvfree(relocs); } } return err; } static int eb_relocate(struct i915_execbuffer *eb) { if (eb_lookup_vmas(eb)) goto slow; /* The objects are in their final locations, apply the relocations. */ if (eb->args->flags & __EXEC_HAS_RELOC) { struct i915_vma *vma; list_for_each_entry(vma, &eb->relocs, reloc_link) { if (eb_relocate_vma(eb, vma)) goto slow; } } return 0; slow: return eb_relocate_slow(eb); } static int eb_move_to_gpu(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; struct ww_acquire_ctx acquire; unsigned int i; int err = 0; ww_acquire_init(&acquire, &reservation_ww_class); for (i = 0; i < count; i++) { struct i915_vma *vma = eb->vma[i]; err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); if (!err) continue; GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */ if (err == -EDEADLK) { GEM_BUG_ON(i == 0); do { int j = i - 1; ww_mutex_unlock(&eb->vma[j]->resv->lock); swap(eb->flags[i], eb->flags[j]); swap(eb->vma[i], eb->vma[j]); eb->vma[i]->exec_flags = &eb->flags[i]; } while (--i); GEM_BUG_ON(vma != eb->vma[0]); vma->exec_flags = &eb->flags[0]; err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, &acquire); } if (err) break; } ww_acquire_done(&acquire); while (i--) { unsigned int flags = eb->flags[i]; struct i915_vma *vma = eb->vma[i]; struct drm_i915_gem_object *obj = vma->obj; assert_vma_held(vma); if (flags & EXEC_OBJECT_CAPTURE) { struct i915_capture_list *capture; capture = kmalloc(sizeof(*capture), GFP_KERNEL); if (capture) { capture->next = eb->request->capture_list; capture->vma = vma; eb->request->capture_list = capture; } } /* * If the GPU is not _reading_ through the CPU cache, we need * to make sure that any writes (both previous GPU writes from * before a change in snooping levels and normal CPU writes) * caught in that cache are flushed to main memory. * * We want to say * obj->cache_dirty && * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) * but gcc's optimiser doesn't handle that as well and emits * two jumps instead of one. Maybe one day... */ if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { if (i915_gem_clflush_object(obj, 0)) flags &= ~EXEC_OBJECT_ASYNC; } if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { err = i915_request_await_object (eb->request, obj, flags & EXEC_OBJECT_WRITE); } if (err == 0) err = i915_vma_move_to_active(vma, eb->request, flags); i915_vma_unlock(vma); __eb_unreserve_vma(vma, flags); vma->exec_flags = NULL; if (unlikely(flags & __EXEC_OBJECT_HAS_REF)) i915_vma_put(vma); } ww_acquire_fini(&acquire); if (unlikely(err)) goto err_skip; eb->exec = NULL; /* Unconditionally flush any chipset caches (for streaming writes). */ intel_gt_chipset_flush(eb->engine->gt); return 0; err_skip: i915_request_skip(eb->request, err); return err; } static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) { if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) return false; /* Kernel clipping was a DRI1 misfeature */ if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { if (exec->num_cliprects || exec->cliprects_ptr) return false; } if (exec->DR4 == 0xffffffff) { DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); exec->DR4 = 0; } if (exec->DR1 || exec->DR4) return false; if ((exec->batch_start_offset | exec->batch_len) & 0x7) return false; return true; } static int i915_reset_gen7_sol_offsets(struct i915_request *rq) { u32 *cs; int i; if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { DRM_DEBUG("sol reset is gen7/rcs only\n"); return -EINVAL; } cs = intel_ring_begin(rq, 4 * 2 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_LOAD_REGISTER_IMM(4); for (i = 0; i < 4; i++) { *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); *cs++ = 0; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static struct i915_vma * shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = eb->i915; struct i915_vma * const vma = *eb->vma; struct i915_address_space *vm; u64 flags; /* * PPGTT backed shadow buffers must be mapped RO, to prevent * post-scan tampering */ if (CMDPARSER_USES_GGTT(dev_priv)) { flags = PIN_GLOBAL; vm = &dev_priv->ggtt.vm; } else