/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" #include "amdgpu_amdkfd.h" #include "amdgpu_gmc.h" #include "amdgpu_xgmi.h" /** * DOC: GPUVM * * GPUVM is similar to the legacy gart on older asics, however * rather than there being a single global gart table * for the entire GPU, there are multiple VM page tables active * at any given time. The VM page tables can contain a mix * vram pages and system memory pages and system memory pages * can be mapped as snooped (cached system pages) or unsnooped * (uncached system pages). * Each VM has an ID associated with it and there is a page table * associated with each VMID. When execting a command buffer, * the kernel tells the the ring what VMID to use for that command * buffer. VMIDs are allocated dynamically as commands are submitted. * The userspace drivers maintain their own address space and the kernel * sets up their pages tables accordingly when they submit their * command buffers and a VMID is assigned. * Cayman/Trinity support up to 8 active VMs at any given time; * SI supports 16. */ #define START(node) ((node)->start) #define LAST(node) ((node)->last) INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, START, LAST, static, amdgpu_vm_it) #undef START #undef LAST /** * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback */ struct amdgpu_prt_cb { /** * @adev: amdgpu device */ struct amdgpu_device *adev; /** * @cb: callback */ struct dma_fence_cb cb; }; /** * amdgpu_vm_level_shift - return the addr shift for each level * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The number of bits the pfn needs to be right shifted for a level. */ static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, unsigned level) { unsigned shift = 0xff; switch (level) { case AMDGPU_VM_PDB2: case AMDGPU_VM_PDB1: case AMDGPU_VM_PDB0: shift = 9 * (AMDGPU_VM_PDB0 - level) + adev->vm_manager.block_size; break; case AMDGPU_VM_PTB: shift = 0; break; default: dev_err(adev->dev, "the level%d isn't supported.\n", level); } return shift; } /** * amdgpu_vm_num_entries - return the number of entries in a PD/PT * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The number of entries in a page directory or page table. */ static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, unsigned level) { unsigned shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); if (level == adev->vm_manager.root_level) /* For the root directory */ return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; else if (level != AMDGPU_VM_PTB) /* Everything in between */ return 512; else /* For the page tables on the leaves */ return AMDGPU_VM_PTE_COUNT(adev); } /** * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD * * @adev: amdgpu_device pointer * * Returns: * The number of entries in the root page directory which needs the ATS setting. */ static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) { unsigned shift; shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); } /** * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The mask to extract the entry number of a PD/PT from an address. */ static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, unsigned int level) { if (level <= adev->vm_manager.root_level) return 0xffffffff; else if (level != AMDGPU_VM_PTB) return 0x1ff; else return AMDGPU_VM_PTE_COUNT(adev) - 1; } /** * amdgpu_vm_bo_size - returns the size of the BOs in bytes * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The size of the BO for a page directory or page table in bytes. */ static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) { return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); } /** * amdgpu_vm_bo_evicted - vm_bo is evicted * * @vm_bo: vm_bo which is evicted * * State for PDs/PTs and per VM BOs which are not at the location they should * be. */ static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) { struct amdgpu_vm *vm = vm_bo->vm; struct amdgpu_bo *bo = vm_bo->bo; vm_bo->moved = true; if (bo->tbo.type == ttm_bo_type_kernel) list_move(&vm_bo->vm_status, &vm->evicted); else list_move_tail(&vm_bo->vm_status, &vm->evicted); } /** * amdgpu_vm_bo_relocated - vm_bo is reloacted * * @vm_bo: vm_bo which is relocated * * State for PDs/PTs which needs to update their parent PD. */ static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) { list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); } /** * amdgpu_vm_bo_moved - vm_bo is moved * * @vm_bo: vm_bo which is moved * * State for per VM BOs which are moved, but that change is not yet reflected * in the page tables. */ static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) { list_move(&vm_bo->vm_status, &vm_bo->vm->moved); } /** * amdgpu_vm_bo_idle - vm_bo is idle * * @vm_bo: vm_bo which is now idle * * State for PDs/PTs and per VM BOs which have gone through the state machine * and are now idle. */ static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) { list_move(&vm_bo->vm_status, &vm_bo->vm->idle); vm_bo->moved = false; } /** * amdgpu_vm_bo_invalidated - vm_bo is invalidated * * @vm_bo: vm_bo which is now invalidated * * State for normal BOs which are invalidated and that change not yet reflected * in the PTs. */ static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) { spin_lock(&vm_bo->vm->invalidated_lock); list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); spin_unlock(&vm_bo->vm->invalidated_lock); } /** * amdgpu_vm_bo_done - vm_bo is done * * @vm_bo: vm_bo which is now done * * State for normal BOs which are invalidated and that change has been updated * in the PTs. */ static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) { spin_lock(&vm_bo->vm->invalidated_lock); list_del_init(&vm_bo->vm_status); spin_unlock(&vm_bo->vm->invalidated_lock); } /** * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm * * @base: base structure for tracking BO usage in a VM * @vm: vm to which bo is to be added * @bo: amdgpu buffer object * * Initialize a bo_va_base structure and add it to the appropriate lists * */ static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { base->vm = vm; base->bo = bo; base->next = NULL; INIT_LIST_HEAD(&base->vm_status); if (!bo) return; base->next = bo->vm_bo; bo->vm_bo = base; if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) return; vm->bulk_moveable = false; if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) amdgpu_vm_bo_relocated(base); else amdgpu_vm_bo_idle(base); if (bo->preferred_domains & amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) return; /* * we checked all the prerequisites, but it looks like this per vm bo * is currently evicted. add the bo to the evicted list to make sure it * is validated on next vm use to avoid fault. * */ amdgpu_vm_bo_evicted(base); } /** * amdgpu_vm_pt_parent - get the parent page directory * * @pt: child page table * * Helper to get the parent entry for the child page table. NULL if we are at * the root page directory. */ static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) { struct amdgpu_bo *parent = pt->base.bo->parent; if (!parent) return NULL; return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); } /** * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt */ struct amdgpu_vm_pt_cursor { uint64_t pfn; struct amdgpu_vm_pt *parent; struct amdgpu_vm_pt *entry; unsigned level; }; /** * amdgpu_vm_pt_start - start PD/PT walk * * @adev: amdgpu_device pointer * @vm: amdgpu_vm structure * @start: start address of the walk * @cursor: state to initialize * * Initialize a amdgpu_vm_pt_cursor to start a walk. */ static void amdgpu_vm_pt_start(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t start, struct amdgpu_vm_pt_cursor *cursor) { cursor->pfn = start; cursor->parent = NULL; cursor->entry = &vm->root; cursor->level = adev->vm_manager.root_level; } /** * amdgpu_vm_pt_descendant - go to child node * * @adev: amdgpu_device pointer * @cursor: current state * * Walk to the child node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { unsigned mask, shift, idx; if (!cursor->entry->entries) return false; BUG_ON(!cursor->entry->base.bo); mask = amdgpu_vm_entries_mask(adev, cursor->level); shift = amdgpu_vm_level_shift(adev, cursor->level); ++cursor->level; idx = (cursor->pfn >> shift) & mask; cursor->parent = cursor->entry; cursor->entry = &cursor->entry->entries[idx]; return true; } /** * amdgpu_vm_pt_sibling - go to sibling node * * @adev: amdgpu_device pointer * @cursor: current state * * Walk to the sibling node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { unsigned shift, num_entries; /* Root doesn't