if (vma->vm->has_read_only) { flags = PIN_USER; vm = vma->vm; i915_gem_object_set_readonly(obj); } else { DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n"); return ERR_PTR(-EINVAL); } return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags); } static struct i915_vma *eb_parse(struct i915_execbuffer *eb) { struct intel_engine_pool_node *pool; struct i915_vma *vma; u64 batch_start; u64 shadow_batch_start; int err; pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len); if (IS_ERR(pool)) return ERR_CAST(pool); vma = shadow_batch_pin(eb, pool->obj); if (IS_ERR(vma)) goto err; batch_start = gen8_canonical_addr(eb->batch->node.start) + eb->batch_start_offset; shadow_batch_start = gen8_canonical_addr(vma->node.start); err = intel_engine_cmd_parser(eb->gem_context, eb->engine, eb->batch->obj, batch_start, eb->batch_start_offset, eb->batch_len, pool->obj, shadow_batch_start); if (err) { i915_vma_unpin(vma); /* * Unsafe GGTT-backed buffers can still be submitted safely * as non-secure. * For PPGTT backing however, we have no choice but to forcibly * reject unsafe buffers */ if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES)) /* Execute original buffer non-secure */ vma = NULL; else vma = ERR_PTR(err); goto err; } eb->vma[eb->buffer_count] = i915_vma_get(vma); eb->flags[eb->buffer_count] = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; vma->exec_flags = &eb->flags[eb->buffer_count]; eb->buffer_count++; eb->batch_start_offset = 0; eb->batch = vma; if (CMDPARSER_USES_GGTT(eb->i915)) eb->batch_flags |= I915_DISPATCH_SECURE; /* eb->batch_len unchanged */ vma->private = pool; return vma; err: intel_engine_pool_put(pool); return vma; } static void add_to_client(struct i915_request *rq, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; rq->file_priv = file_priv; spin_lock(&file_priv->mm.lock); list_add_tail(&rq->client_link, &file_priv->mm.request_list); spin_unlock(&file_priv->mm.lock); } static int eb_submit(struct i915_execbuffer *eb) { int err; err = eb_move_to_gpu(eb); if (err) return err; if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { err = i915_reset_gen7_sol_offsets(eb->request); if (err) return err; } /* * After we completed waiting for other engines (using HW semaphores) * then we can signal that this request/batch is ready to run. This * allows us to determine if the batch is still waiting on the GPU * or actually running by checking the breadcrumb. */ if (eb->engine->emit_init_breadcrumb) { err = eb->engine->emit_init_breadcrumb(eb->request); if (err) return err; } err = eb->engine->emit_bb_start(eb->request, eb->batch->node.start + eb->batch_start_offset, eb->batch_len, eb->batch_flags); if (err) return err; return 0; } static int num_vcs_engines(const struct drm_i915_private *i915) { return hweight64(INTEL_INFO(i915)->engine_mask & GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0)); } /* * Find one BSD ring to dispatch the corresponding BSD command. * The engine index is returned. */ static unsigned int gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Check whether the file_priv has already selected one ring. */ if ((int)file_priv->bsd_engine < 0) file_priv->bsd_engine = get_random_int() % num_vcs_engines(dev_priv); return file_priv->bsd_engine; } static const enum intel_engine_id user_ring_map[] = { [I915_EXEC_DEFAULT] = RCS0, [I915_EXEC_RENDER] = RCS0, [I915_EXEC_BLT] = BCS0, [I915_EXEC_BSD] = VCS0, [I915_EXEC_VEBOX] = VECS0 }; static struct i915_request *eb_throttle(struct intel_context *ce) { struct intel_ring *ring = ce->ring; struct intel_timeline *tl = ce->timeline; struct i915_request *rq; /* * Completely unscientific finger-in-the-air estimates for suitable * maximum user request size (to avoid blocking) and then backoff. */ if (intel_ring_update_space(ring) >= PAGE_SIZE) return NULL; /* * Find a request that after waiting upon, there will be at least half * the ring available. The hysteresis allows us to compete for the * shared ring and should mean that we sleep less often prior to * claiming our resources, but not so long that the ring completely * drains before we can submit our next request. */ list_for_each_entry(rq, &tl->requests, link) { if (rq->ring != ring) continue; if (__intel_ring_space(rq->postfix, ring->emit, ring->size) > ring->size / 2) break; } if (&rq->link == &tl->requests) return NULL; /* weird, we will check again later for real */ return i915_request_get(rq); } static int __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce) { int err; if (likely(atomic_inc_not_zero(&ce->pin_count))) return 0; err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex); if (err) return err; err = __intel_context_do_pin(ce); mutex_unlock(&eb->i915->drm.struct_mutex); return err; } static void __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce) { if (likely(atomic_add_unless(&ce->pin_count, -1, 1))) return; mutex_lock(&eb->i915->drm.struct_mutex); intel_context_unpin(ce); mutex_unlock(&eb->i915->drm.struct_mutex); } static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) { struct intel_timeline *tl; struct i915_request *rq; int err; /* * ABI: Before userspace accesses the GPU (e.g. execbuffer), report * EIO if the GPU is already wedged. */ err = intel_gt_terminally_wedged(ce->engine->gt); if (err) return err; /* * Pinning the contexts may generate requests in order to acquire * GGTT space, so do this first before we reserve a seqno for * ourselves. */ err = __eb_pin_context(eb, ce); if (err) return err; /* * Take a local wakeref for preparing to dispatch the execbuf as * we expect to access the hardware fairly frequently in the * process, and require the engine to be kept awake between accesses. * Upon dispatch, we acquire another prolonged wakeref that we hold * until the timeline is idle, which in turn releases the wakeref * taken on the engine, and the parent device. */ tl = intel_context_timeline_lock(ce); if (IS_ERR(tl)) { err = PTR_ERR(tl); goto err_unpin; } intel_context_enter(ce); rq = eb_throttle(ce); intel_context_timeline_unlock(tl); if (rq) { if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT) < 0) { i915_request_put(rq); err = -EINTR; goto err_exit; } i915_request_put(rq); } eb->engine = ce->engine; eb->context = ce; return 0; err_exit: mutex_lock(&tl->mutex); intel_context_exit(ce); intel_context_timeline_unlock(tl); err_unpin: __eb_unpin_context(eb, ce); return err; } static void eb_unpin_engine(struct i915_execbuffer *eb) { struct intel_context *ce = eb->context; struct intel_timeline *tl = ce->timeline; mutex_lock(&tl->mutex); intel_context_exit(ce); mutex_unlock(&tl->mutex); __eb_unpin_context(eb, ce); } static unsigned int eb_select_legacy_ring(struct i915_execbuffer *eb, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args) { struct drm_i915_private *i915 = eb->i915; unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; if (user_ring_id != I915_EXEC_BSD && (args->flags & I915_EXEC_BSD_MASK)) { DRM_DEBUG("execbuf with non bsd ring but with invalid " "bsd dispatch flags: %d\n", (int)(args->flags)); return -1; } if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; if (bsd_idx == I915_EXEC_BSD_DEFAULT) { bsd_idx = gen8_dispatch_bsd_engine(i915, file); } else if (bsd_idx >= I915_EXEC_BSD_RING1 && bsd_idx <= I915_EXEC_BSD_RING2) { bsd_idx >>= I915_EXEC_BSD_SHIFT; bsd_idx--; } else { DRM_DEBUG("execbuf with unknown bsd ring: %u\n", bsd_idx); return -1; } return _VCS(bsd_idx); } if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); return -1; } return user_ring_map[user_ring_id]; } static int eb_pin_engine(struct i915_execbuffer *eb, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args) { struct intel_context *ce; unsigned int idx; int err; if (i915_gem_context_user_engines(eb->gem_context)) idx = args->flags & I915_EXEC_RING_MASK; else idx = eb_select_legacy_ring(eb, file, args); ce = i915_gem_context_get_engine(eb->gem_context, idx); if (IS_ERR(ce)) return PTR_ERR(ce); err = __eb_pin_engine(eb, ce); intel_context_put(ce); return err; } static void __free_fence_array(struct drm_syncobj **fences, unsigned int n) { while (n--) drm_syncobj_put(ptr_mask_bits(fences[n], 2)); kvfree(fences); } static struct drm_syncobj ** get_fence_array(struct drm_i915_gem_execbuffer2 *args, struct drm_file *file) { const unsigned long nfences = args->num_cliprects; struct drm_i915_gem_exec_fence __user *user; struct drm_syncobj **fences; unsigned long n; int err; if (!