have a sibling */ if (!cursor->parent) return false; /* Go to our parents and see if we got a sibling */ shift = amdgpu_vm_level_shift(adev, cursor->level - 1); num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); if (cursor->entry == &cursor->parent->entries[num_entries - 1]) return false; cursor->pfn += 1ULL << shift; cursor->pfn &= ~((1ULL << shift) - 1); ++cursor->entry; return true; } /** * amdgpu_vm_pt_ancestor - go to parent node * * @cursor: current state * * Walk to the parent node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) { if (!cursor->parent) return false; --cursor->level; cursor->entry = cursor->parent; cursor->parent = amdgpu_vm_pt_parent(cursor->parent); return true; } /** * amdgpu_vm_pt_next - get next PD/PT in hieratchy * * @adev: amdgpu_device pointer * @cursor: current state * * Walk the PD/PT tree to the next node. */ static void amdgpu_vm_pt_next(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { /* First try a newborn child */ if (amdgpu_vm_pt_descendant(adev, cursor)) return; /* If that didn't worked try to find a sibling */ while (!amdgpu_vm_pt_sibling(adev, cursor)) { /* No sibling, go to our parents and grandparents */ if (!amdgpu_vm_pt_ancestor(cursor)) { cursor->pfn = ~0ll; return; } } } /** * amdgpu_vm_pt_first_dfs - start a deep first search * * @adev: amdgpu_device structure * @vm: amdgpu_vm structure * @cursor: state to initialize * * Starts a deep first traversal of the PD/PT tree. */ static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *start, struct amdgpu_vm_pt_cursor *cursor) { if (start) *cursor = *start; else amdgpu_vm_pt_start(adev, vm, 0, cursor); while (amdgpu_vm_pt_descendant(adev, cursor)); } /** * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue * * @start: starting point for the search * @entry: current entry * * Returns: * True when the search should continue, false otherwise. */ static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, struct amdgpu_vm_pt *entry) { return entry && (!start || entry != start->entry); } /** * amdgpu_vm_pt_next_dfs - get the next node for a deep first search * * @adev: amdgpu_device structure * @cursor: current state * * Move the cursor to the next node in a deep first search. */ static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { if (!cursor->entry) return; if (!cursor->parent) cursor->entry = NULL; else if (amdgpu_vm_pt_sibling(adev, cursor)) while (amdgpu_vm_pt_descendant(adev, cursor)); else amdgpu_vm_pt_ancestor(cursor); } /** * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs */ #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ amdgpu_vm_pt_continue_dfs((start), (entry)); \ (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) /** * amdgpu_vm_get_pd_bo - add the VM PD to a validation list * * @vm: vm providing the BOs * @validated: head of validation list * @entry: entry to add * * Add the page directory to the list of BOs to * validate for command submission. */ void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, struct list_head *validated, struct amdgpu_bo_list_entry *entry) { entry->priority = 0; entry->tv.bo = &vm->root.base.bo->tbo; /* One for the VM updates, one for TTM and one for the CS job */ entry->tv.num_shared = 3; entry->user_pages = NULL; list_add(&entry->tv.head, validated); } void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) { struct amdgpu_bo *abo; struct amdgpu_vm_bo_base *bo_base; if (!amdgpu_bo_is_amdgpu_bo(bo)) return; if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) return; abo = ttm_to_amdgpu_bo(bo); if (!abo->parent) return; for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { struct amdgpu_vm *vm = bo_base->vm; if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) vm->bulk_moveable = false; } } /** * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU * * @adev: amdgpu device pointer * @vm: vm providing the BOs * * Move all BOs to the end of LRU and remember their positions to put them * together. */ void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct ttm_bo_global *glob = adev->mman.bdev.glob; struct amdgpu_vm_bo_base *bo_base; if (vm->bulk_moveable) { spin_lock(&glob->lru_lock); ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); spin_unlock(&glob->lru_lock); return; } memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); spin_lock(&glob->lru_lock); list_for_each_entry(bo_base, &vm->idle, vm_status) { struct amdgpu_bo *bo = bo_base->bo; if (!bo->parent) continue; ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); if (bo->shadow) ttm_bo_move_to_lru_tail(&bo->shadow->tbo, &vm->lru_bulk_move); } spin_unlock(&glob->lru_lock); vm->bulk_moveable = true; } /** * amdgpu_vm_validate_pt_bos - validate the page table BOs * * @adev: amdgpu device pointer * @vm: vm providing the BOs * @validate: callback to do the validation * @param: parameter for the validation callback * * Validate the page table BOs on command submission if neccessary. * * Returns: * Validation result. */ int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, int (*validate)(void *p, struct amdgpu_bo *bo), void *param) { struct amdgpu_vm_bo_base *bo_base, *tmp; int r = 0; vm->bulk_moveable &= list_empty(&vm->evicted); list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { struct amdgpu_bo *bo = bo_base->bo; r = validate(param, bo); if (r) break; if (bo->tbo.type != ttm_bo_type_kernel) { amdgpu_vm_bo_moved(bo_base); } else { vm->update_funcs->map_table(bo); if (bo->parent) amdgpu_vm_bo_relocated(bo_base); else amdgpu_vm_bo_idle(bo_base); } } return r; } /** * amdgpu_vm_ready - check VM is ready for updates * * @vm: VM to check * * Check if all VM PDs/PTs are ready for updates * * Returns: * True if eviction list is empty. */ bool amdgpu_vm_ready(struct amdgpu_vm *vm) { return list_empty(&vm->evicted); } /** * amdgpu_vm_clear_bo - initially clear the PDs/PTs * * @adev: amdgpu_device pointer * @vm: VM to clear BO from * @bo: BO to clear * * Root PD needs to be reserved when calling this. * * Returns: * 0 on success, errno otherwise. */ static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct ttm_operation_ctx ctx = { true, false }; unsigned level = adev->vm_manager.root_level; struct amdgpu_vm_update_params params; struct amdgpu_bo *ancestor = bo; unsigned entries, ats_entries; uint64_t addr; int r; /* Figure out our place in the hierarchy */ if (ancestor->parent) { ++level; while (ancestor->parent->parent) { ++level; ancestor = ancestor->parent; } } entries = amdgpu_bo_size(bo) / 8; if (!vm->pte_support_ats) { ats_entries = 0; } else if (!bo->parent) { ats_entries = amdgpu_vm_num_ats_entries(adev); ats_entries = min(ats_entries, entries); entries -= ats_entries; } else { struct amdgpu_vm_pt *pt; pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); ats_entries = amdgpu_vm_num_ats_entries(adev); if ((pt - vm->root.entries) >= ats_entries) { ats_entries = 0; } else { ats_entries = entries; entries = 0; } } r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (r) return r; if (bo->shadow) { r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, &ctx); if (r) return r; } r = vm->update_funcs->map_table(bo); if (r) return r; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_KFD, NULL); if (r) return r; addr = 0; if (ats_entries) { uint64_t value = 0, flags; flags = AMDGPU_PTE_DEFAULT_ATC; if (level != AMDGPU_VM_PTB) { /* Handle leaf PDEs as PTEs */ flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); } r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, value, flags); if (r) return r; addr += ats_entries * 8; } if (entries) { uint64_t value = 0, flags = 0; if (adev->asic_type >= CHIP_VEGA10) { if (level != AMDGPU_VM_PTB) { /* Handle leaf PDEs as PTEs */ flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); } else { /* Workaround for fault priority problem on GMC9 */ flags = AMDGPU_PTE_EXECUTABLE; } } r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, value, flags); if (r) return r; } return vm->update_funcs->commit(¶ms, NULL); } /** * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation * * @adev: amdgpu_device pointer * @vm: requesting vm * @bp: resulting BO allocation parameters */ static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, int level, struct amdgpu_bo_param *bp) { memset(bp, 0, sizeof(*bp)); bp->size = amdgpu_vm_bo_size(adev, level); bp->byte_align = AMDGPU_GPU_PAGE_SIZE; bp->domain = AMDGPU_GEM_DOMAIN_VRAM; bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | AMDGPU_GEM_CREATE_CPU_GTT_USWC; if (vm->use_cpu_for_update) bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; else