(args->flags & I915_EXEC_FENCE_ARRAY)) return NULL; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (nfences > min_t(unsigned long, ULONG_MAX / sizeof(*user), SIZE_MAX / sizeof(*fences))) return ERR_PTR(-EINVAL); user = u64_to_user_ptr(args->cliprects_ptr); if (!access_ok(user, nfences * sizeof(*user))) return ERR_PTR(-EFAULT); fences = kvmalloc_array(nfences, sizeof(*fences), __GFP_NOWARN | GFP_KERNEL); if (!fences) return ERR_PTR(-ENOMEM); for (n = 0; n < nfences; n++) { struct drm_i915_gem_exec_fence fence; struct drm_syncobj *syncobj; if (__copy_from_user(&fence, user++, sizeof(fence))) { err = -EFAULT; goto err; } if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { err = -EINVAL; goto err; } syncobj = drm_syncobj_find(file, fence.handle); if (!syncobj) { DRM_DEBUG("Invalid syncobj handle provided\n"); err = -ENOENT; goto err; } BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); } return fences; err: __free_fence_array(fences, n); return ERR_PTR(err); } static void put_fence_array(struct drm_i915_gem_execbuffer2 *args, struct drm_syncobj **fences) { if (fences) __free_fence_array(fences, args->num_cliprects); } static int await_fence_array(struct i915_execbuffer *eb, struct drm_syncobj **fences) { const unsigned int nfences = eb->args->num_cliprects; unsigned int n; int err; for (n = 0; n < nfences; n++) { struct drm_syncobj *syncobj; struct dma_fence *fence; unsigned int flags; syncobj = ptr_unpack_bits(fences[n], &flags, 2); if (!(flags & I915_EXEC_FENCE_WAIT)) continue; fence = drm_syncobj_fence_get(syncobj); if (!fence) return -EINVAL; err = i915_request_await_dma_fence(eb->request, fence); dma_fence_put(fence); if (err < 0) return err; } return 0; } static void signal_fence_array(struct i915_execbuffer *eb, struct drm_syncobj **fences) { const unsigned int nfences = eb->args->num_cliprects; struct dma_fence * const fence = &eb->request->fence; unsigned int n; for (n = 0; n < nfences; n++) { struct drm_syncobj *syncobj; unsigned int flags; syncobj = ptr_unpack_bits(fences[n], &flags, 2); if (!(flags & I915_EXEC_FENCE_SIGNAL)) continue; drm_syncobj_replace_fence(syncobj, fence); } } static int i915_gem_do_execbuffer(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec, struct drm_syncobj **fences) { struct drm_i915_private *i915 = to_i915(dev); struct i915_execbuffer eb; struct dma_fence *in_fence = NULL; struct dma_fence *exec_fence = NULL; struct sync_file *out_fence = NULL; int out_fence_fd = -1; int err; BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS); eb.i915 = i915; eb.file = file; eb.args = args; if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) args->flags |= __EXEC_HAS_RELOC; eb.exec = exec; eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1); eb.vma[0] = NULL; eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1); eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; reloc_cache_init(&eb.reloc_cache, eb.i915); eb.buffer_count = args->buffer_count; eb.batch_start_offset = args->batch_start_offset; eb.batch_len = args->batch_len; eb.batch_flags = 0; if (args->flags & I915_EXEC_SECURE) { if (INTEL_GEN(i915) >= 11) return -ENODEV; /* Return -EPERM to trigger fallback code on old binaries. */ if (!HAS_SECURE_BATCHES(i915)) return -EPERM; if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) return -EPERM; eb.batch_flags |= I915_DISPATCH_SECURE; } if (args->flags & I915_EXEC_IS_PINNED) eb.batch_flags |= I915_DISPATCH_PINNED; if (args->flags & I915_EXEC_FENCE_IN) { in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); if (!in_fence) return -EINVAL; } if (args->flags & I915_EXEC_FENCE_SUBMIT) { if (in_fence) { err = -EINVAL; goto err_in_fence; } exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); if (!exec_fence) { err = -EINVAL; goto err_in_fence; } } if (args->flags & I915_EXEC_FENCE_OUT) { out_fence_fd = get_unused_fd_flags(O_CLOEXEC); if (out_fence_fd < 0) { err = out_fence_fd; goto err_exec_fence; } } err = eb_create(&eb); if (err) goto err_out_fence; GEM_BUG_ON(!eb.lut_size); err = eb_select_context(&eb); if (unlikely(err)) goto err_destroy; err = eb_pin_engine(&eb, file, args); if (unlikely(err)) goto err_context; err = i915_mutex_lock_interruptible(dev); if (err) goto err_engine; err = eb_relocate(&eb); if (err) { /* * If the user expects the execobject.offset and * reloc.presumed_offset to be an exact match, * as for using NO_RELOC, then we cannot update * the execobject.offset until we have completed * relocation. */ args->flags &= ~__EXEC_HAS_RELOC; goto err_vma; } if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) { DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); err = -EINVAL; goto err_vma; } if (eb.batch_start_offset > eb.batch->size || eb.batch_len > eb.batch->size - eb.batch_start_offset) { DRM_DEBUG("Attempting to use out-of-bounds batch\n"); err = -EINVAL; goto err_vma; } if (eb.batch_len == 0) eb.batch_len = eb.batch->size - eb.batch_start_offset; if (eb_use_cmdparser(&eb)) { struct i915_vma *vma; vma = eb_parse(&eb); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_vma; } } /* * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure * batch" bit. Hence we need to pin secure batches into the global gtt. * hsw should have this fixed, but bdw mucks it up again. */ if (eb.batch_flags & I915_DISPATCH_SECURE) { struct i915_vma *vma; /* * So on first glance it looks freaky that we pin the batch here * outside of the reservation loop. But: * - The batch is already pinned into the relevant ppgtt, so we * already have the backing storage fully allocated. * - No other BO uses the global gtt (well contexts, but meh), * so we don't really have issues with multiple objects not * fitting due to fragmentation. * So this is actually safe. */ vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_vma; } eb.batch = vma; } /* All GPU relocation batches must be submitted prior to the user rq */ GEM_BUG_ON(eb.reloc_cache.rq); /* Allocate a request for this batch buffer nice and early. */ eb.request = i915_request_create(eb.context); if (IS_ERR(eb.request)) { err = PTR_ERR(eb.request); goto err_batch_unpin; } if (in_fence) { err = i915_request_await_dma_fence(eb.request, in_fence); if (err < 0) goto err_request; } if (exec_fence) { err = i915_request_await_execution(eb.request, exec_fence, eb.engine->bond_execute); if (err < 0) goto err_request; } if (fences) { err = await_fence_array(&eb, fences); if (err) goto err_request; } if (out_fence_fd != -1) { out_fence = sync_file_create(&eb.request->fence); if (!out_fence) { err = -ENOMEM; goto err_request; } } /* * Whilst this request exists, batch_obj will be on the * active_list, and so will hold the active reference. Only when this * request is retired will the the batch_obj be moved onto the * inactive_list and lose its active reference. Hence we do not need * to explicitly hold another reference here. */ eb.request->batch = eb.batch; if (eb.batch->private) intel_engine_pool_mark_active(eb.batch->private, eb.request); trace_i915_request_queue(eb.request, eb.batch_flags); err = eb_submit(&eb); err_request: add_to_client(eb.request, file); i915_request_add(eb.request); if (fences) signal_fence_array(&eb, fences); if (out_fence) { if (err == 0) { fd_install(out_fence_fd, out_fence->file); args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ args->rsvd2 |= (u64)out_fence_fd << 32; out_fence_fd = -1; } else { fput(out_fence->file); } } err_batch_unpin: if (eb.batch_flags & I915_DISPATCH_SECURE) i915_vma_unpin(eb.batch); if (eb.batch->private) intel_engine_pool_put(eb.batch->private); err_vma: if (eb.exec) eb_release_vmas(&eb); mutex_unlock(&dev->struct_mutex); err_engine: eb_unpin_engine(&eb); err_context: i915_gem_context_put(eb.gem_context); err_destroy: eb_destroy(&eb); err_out_fence: if (out_fence_fd != -1) put_unused_fd(out_fence_fd); err_exec_fence: dma_fence_put(exec_fence); err_in_fence: dma_fence_put(in_fence); return err; } static size_t