if (!vm->root.base.bo || vm->root.base.bo->shadow) bp->flags |= AMDGPU_GEM_CREATE_SHADOW; bp->type = ttm_bo_type_kernel; if (vm->root.base.bo) bp->resv = vm->root.base.bo->tbo.base.resv; } /** * amdgpu_vm_alloc_pts - Allocate a specific page table * * @adev: amdgpu_device pointer * @vm: VM to allocate page tables for * @cursor: Which page table to allocate * * Make sure a specific page table or directory is allocated. * * Returns: * 1 if page table needed to be allocated, 0 if page table was already * allocated, negative errno if an error occurred. */ static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *cursor) { struct amdgpu_vm_pt *entry = cursor->entry; struct amdgpu_bo_param bp; struct amdgpu_bo *pt; int r; if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { unsigned num_entries; num_entries = amdgpu_vm_num_entries(adev, cursor->level); entry->entries = kvmalloc_array(num_entries, sizeof(*entry->entries), GFP_KERNEL | __GFP_ZERO); if (!entry->entries) return -ENOMEM; } if (entry->base.bo) return 0; amdgpu_vm_bo_param(adev, vm, cursor->level, &bp); r = amdgpu_bo_create(adev, &bp, &pt); if (r) return r; /* Keep a reference to the root directory to avoid * freeing them up in the wrong order. */ pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); amdgpu_vm_bo_base_init(&entry->base, vm, pt); r = amdgpu_vm_clear_bo(adev, vm, pt); if (r) goto error_free_pt; return 0; error_free_pt: amdgpu_bo_unref(&pt->shadow); amdgpu_bo_unref(&pt); return r; } /** * amdgpu_vm_free_table - fre one PD/PT * * @entry: PDE to free */ static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) { if (entry->base.bo) { entry->base.bo->vm_bo = NULL; list_del(&entry->base.vm_status); amdgpu_bo_unref(&entry->base.bo->shadow); amdgpu_bo_unref(&entry->base.bo); } kvfree(entry->entries); entry->entries = NULL; } /** * amdgpu_vm_free_pts - free PD/PT levels * * @adev: amdgpu device structure * @vm: amdgpu vm structure * @start: optional cursor where to start freeing PDs/PTs * * Free the page directory or page table level and all sub levels. */ static void amdgpu_vm_free_pts(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *start) { struct amdgpu_vm_pt_cursor cursor; struct amdgpu_vm_pt *entry; vm->bulk_moveable = false; for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) amdgpu_vm_free_table(entry); if (start) amdgpu_vm_free_table(start->entry); } /** * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug * * @adev: amdgpu_device pointer */ void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) { const struct amdgpu_ip_block *ip_block; bool has_compute_vm_bug; struct amdgpu_ring *ring; int i; has_compute_vm_bug = false; ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); if (ip_block) { /* Compute has a VM bug for GFX version < 7. Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ if (ip_block->version->major <= 7) has_compute_vm_bug = true; else if (ip_block->version->major == 8) if (adev->gfx.mec_fw_version < 673) has_compute_vm_bug = true; } for (i = 0; i < adev->num_rings; i++) { ring = adev->rings[i]; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) /* only compute rings */ ring->has_compute_vm_bug = has_compute_vm_bug; else ring->has_compute_vm_bug = false; } } /** * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. * * @ring: ring on which the job will be submitted * @job: job to submit * * Returns: * True if sync is needed. */ bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, struct amdgpu_job *job) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->funcs->vmhub; struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct amdgpu_vmid *id; bool gds_switch_needed; bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; if (job->vmid == 0) return false; id = &id_mgr->ids[job->vmid]; gds_switch_needed = ring->funcs->emit_gds_switch && ( id->gds_base != job->gds_base || id->gds_size != job->gds_size || id->gws_base != job->gws_base || id->gws_size != job->gws_size || id->oa_base != job->oa_base || id->oa_size != job->oa_size); if (amdgpu_vmid_had_gpu_reset(adev, id)) return true; return vm_flush_needed || gds_switch_needed; } /** * amdgpu_vm_flush - hardware flush the vm * * @ring: ring to use for flush * @job: related job * @need_pipe_sync: is pipe sync needed * * Emit a VM flush when it is necessary. * * Returns: * 0 on success, errno otherwise. */ int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->funcs->vmhub; struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; bool gds_switch_needed = ring->funcs->emit_gds_switch && ( id->gds_base != job->gds_base || id->gds_size != job->gds_size || id->gws_base != job->gws_base || id->gws_size != job->gws_size || id->oa_base != job->oa_base || id->oa_size != job->oa_size); bool vm_flush_needed = job->vm_needs_flush; struct dma_fence *fence = NULL; bool pasid_mapping_needed = false; unsigned patch_offset = 0; int r; if (amdgpu_vmid_had_gpu_reset(adev, id)) { gds_switch_needed = true; vm_flush_needed = true; pasid_mapping_needed = true; } mutex_lock(&id_mgr->lock); if (id->pasid != job->pasid || !id->pasid_mapping || !dma_fence_is_signaled(id->pasid_mapping)) pasid_mapping_needed = true; mutex_unlock(&id_mgr->lock); gds_switch_needed &= !!ring->funcs->emit_gds_switch; vm_flush_needed &= !!ring->funcs->emit_vm_flush && job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && ring->funcs->emit_wreg; if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) return 0; if (ring->funcs->init_cond_exec) patch_offset = amdgpu_ring_init_cond_exec(ring); if (need_pipe_sync) amdgpu_ring_emit_pipeline_sync(ring); if (vm_flush_needed) { trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); } if (pasid_mapping_needed) amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); if (vm_flush_needed || pasid_mapping_needed) { r = amdgpu_fence_emit(ring, &fence, 0); if (r) return r; } if (vm_flush_needed) { mutex_lock(&id_mgr->lock); dma_fence_put(id->last_flush); id->last_flush = dma_fence_get(fence); id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); mutex_unlock(&id_mgr->lock); } if (pasid_mapping_needed) { mutex_lock(&id_mgr->lock); id->pasid = job->pasid; dma_fence_put(id->pasid_mapping); id->pasid_mapping = dma_fence_get(fence); mutex_unlock(&id_mgr->lock); } dma_fence_put(fence); if (ring->funcs->emit_gds_switch && gds_switch_needed) { id->gds_base = job->gds_base; id->gds_size = job->gds_size; id->gws_base = job->gws_base; id->gws_size = job->gws_size; id->oa_base = job->oa_base; id->oa_size = job->oa_size; amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, job->gds_size, job->gws_base, job->gws_size, job->oa_base, job->oa_size); } if (ring->funcs->patch_cond_exec) amdgpu_ring_patch_cond_exec(ring, patch_offset); /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ if (ring->funcs->emit_switch_buffer) { amdgpu_ring_emit_switch_buffer(ring); amdgpu_ring_emit_switch_buffer(ring); } return 0; } /** * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo * * @vm: requested vm * @bo: requested buffer object * * Find @bo inside the requested vm. * Search inside the @bos vm list for the requested vm * Returns the found bo_va or NULL if none is found * * Object has to be reserved! * * Returns: * Found bo_va or NULL. */ struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_vm_bo_base *base; for (base = bo->vm_bo; base; base = base->next) { if (base->vm != vm) continue; return container_of(base, struct amdgpu_bo_va, base); } return NULL; } /** * amdgpu_vm_map_gart - Resolve gart mapping of addr * * @pages_addr: optional DMA address to use for lookup * @addr: the unmapped addr * * Look up the physical address of the page that the pte resolves * to. * * Returns: * The pointer for the page table entry. */ uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) { uint64_t result; /* page table offset */ result = pages_addr[addr >> PAGE_SHIFT]; /* in case cpu page size != gpu page size*/ result |= addr & (~PAGE_MASK); result &= 0xFFFFFFFFFFFFF000ULL; return result; } /* * amdgpu_vm_update_pde - update a single level in the hierarchy * * @param: parameters for the update * @vm: requested vm * @entry: entry to update * * Makes sure the requested entry in parent is up to date. */ static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, struct amdgpu_vm *vm, struct amdgpu_vm_pt *entry) { struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); struct amdgpu_bo *bo = parent->base.bo, *pbo; uint64_t pde, pt, flags; unsigned level; for (level = 0, pbo = bo->parent; pbo; ++level) pbo = pbo->parent; level += params->adev->vm_manager.root_level; amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); pde = (entry - parent->entries) * 8; return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); } /* * amdgpu_vm_invalidate_pds - mark all PDs as invalid * * @adev: amdgpu_device pointer * @vm: related vm * * Mark all PD level as invalid after an error. */ static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_vm_pt_cursor cursor; struct amdgpu_vm_pt *entry; for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) if (entry->base.bo && !entry->base.moved) amdgpu_vm_bo_relocated(&entry->base); } /* * amdgpu_vm_update_directories - make sure that all directories are valid * * @adev: amdgpu_device pointer * @vm: requested vm * * Makes sure all directories are up to date. * * Returns: * 0 for success, error for failure. */ int amdgpu_vm_update_directories(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_vm_update_params params; int r; if (list_empty(&vm->relocated)) return 0; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_VM, NULL); if (r) return r; while (!list_empty(&vm->relocated)) { struct amdgpu_vm_pt *entry; entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, base.vm_status); amdgpu_vm_bo_idle(&entry->base); r = amdgpu_vm_update_pde(¶ms, vm, entry); if (r) goto error; } r = vm->update_funcs->commit(¶ms, &vm->last_update); if (r) goto error; return 0; error: amdgpu_vm_invalidate_pds(adev, vm); return r; } /** * amdgpu_vm_update_flags - figure out flags for PTE updates * * Make sure to set the right flags for the PTEs at the desired level. */ static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, struct amdgpu_bo *bo, unsigned level, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { if (level != AMDGPU_VM_PTB) { flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); } else if (params->adev->asic_type >= CHIP_VEGA10 && !(flags & AMDGPU_PTE_VALID) && !(flags & AMDGPU_PTE_PRT)) { /* Workaround for fault priority problem on GMC9 */ flags |= AMDGPU_PTE_EXECUTABLE; } params->vm->update_funcs->update(params, bo, pe, addr, count, incr, flags); } /** * amdgpu_vm_fragment - get fragment for PTEs * * @params: see amdgpu_vm_update_params definition * @start: first PTE to handle * @end: last PTE to handle * @flags: hw mapping flags * @frag: resulting fragment size * @frag_end: end of this fragment * * Returns the first possible fragment for the start and end address. */ static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, uint64_t start, uint64_t end, uint64_t flags, unsigned int *frag, uint64_t *frag_end) { /** * The MC L1 TLB supports variable sized pages, based on a fragment * field in the PTE. When this field is set to a non-zero value, page * granularity is increased from 4KB to (1 << (12 + frag)). The PTE * flags are considered valid for all PTEs within the fragment range * and corresponding mappings are assumed to be physically contiguous. * * The L1 TLB can store a single PTE for the whole fragment, * significantly increasing the space available for translation * caching. This leads to large improvements in throughput when the * TLB is under pressure. * * The L2 TLB distributes small and large fragments into two * asymmetric partitions. The large fragment cache is significantly * larger. Thus, we try to use large fragments wherever possible. * Userspace can support this by aligning virtual base address and * allocation size to the fragment size. * * Starting with Vega10 the fragment size only controls the L1. The L2 * is now directly feed with small/huge/giant pages from the walker. */ unsigned max_frag; if (params->adev->asic_type < CHIP_VEGA10) max_frag = params->adev->vm_manager.fragment_size; else max_frag = 31; /* system pages are non continuously */ if (params->pages_addr) { *frag = 0; *frag_end = end; return; } /* This intentionally wraps around if no bit is set */ *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); if (*frag >= max_frag) { *frag = max_frag; *frag_end = end & ~((1ULL << max_frag) - 1); } else { *frag_end = start + (1 << *frag); } } /** * amdgpu_vm_update_ptes - make sure that page tables are valid * * @params: see amdgpu_vm_update_params definition * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to, the next dst inside the function * @flags: mapping flags * * Update the page tables in the range @start - @end. * * Returns: * 0 for success, -EINVAL for failure. */ static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, uint64_t start, uint64_t end, uint64_t dst, uint64_t flags) { struct amdgpu_device *adev = params->adev; struct amdgpu_vm_pt_cursor cursor; uint64_t frag_start = start, frag_end; unsigned int frag; int r; /* figure out the initial fragment */ amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); /* walk over the address space and update the PTs */ amdgpu_vm_pt_start(adev, params->vm, start, &cursor); while (cursor.pfn < end) { unsigned shift, parent_shift, mask; uint64_t incr, entry_end, pe_start; struct amdgpu_bo *pt; r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor); if (r) return r; pt = cursor.entry->base.bo; /* The root level can't be a huge page */ if (cursor.level == adev->vm_manager.root_level) { if (!amdgpu_vm_pt_descendant(adev, &cursor)) return -ENOENT; continue; } shift = amdgpu_vm_level_shift(adev, cursor.level); parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); if (adev->asic_type < CHIP_VEGA10 && (flags & AMDGPU_PTE_VALID)) { /* No huge page support before GMC v9 */ if (cursor.level != AMDGPU_VM_PTB) { if (!amdgpu_vm_pt_descendant(adev, &cursor)) return -ENOENT; continue; } } else if (frag < shift) { /* We can't use this level when the fragment size is * smaller than the address shift. Go to the next * child entry and try again. */ if (!amdgpu_vm_pt_descendant(adev, &cursor)) return -ENOENT; continue; } else if (frag >= parent_shift && cursor.level - 1 != adev->vm_manager.root_level) { /* If the fragment size is even larger than the parent * shift we should go up one level and check it again * unless one level up is the root level. */ if (!amdgpu_vm_pt_ancestor(&cursor)) return -ENOENT; continue; } /* Looks good so far, calculate parameters for the update */ incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; mask = amdgpu_vm_entries_mask(adev, cursor.level); pe_start = ((cursor.pfn >> shift) & mask) * 8; entry_end = (uint64_t)(mask + 1) << shift; entry_end += cursor.pfn & ~(entry_end - 1); entry_end = min(entry_end, end); do { uint64_t upd_end = min(entry_end, frag_end); unsigned nptes = (upd_end - frag_start) >> shift; amdgpu_vm_update_flags(params, pt, cursor.level, pe_start, dst, nptes, incr, flags | AMDGPU_PTE_FRAG(frag)); pe_start += nptes * 8; dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; frag_start = upd_end; if (frag_start >= frag_end) { /* figure out the next fragment */ amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); if (frag < shift) break; } } while (frag_start < entry_end); if (amdgpu_vm_pt_descendant(adev, &cursor)) { /* Free all child entries */ while (cursor.pfn < frag_start) { amdgpu_vm_free_pts(adev, params->vm, &cursor); amdgpu_vm_pt_next(adev, &cursor); } } else if (frag >= shift) { /* or just move on to the next on the same level. */ amdgpu_vm_pt_next(adev, &cursor); } } return 0; } /** * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table * * @adev: amdgpu_device pointer * @exclusive: fence we need to sync to * @pages_addr: DMA addresses to use for mapping * @vm: requested vm * @start: start of mapped range * @last: last mapped entry * @flags: flags for the entries * @addr: addr to set the area to * @fence: optional resulting fence * * Fill in the page table entries between @start and @last. * * Returns: * 0 for success, -EINVAL for failure. */ static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, struct dma_fence *exclusive, dma_addr_t *pages_addr, struct amdgpu_vm *vm, uint64_t start, uint64_t last, uint64_t flags, uint64_t addr, struct dma_fence **fence) { struct amdgpu_vm_update_params params; void *owner = AMDGPU_FENCE_OWNER_VM; int r; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; params.pages_addr = pages_addr; /* sync to everything except eviction fences on unmapping */ if (!