eb_element_size(void) { return (sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct i915_vma *) + sizeof(unsigned int)); } static bool check_buffer_count(size_t count) { const size_t sz = eb_element_size(); /* * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup * array size (see eb_create()). Otherwise, we can accept an array as * large as can be addressed (though use large arrays at your peril)! */ return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; const size_t count = args->buffer_count; unsigned int i; int err; if (!check_buffer_count(count)) { DRM_DEBUG("execbuf2 with %zd buffers\n", count); return -EINVAL; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; i915_execbuffer2_set_context_id(exec2, 0); if (!i915_gem_check_execbuffer(&exec2)) return -EINVAL; /* Copy in the exec list from userland */ exec_list = kvmalloc_array(count, sizeof(*exec_list), __GFP_NOWARN | GFP_KERNEL); exec2_list = kvmalloc_array(count + 1, eb_element_size(), __GFP_NOWARN | GFP_KERNEL); if (exec_list == NULL || exec2_list == NULL) { DRM_DEBUG("Failed to allocate exec list for %d buffers\n", args->buffer_count); kvfree(exec_list); kvfree(exec2_list); return -ENOMEM; } err = copy_from_user(exec_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec_list) * count); if (err) { DRM_DEBUG("copy %d exec entries failed %d\n", args->buffer_count, err); kvfree(exec_list); kvfree(exec2_list); return -EFAULT; } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (INTEL_GEN(to_i915(dev)) < 4) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); if (exec2.flags & __EXEC_HAS_RELOC) { struct drm_i915_gem_exec_object __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) { if (!(exec2_list[i].offset & UPDATE)) continue; exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); exec2_list[i].offset &= PIN_OFFSET_MASK; if (__copy_to_user(&user_exec_list[i].offset, &exec2_list[i].offset, sizeof(user_exec_list[i].offset))) break; } } kvfree(exec_list); kvfree(exec2_list); return err; } int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list; struct drm_syncobj **fences = NULL; const size_t count = args->buffer_count; int err; if (!check_buffer_count(count)) { DRM_DEBUG("execbuf2 with %zd buffers\n", count); return -EINVAL; } if (!i915_gem_check_execbuffer(args)) return -EINVAL; /* Allocate an extra slot for use by the command parser */ exec2_list = kvmalloc_array(count + 1, eb_element_size(), __GFP_NOWARN | GFP_KERNEL); if (exec2_list == NULL) { DRM_DEBUG("Failed to allocate exec list for %zd buffers\n", count); return -ENOMEM; } if (copy_from_user(exec2_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec2_list) * count)) { DRM_DEBUG("copy %zd exec entries failed\n", count); kvfree(exec2_list); return -EFAULT; } if (args->flags & I915_EXEC_FENCE_ARRAY) { fences = get_fence_array(args, file); if (IS_ERR(fences)) { kvfree(exec2_list); return PTR_ERR(fences); } } err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); /* * Now that we have begun execution of the batchbuffer, we ignore * any new error after this point. Also given that we have already * updated the associated relocations, we try to write out the current * object locations irrespective of any error. */ if (args->flags & __EXEC_HAS_RELOC) { struct drm_i915_gem_exec_object2 __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); unsigned int i; /* Copy the new buffer offsets back to the user's exec list. */ /* * Note: count * sizeof(*user_exec_list) does not overflow, * because we checked 'count' in check_buffer_count(). * * And this range already got effectively checked earlier * when we did the "copy_from_user()" above. */ if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) goto end; for (i = 0; i < args->buffer_count; i++) { if (!(exec2_list[i].offset & UPDATE)) continue; exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); unsafe_put_user(exec2_list[i].offset, &user_exec_list[i].offset, end_user); } end_user: user_access_end(); end:; } args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; put_fence_array(args, fences); kvfree(exec2_list); return err; }