(flags & AMDGPU_PTE_VALID)) owner = AMDGPU_FENCE_OWNER_KFD; r = vm->update_funcs->prepare(¶ms, owner, exclusive); if (r) return r; r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); if (r) return r; return vm->update_funcs->commit(¶ms, fence); } /** * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks * * @adev: amdgpu_device pointer * @exclusive: fence we need to sync to * @pages_addr: DMA addresses to use for mapping * @vm: requested vm * @mapping: mapped range and flags to use for the update * @flags: HW flags for the mapping * @bo_adev: amdgpu_device pointer that bo actually been allocated * @nodes: array of drm_mm_nodes with the MC addresses * @fence: optional resulting fence * * Split the mapping into smaller chunks so that each update fits * into a SDMA IB. * * Returns: * 0 for success, -EINVAL for failure. */ static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, struct dma_fence *exclusive, dma_addr_t *pages_addr, struct amdgpu_vm *vm, struct amdgpu_bo_va_mapping *mapping, uint64_t flags, struct amdgpu_device *bo_adev, struct drm_mm_node *nodes, struct dma_fence **fence) { unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; uint64_t pfn, start = mapping->start; int r; /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here * but in case of something, we filter the flags in first place */ if (!(mapping->flags & AMDGPU_PTE_READABLE)) flags &= ~AMDGPU_PTE_READABLE; if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) flags &= ~AMDGPU_PTE_WRITEABLE; flags &= ~AMDGPU_PTE_EXECUTABLE; flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; if (adev->asic_type >= CHIP_NAVI10) { flags &= ~AMDGPU_PTE_MTYPE_NV10_MASK; flags |= (mapping->flags & AMDGPU_PTE_MTYPE_NV10_MASK); } else { flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; flags |= (mapping->flags & AMDGPU_PTE_MTYPE_VG10_MASK); } if ((mapping->flags & AMDGPU_PTE_PRT) && (adev->asic_type >= CHIP_VEGA10)) { flags |= AMDGPU_PTE_PRT; if (adev->asic_type >= CHIP_NAVI10) { flags |= AMDGPU_PTE_SNOOPED; flags |= AMDGPU_PTE_LOG; flags |= AMDGPU_PTE_SYSTEM; } flags &= ~AMDGPU_PTE_VALID; } trace_amdgpu_vm_bo_update(mapping); pfn = mapping->offset >> PAGE_SHIFT; if (nodes) { while (pfn >= nodes->size) { pfn -= nodes->size; ++nodes; } } do { dma_addr_t *dma_addr = NULL; uint64_t max_entries; uint64_t addr, last; if (nodes) { addr = nodes->start << PAGE_SHIFT; max_entries = (nodes->size - pfn) * AMDGPU_GPU_PAGES_IN_CPU_PAGE; } else { addr = 0; max_entries = S64_MAX; } if (pages_addr) { uint64_t count; for (count = 1; count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; ++count) { uint64_t idx = pfn + count; if (pages_addr[idx] != (pages_addr[idx - 1] + PAGE_SIZE)) break; } if (count < min_linear_pages) { addr = pfn << PAGE_SHIFT; dma_addr = pages_addr; } else { addr = pages_addr[pfn]; max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; } } else if (flags & AMDGPU_PTE_VALID) { addr += bo_adev->vm_manager.vram_base_offset; addr += pfn << PAGE_SHIFT; } last = min((uint64_t)mapping->last, start + max_entries - 1); r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, start, last, flags, addr, fence); if (r) return r; pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; if (nodes && nodes->size == pfn) { pfn = 0; ++nodes; } start = last + 1; } while (unlikely(start != mapping->last + 1)); return 0; } /** * amdgpu_vm_bo_update - update all BO mappings in the vm page table * * @adev: amdgpu_device pointer * @bo_va: requested BO and VM object * @clear: if true clear the entries * * Fill in the page table entries for @bo_va. * * Returns: * 0 for success, -EINVAL for failure. */ int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, bool clear) { struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo_va_mapping *mapping; dma_addr_t *pages_addr = NULL; struct ttm_mem_reg *mem; struct drm_mm_node *nodes; struct dma_fence *exclusive, **last_update; uint64_t flags; struct amdgpu_device *bo_adev = adev; int r; if (clear || !bo) { mem = NULL; nodes = NULL; exclusive = NULL; } else { struct ttm_dma_tt *ttm; mem = &bo->tbo.mem; nodes = mem->mm_node; if (mem->mem_type == TTM_PL_TT) { ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); pages_addr = ttm->dma_address; } exclusive = dma_resv_get_excl(bo->tbo.base.resv); } if (bo) { flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); } else { flags = 0x0; } if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)) last_update = &vm->last_update; else last_update = &bo_va->last_pt_update; if (!clear && bo_va->base.moved) { bo_va->base.moved = false; list_splice_init(&bo_va->valids, &bo_va->invalids); } else if (bo_va->cleared != clear) { list_splice_init(&bo_va->valids, &bo_va->invalids); } list_for_each_entry(mapping, &bo_va->invalids, list) { r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, mapping, flags, bo_adev, nodes, last_update); if (r) return r; } if (vm->use_cpu_for_update) { /* Flush HDP */ mb(); amdgpu_asic_flush_hdp(adev, NULL); } /* If the BO is not in its preferred location add it back to * the evicted list so that it gets validated again on the * next command submission. */ if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { uint32_t mem_type = bo->tbo.mem.mem_type; if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) amdgpu_vm_bo_evicted(&bo_va->base); else amdgpu_vm_bo_idle(&bo_va->base); } else { amdgpu_vm_bo_done(&bo_va->base); } list_splice_init(&bo_va->invalids, &bo_va->valids); bo_va->cleared = clear; if (trace_amdgpu_vm_bo_mapping_enabled()) { list_for_each_entry(mapping, &bo_va->valids, list) trace_amdgpu_vm_bo_mapping(mapping); } return 0; } /** * amdgpu_vm_update_prt_state - update the global PRT state * * @adev: amdgpu_device pointer */ static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) { unsigned long flags; bool enable; spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); enable = !!atomic_read(&adev->vm_manager.num_prt_users); adev->gmc.gmc_funcs->set_prt(adev, enable); spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); } /** * amdgpu_vm_prt_get - add a PRT user * * @adev: amdgpu_device pointer */ static void amdgpu_vm_prt_get(struct amdgpu_device *adev) { if (!adev->gmc.gmc_funcs->set_prt) return; if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) amdgpu_vm_update_prt_state(adev); } /** * amdgpu_vm_prt_put - drop a PRT user * * @adev: amdgpu_device pointer */ static void amdgpu_vm_prt_put(struct amdgpu_device *adev) { if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) amdgpu_vm_update_prt_state(adev); } /** * amdgpu_vm_prt_cb - callback for updating the PRT status * * @fence: fence for the callback * @_cb: the callback function */ static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) { struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); amdgpu_vm_prt_put(cb->adev); kfree(cb); } /** * amdgpu_vm_add_prt_cb - add callback for updating the PRT status * * @adev: amdgpu_device pointer * @fence: fence for the callback */ static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, struct dma_fence *fence) { struct amdgpu_prt_cb *cb; if (!adev->gmc.gmc_funcs->set_prt) return; cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); if (!cb) { /* Last resort when we are OOM */ if (fence) dma_fence_wait(fence, false); amdgpu_vm_prt_put(adev); } else { cb->adev = adev; if (!fence || dma_fence_add_callback(fence, &cb->cb, amdgpu_vm_prt_cb)) amdgpu_vm_prt_cb(fence, &cb->cb); } } /** * amdgpu_vm_free_mapping - free a mapping * * @adev: amdgpu_device pointer * @vm: requested vm * @mapping: mapping to be freed * @fence: fence of the unmap operation * * Free a mapping and make sure we decrease the PRT usage count if applicable. */ static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo_va_mapping *mapping, struct dma_fence *fence) { if (mapping->flags & AMDGPU_PTE_PRT) amdgpu_vm_add_prt_cb(adev, fence); kfree(mapping); } /** * amdgpu_vm_prt_fini - finish all prt mappings * * @adev: amdgpu_device pointer * @vm: requested vm * * Register a cleanup callback to disable PRT support after VM dies. */ static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; struct dma_fence *excl, **shared; unsigned i, shared_count; int r; r = dma_resv_get_fences_rcu(resv, &excl, &shared_count, &shared); if (r) { /* Not enough memory to grab the fence list, as last resort * block for all the fences to complete. */ dma_resv_wait_timeout_rcu(resv, true, false, MAX_SCHEDULE_TIMEOUT); return; } /* Add a callback for each fence in the reservation object */ amdgpu_vm_prt_get(adev); amdgpu_vm_add_prt_cb(adev, excl); for (i = 0; i < shared_count; ++i) { amdgpu_vm_prt_get(adev); amdgpu_vm_add_prt_cb(adev, shared[i]); } kfree(shared); } /** * amdgpu_vm_clear_freed - clear freed BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * @fence: optional resulting fence (unchanged if no work needed to be done * or if an error occurred) * * Make sure all freed BOs are cleared in the PT. * PTs have to be reserved and mutex must be locked! * * Returns: * 0 for success. * */ int amdgpu_vm_clear_freed(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct dma_fence **fence) { struct amdgpu_bo_va_mapping *mapping; uint64_t init_pte_value = 0; struct dma_fence *f = NULL; int r; while (!list_empty(&vm->freed)) { mapping = list_first_entry(&vm->freed, struct amdgpu_bo_va_mapping, list); list_del(&mapping->list); if (vm->pte_support_ats && mapping->start < AMDGPU_GMC_HOLE_START) init_pte_value = AMDGPU_PTE_DEFAULT_ATC; r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, mapping->start, mapping->last, init_pte_value, 0, &f); amdgpu_vm_free_mapping(adev, vm, mapping, f); if (r) { dma_fence_put(f); return r; } } if (fence && f) { dma_fence_put(*fence); *fence = f; } else { dma_fence_put(f); } return 0; } /** * amdgpu_vm_handle_moved - handle moved BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * * Make sure all BOs which are moved are updated in the PTs. * * Returns: * 0 for success. * * PTs have to be reserved! */ int amdgpu_vm_handle_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va *bo_va, *tmp; struct dma_resv *resv; bool clear; int r; list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { /* Per VM BOs never need to bo cleared in the page tables */ r = amdgpu_vm_bo_update(adev, bo_va, false); if (r) return r; } spin_lock(&vm->invalidated_lock); while (!list_empty(&vm->invalidated)) { bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, base.vm_status); resv = bo_va->base.bo->tbo.base.resv; spin_unlock(&vm->invalidated_lock); /* Try to reserve the BO to avoid clearing its ptes */ if (!amdgpu_vm_debug && dma_resv_trylock(resv)) clear = false; /* Somebody else is using the BO right now */ else clear = true; r = amdgpu_vm_bo_update(adev, bo_va, clear); if (r) return r; if (!clear) dma_resv_unlock(resv); spin_lock(&vm->invalidated_lock); } spin_unlock(&vm->invalidated_lock); return 0; } /** * amdgpu_vm_bo_add - add a bo to a specific vm * * @adev: amdgpu_device pointer * @vm: requested vm * @bo: amdgpu buffer object * * Add @bo into the requested vm. * Add @bo to the list of bos associated with the vm * * Returns: * Newly added bo_va or NULL for failure * * Object has to be reserved! */ struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); if (bo_va == NULL) { return NULL; } amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); bo_va->ref_count = 1; INIT_LIST_HEAD(&bo_va->valids); INIT_LIST_HEAD(&bo_va->invalids); if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) && (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) { bo_va->is_xgmi = true; mutex_lock(&adev->vm_manager.lock_pstate); /* Power up XGMI if it can be potentially used */ if (++adev->vm_manager.xgmi_map_counter == 1) amdgpu_xgmi_set_pstate(adev, 1); mutex_unlock(&adev->vm_manager.lock_pstate); } return bo_va; } /** * amdgpu_vm_bo_insert_mapping - insert a new mapping * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @mapping: the mapping to insert * * Insert a new mapping into all structures. */ static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, struct amdgpu_bo_va_mapping *mapping) { struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo *bo = bo_va->base.bo; mapping->bo_va = bo_va; list_add(&mapping->list, &bo_va->invalids); amdgpu_vm_it_insert(mapping, &vm->va); if (mapping->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && !bo_va->base.moved) { list_move(&bo_va->base.vm_status, &vm->moved); } trace_amdgpu_vm_bo_map(bo_va, mapping); } /** * amdgpu_vm_bo_map - map bo inside a vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @size: BO size in bytes * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. * * Returns: * 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint64_t flags) { struct amdgpu_bo_va_mapping *mapping, *tmp; struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; uint64_t eaddr; /* validate the parameters */ if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || size == 0 || size & AMDGPU_GPU_PAGE_MASK) return -EINVAL; /* make sure object fit at this offset */ eaddr = saddr + size - 1; if (saddr >= eaddr || (bo && offset + size > amdgpu_bo_size(bo))) return -EINVAL; saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); if (tmp) { /* bo and tmp overlap, invalid addr */ dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, tmp->start, tmp->last + 1); return -EINVAL; } mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; mapping->start = saddr; mapping->last = eaddr; mapping->offset = offset; mapping->flags = flags; amdgpu_vm_bo_insert_map(adev, bo_va, mapping); return 0; } /** * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @size: BO size in bytes * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. Replace existing * mappings as we do so. * * Returns: * 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint64_t flags) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_bo *bo = bo_va->base.bo; uint64_t eaddr; int r; /* validate the parameters */ if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || size == 0 || size & AMDGPU_GPU_PAGE_MASK) return -EINVAL; /* make sure object fit at this offset */ eaddr = saddr + size - 1; if (saddr >= eaddr || (bo && offset + size > amdgpu_bo_size(bo))) return -EINVAL; /* Allocate all the needed memory */ mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); if (r) { kfree(mapping); return r; } saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; mapping->start = saddr; mapping->last = eaddr; mapping->offset = offset; mapping->flags = flags; amdgpu_vm_bo_insert_map(adev, bo_va, mapping); return 0; } /** * amdgpu_vm_bo_unmap - remove bo mapping from vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to remove the address from * @saddr: where to the BO is mapped * * Remove a mapping of the BO at the specefied addr from the VM. * * Returns: * 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_vm *vm = bo_va->base.vm; bool valid = true; saddr /= AMDGPU_GPU_PAGE_SIZE; list_for_each_entry(mapping, &bo_va->valids, list) { if (mapping->start == saddr) break; } if (&mapping->list == &bo_va->valids) { valid = false; list_for_each_entry(mapping, &bo_va->invalids, list) { if (mapping->start == saddr) break; } if (&mapping->list == &bo_va->invalids) return -ENOENT; } list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); mapping->bo_va = NULL; trace_amdgpu_vm_bo_unmap(bo_va, mapping); if (valid) list_add(&mapping->list, &vm->freed); else amdgpu_vm_free_mapping(adev, vm, mapping, bo_va->last_pt_update); return 0; } /** * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range * * @adev: amdgpu_device pointer * @vm: VM structure to use * @saddr: start of the range * @size: size of the range * * Remove all mappings in a range, split them as appropriate. * * Returns: * 0 for success, error for failure. */ int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t saddr, uint64_t size) { struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; LIST_HEAD(removed); uint64_t eaddr; eaddr = saddr + size - 1; saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; /* Allocate all the needed memory */ before = kzalloc(sizeof(*before), GFP_KERNEL); if (!before) return -ENOMEM; INIT_LIST_HEAD(&before->list); after = kzalloc(sizeof(*after), GFP_KERNEL); if (!after) { kfree(before); return -ENOMEM; } INIT_LIST_HEAD(&after->list); /* Now gather all removed mappings */ tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); while (tmp) { /* Remember mapping split at the start */ if (tmp->start < saddr) { before->start = tmp->start; before->last = saddr - 1; before->offset = tmp->offset; before->flags = tmp->flags; before->bo_va = tmp->bo_va; list_add(&before->list, &tmp->bo_va->invalids); } /* Remember mapping split at the end */ if (tmp->last > eaddr) { after->start = eaddr + 1; after->last = tmp->last; after->offset = tmp->offset; after->offset += after->start - tmp->start; after->flags = tmp->flags; after->bo_va = tmp->bo_va; list_add(&after->list, &tmp->bo_va->invalids); } list_del(&tmp->list); list_add(&tmp->list, &removed); tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); } /* And free them up */ list_for_each_entry_safe(tmp, next, &removed, list) { amdgpu_vm_it_remove(tmp, &vm->va); list_del(&tmp->list); if (tmp->start < saddr) tmp->start = saddr; if (tmp->last > eaddr) tmp->last = eaddr; tmp->bo_va = NULL; list_add(&tmp->list, &vm->freed); trace_amdgpu_vm_bo_unmap(NULL, tmp); } /* Insert partial mapping before the range */ if (!list_empty(&before->list)) { amdgpu_vm_it_insert(before, &vm->va); if (before->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); } else { kfree(before); } /* Insert partial mapping after the range */ if (!list_empty(&after->list)) { amdgpu_vm_it_insert(after, &vm->va); if (after->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); } else { kfree(after); } return 0; } /** * amdgpu_vm_bo_lookup_mapping - find mapping by address * * @vm: the requested VM * @addr: the address * * Find a mapping by it's address. * * Returns: * The amdgpu_bo_va_mapping matching for addr or NULL * */ struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, uint64_t addr) { return amdgpu_vm_it_iter_first(&vm->va, addr, addr); } /** * amdgpu_vm_bo_trace_cs - trace all reserved mappings * * @vm: the requested vm * @ticket: CS ticket * * Trace all mappings of BOs reserved during a command submission. */ void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) { struct amdgpu_bo_va_mapping *mapping; if (!trace_amdgpu_vm_bo_cs_enabled()) return; for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { if (mapping->bo_va && mapping->bo_va->base.bo) { struct amdgpu_bo *bo; bo = mapping->bo_va->base.bo; if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) continue; } trace_amdgpu_vm_bo_cs(mapping); } } /** * amdgpu_vm_bo_rmv - remove a bo to a specific vm * * @adev: amdgpu_device pointer * @bo_va: requested bo_va * * Remove @bo_va->bo from the requested vm. * * Object have to be reserved! */ void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va) { struct amdgpu_bo_va_mapping *mapping, *next; struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_vm_bo_base **base; if (bo) { if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) vm->bulk_moveable = false; for (base = &bo_va->base.bo->vm_bo; *base; base = &(*base)->next) { if (*base != &bo_va->base) continue; *base = bo_va->base.next; break; } } spin_lock(&vm->invalidated_lock); list_del(&bo_va->base.vm_status); spin_unlock(&vm->invalidated_lock); list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); mapping->bo_va = NULL; trace_amdgpu_vm_bo_unmap(bo_va, mapping); list_add(&mapping->list, &vm->freed); } list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); amdgpu_vm_free_mapping(adev, vm, mapping, bo_va->last_pt_update); } dma_fence_put(bo_va->last_pt_update); if (bo && bo_va->is_xgmi) { mutex_lock(&adev->vm_manager.lock_pstate); if (--adev->vm_manager.xgmi_map_counter == 0) amdgpu_xgmi_set_pstate(adev, 0); mutex_unlock(&adev->vm_manager.lock_pstate); } kfree(bo_va); } /** * amdgpu_vm_bo_invalidate - mark the bo as invalid * * @adev: amdgpu_device pointer * @bo: amdgpu buffer object * @evicted: is the BO evicted * * Mark @bo as invalid. */ void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, struct amdgpu_bo *bo, bool evicted) { struct amdgpu_vm_bo_base *bo_base; /* shadow bo doesn't have bo base, its validation needs its parent */ if (bo->parent && bo->parent->shadow == bo) bo = bo->parent; for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { struct amdgpu_vm *vm = bo_base->vm; if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { amdgpu_vm_bo_evicted(bo_base); continue; } if (bo_base->moved) continue; bo_base->moved = true; if (bo->tbo.type == ttm_bo_type_kernel) amdgpu_vm_bo_relocated(bo_base); else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) amdgpu_vm_bo_moved(bo_base); else amdgpu_vm_bo_invalidated(bo_base); } } /** * amdgpu_vm_get_block_size - calculate VM page table size as power of two * * @vm_size: VM size * * Returns: * VM page table as power of two */ static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) { /* Total bits covered by PD + PTs */ unsigned bits = ilog2(vm_size) + 18; /* Make sure the PD is 4K in size up to 8GB address space. Above that split equal between PD and PTs */ if (vm_size <= 8) return (bits - 9); else return ((bits + 3) / 2); } /** * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size * * @adev: amdgpu_device pointer * @min_vm_size: the minimum vm size in GB if it's set auto * @fragment_size_default: Default PTE fragment size * @max_level: max VMPT level * @max_bits: max address space size in bits * */ void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, uint32_t fragment_size_default, unsigned max_level, unsigned max_bits) { unsigned int max_size = 1 << (max_bits - 30); unsigned int vm_size; uint64_t tmp; /* adjust vm size first */ if (amdgpu_vm_size != -1) { vm_size = amdgpu_vm_size; if (vm_size > max_size) { dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", amdgpu_vm_size, max_size); vm_size = max_size; } } else { struct sysinfo si; unsigned int phys_ram_gb; /* Optimal VM size depends on the amount of physical * RAM available. Underlying requirements and * assumptions: * * - Need to map system memory and VRAM from all GPUs * - VRAM from other GPUs not known here * - Assume VRAM <= system memory * - On GFX8 and older, VM space can be segmented for * different MTYPEs * - Need to allow room for fragmentation, guard pages etc. * * This adds up to a rough guess of system memory x3. * Round up to power of two to maximize the available * VM size with the given page table size. */ si_meminfo(&si); phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + (1 << 30) - 1) >> 30; vm_size = roundup_pow_of_two( min(max(phys_ram_gb * 3, min_vm_size), max_size)); } adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); if (amdgpu_vm_block_size != -1) tmp >>= amdgpu_vm_block_size - 9; tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; adev->vm_manager.num_level = min(max_level, (unsigned)tmp); switch (adev->vm_manager.num_level) { case 3: adev->vm_manager.root_level = AMDGPU_VM_PDB2; break; case 2: adev->vm_manager.root_level = AMDGPU_VM_PDB1; break; case 1: adev->vm_manager.root_level = AMDGPU_VM_PDB0; break; default: dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); } /* block size depends on vm size and hw setup*/ if (amdgpu_vm_block_size != -1) adev->vm_manager.block_size = min((unsigned)amdgpu_vm_block_size, max_bits - AMDGPU_GPU_PAGE_SHIFT - 9 * adev->vm_manager.num_level); else if (adev->vm_manager.num_level > 1) adev->vm_manager.block_size = 9; else adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); if (amdgpu_vm_fragment_size == -1) adev->vm_manager.fragment_size = fragment_size_default; else adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", vm_size, adev->vm_manager.num_level + 1, adev->vm_manager.block_size, adev->vm_manager.fragment_size); } /** * amdgpu_vm_wait_idle - wait for the VM to become idle * * @vm: VM object to wait for * @timeout: timeout to wait for VM to become idle */ long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) { return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, true, true, timeout); } /** * amdgpu_vm_init - initialize a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * @vm_context: Indicates if it GFX or Compute context * @pasid: Process address space identifier * * Init @vm fields. * * Returns: * 0 for success, error for failure. */ int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, int vm_context, unsigned int pasid) { struct amdgpu_bo_param bp; struct amdgpu_bo *root; int r, i; vm->va = RB_ROOT_CACHED; for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) vm->reserved_vmid[i] = NULL; INIT_LIST_HEAD(&vm->evicted); INIT_LIST_HEAD(&vm->relocated); INIT_LIST_HEAD(&vm->moved); INIT_LIST_HEAD(&vm->idle); INIT_LIST_HEAD(&vm->invalidated); spin_lock_init(&vm->invalidated_lock); INIT_LIST_HEAD(&vm->freed); /* create scheduler entity for page table updates */ r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, adev->vm_manager.vm_pte_num_rqs, NULL); if (r) return r; vm->pte_support_ats = false; if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_COMPUTE); if (adev->asic_type == CHIP_RAVEN) vm->pte_support_ats = true; } else { vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_GFX); } DRM_DEBUG_DRIVER("VM update mode is %s\n", vm->use_cpu_for_update ? "CPU" : "SDMA"); WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), "CPU update of VM recommended only for large BAR system\n"); if (vm->use_cpu_for_update) vm->update_funcs = &amdgpu_vm_cpu_funcs; else vm->update_funcs = &amdgpu_vm_sdma_funcs; vm->last_update = NULL; amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; r = amdgpu_bo_create(adev, &bp, &root); if (r) goto error_free_sched_entity; r = amdgpu_bo_reserve(root, true); if (r) goto error_free_root; r = dma_resv_reserve_shared(root->tbo.base.resv, 1); if (r) goto error_unreserve; amdgpu_vm_bo_base_init(&vm->root.base, vm, root); r = amdgpu_vm_clear_bo(adev, vm, root); if (r) goto error_unreserve; amdgpu_bo_unreserve(vm->root.base.bo); if (pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, GFP_ATOMIC); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); if (r < 0) goto error_free_root; vm->pasid = pasid; } INIT_KFIFO(vm->faults); return 0; error_unreserve: amdgpu_bo_unreserve(vm->root.base.bo); error_free_root: amdgpu_bo_unref(&vm->root.base.bo->shadow); amdgpu_bo_unref(&vm->root.base.bo); vm->root.base.bo = NULL; error_free_sched_entity: drm_sched_entity_destroy(&vm->entity); return r; } /** * amdgpu_vm_check_clean_reserved - check if a VM is clean * * @adev: amdgpu_device pointer * @vm: the VM to check * * check all entries of the root PD, if any subsequent PDs are allocated, * it means there are page table creating and filling, and is no a clean * VM * * Returns: * 0 if this VM is clean */ static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, struct amdgpu_vm *vm) { enum amdgpu_vm_level root = adev->vm_manager.root_level; unsigned int entries = amdgpu_vm_num_entries(adev, root); unsigned int i = 0; if (!(vm->root.entries)) return 0; for (i = 0; i < entries; i++) { if (vm->root.entries[i].base.bo) return -EINVAL; } return 0; } /** * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM * * @adev: amdgpu_device pointer * @vm: requested vm * * This only works on GFX VMs that don't have any BOs added and no * page tables allocated yet. * * Changes the following VM parameters: * - use_cpu_for_update * - pte_supports_ats * - pasid (old PASID is released, because compute manages its own PASIDs) * * Reinitializes the page directory to reflect the changed ATS * setting. * * Returns: * 0 for success, -errno for errors. */ int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) { bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); int r; r = amdgpu_bo_reserve(vm->root.base.bo, true); if (r) return r; /* Sanity checks */ r = amdgpu_vm_check_clean_reserved(adev, vm); if (r) goto unreserve_bo; if (pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, GFP_ATOMIC); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); if (r == -ENOSPC) goto unreserve_bo; r = 0; } /* Check if PD needs to be reinitialized and do it before * changing any other state, in case it fails. */ if (pte_support_ats != vm->pte_support_ats) { vm->pte_support_ats = pte_support_ats; r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo); if (r) goto free_idr; } /* Update VM state */ vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_COMPUTE); DRM_DEBUG_DRIVER("VM update mode is %s\n", vm->use_cpu_for_update ? "CPU" : "SDMA"); WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), "CPU update of VM recommended only for large BAR system\n"); if (vm->use_cpu_for_update) vm->update_funcs = &amdgpu_vm_cpu_funcs; else vm->update_funcs = &amdgpu_vm_sdma_funcs; dma_fence_put(vm->last_update); vm->last_update = NULL; if (vm->pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); /* Free the original amdgpu allocated pasid * Will be replaced with kfd allocated pasid */ amdgpu_pasid_free(vm->pasid); vm->pasid = 0; } /* Free the shadow bo for compute VM */ amdgpu_bo_unref(&vm->root.base.bo->shadow); if (pasid) vm->pasid = pasid; goto unreserve_bo; free_idr: if (pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); idr_remove(&adev->vm_manager.pasid_idr, pasid); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); } unreserve_bo: amdgpu_bo_unreserve(vm->root.base.bo); return r; } /** * amdgpu_vm_release_compute - release a compute vm * @adev: amdgpu_device pointer * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute * * This is a correspondant of amdgpu_vm_make_compute. It decouples compute * pasid from vm. Compute should stop use of vm after this call. */ void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) { if (vm->pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); } vm->pasid = 0; } /** * amdgpu_vm_fini - tear down a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * * Tear down @vm. * Unbind the VM and remove all bos from the vm bo list */ void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va_mapping *mapping, *tmp; bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; struct amdgpu_bo *root; int i, r; amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); if (vm->pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); } drm_sched_entity_destroy(&vm->entity); if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { dev_err(adev->dev, "still active bo inside vm\n"); } rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va.rb_root, rb) { /* Don't remove the mapping here, we don't want to trigger a * rebalance and the tree is about to be destroyed anyway. */ list_del(&mapping->list); kfree(mapping); } list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { amdgpu_vm_prt_fini(adev, vm); prt_fini_needed = false; } list_del(&mapping->list); amdgpu_vm_free_mapping(adev, vm, mapping, NULL); } root = amdgpu_bo_ref(vm->root.base.bo); r = amdgpu_bo_reserve(root, true); if (r) { dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); } else { amdgpu_vm_free_pts(adev, vm, NULL); amdgpu_bo_unreserve(root); } amdgpu_bo_unref(&root); WARN_ON(vm->root.base.bo); dma_fence_put(vm->last_update); for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) amdgpu_vmid_free_reserved(adev, vm, i); } /** * amdgpu_vm_manager_init - init the VM manager * * @adev: amdgpu_device pointer * * Initialize the VM manager structures */ void amdgpu_vm_manager_init(struct amdgpu_device *adev) { unsigned i; amdgpu_vmid_mgr_init(adev); adev->vm_manager.fence_context = dma_fence_context_alloc(AMDGPU_MAX_RINGS); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) adev->vm_manager.seqno[i] = 0; spin_lock_init(&adev->vm_manager.prt_lock); atomic_set(&adev->vm_manager.num_prt_users, 0); /* If not overridden by the user, by default, only in large BAR systems * Compute VM tables will be updated by CPU */ #ifdef CONFIG_X86_64 if (amdgpu_vm_update_mode == -1) { if (amdgpu_gmc_vram_full_visible(&adev->gmc)) adev->vm_manager.vm_update_mode = AMDGPU_VM_USE_CPU_FOR_COMPUTE; else adev->vm_manager.vm_update_mode = 0; } else adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; #else adev->vm_manager.vm_update_mode = 0; #endif idr_init(&adev->vm_manager.pasid_idr); spin_lock_init(&adev->vm_manager.pasid_lock); adev->vm_manager.xgmi_map_counter = 0; mutex_init(&adev->vm_manager.lock_pstate); } /** * amdgpu_vm_manager_fini - cleanup VM manager * * @adev: amdgpu_device pointer * * Cleanup the VM manager and free resources. */ void amdgpu_vm_manager_fini(struct amdgpu_device *adev) { WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); idr_destroy(&adev->vm_manager.pasid_idr); amdgpu_vmid_mgr_fini(adev); } /** * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. * * @dev: drm device pointer * @data: drm_amdgpu_vm * @filp: drm file pointer * * Returns: * 0 for success, -errno for errors. */ int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { union drm_amdgpu_vm *args = data; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_fpriv *fpriv = filp->driver_priv; int r; switch (args->in.op) { case AMDGPU_VM_OP_RESERVE_VMID: /* current, we only have requirement to reserve vmid from gfxhub */ r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); if (r) return r; break; case AMDGPU_VM_OP_UNRESERVE_VMID: amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); break; default: return -EINVAL; } return 0; } /** * amdgpu_vm_get_task_info - Extracts task info for a PASID. * * @adev: drm device pointer * @pasid: PASID identifier for VM * @task_info: task_info to fill. */ void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, struct amdgpu_task_info *task_info) { struct amdgpu_vm *vm; unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); vm = idr_find(&adev->vm_manager.pasid_idr, pasid); if (vm) *task_info = vm->task_info; spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); } /** * amdgpu_vm_set_task_info - Sets VMs task info. * * @vm: vm for which to set the info */ void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) { if (!vm->task_info.pid) { vm->task_info.pid = current->pid; get_task_comm(vm->task_info.task_name, current); if (current->group_leader->mm == current->mm) { vm->task_info.tgid = current->group_leader->pid; get_task_comm(vm->task_info.process_name, current->group_leader); } } }