// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice_common.h" #define ICE_CQ_INIT_REGS(qinfo, prefix) \ do { \ (qinfo)->sq.head = prefix##_ATQH; \ (qinfo)->sq.tail = prefix##_ATQT; \ (qinfo)->sq.len = prefix##_ATQLEN; \ (qinfo)->sq.bah = prefix##_ATQBAH; \ (qinfo)->sq.bal = prefix##_ATQBAL; \ (qinfo)->sq.len_mask = prefix##_ATQLEN_ATQLEN_M; \ (qinfo)->sq.len_ena_mask = prefix##_ATQLEN_ATQENABLE_M; \ (qinfo)->sq.head_mask = prefix##_ATQH_ATQH_M; \ (qinfo)->rq.head = prefix##_ARQH; \ (qinfo)->rq.tail = prefix##_ARQT; \ (qinfo)->rq.len = prefix##_ARQLEN; \ (qinfo)->rq.bah = prefix##_ARQBAH; \ (qinfo)->rq.bal = prefix##_ARQBAL; \ (qinfo)->rq.len_mask = prefix##_ARQLEN_ARQLEN_M; \ (qinfo)->rq.len_ena_mask = prefix##_ARQLEN_ARQENABLE_M; \ (qinfo)->rq.head_mask = prefix##_ARQH_ARQH_M; \ } while (0) /** * ice_adminq_init_regs - Initialize AdminQ registers * @hw: pointer to the hardware structure * * This assumes the alloc_sq and alloc_rq functions have already been called */ static void ice_adminq_init_regs(struct ice_hw *hw) { struct ice_ctl_q_info *cq = &hw->adminq; ICE_CQ_INIT_REGS(cq, PF_FW); } /** * ice_mailbox_init_regs - Initialize Mailbox registers * @hw: pointer to the hardware structure * * This assumes the alloc_sq and alloc_rq functions have already been called */ static void ice_mailbox_init_regs(struct ice_hw *hw) { struct ice_ctl_q_info *cq = &hw->mailboxq; ICE_CQ_INIT_REGS(cq, PF_MBX); } /** * ice_check_sq_alive * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * * Returns true if Queue is enabled else false. */ bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq) { /* check both queue-length and queue-enable fields */ if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask) return (rd32(hw, cq->sq.len) & (cq->sq.len_mask | cq->sq.len_ena_mask)) == (cq->num_sq_entries | cq->sq.len_ena_mask); return false; } /** * ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq) { size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc); cq->sq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size, &cq->sq.desc_buf.pa, GFP_KERNEL | __GFP_ZERO); if (!cq->sq.desc_buf.va) return ICE_ERR_NO_MEMORY; cq->sq.desc_buf.size = size; cq->sq.cmd_buf = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries, sizeof(struct ice_sq_cd), GFP_KERNEL); if (!cq->sq.cmd_buf) { dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.desc_buf.size, cq->sq.desc_buf.va, cq->sq.desc_buf.pa); cq->sq.desc_buf.va = NULL; cq->sq.desc_buf.pa = 0; cq->sq.desc_buf.size = 0; return ICE_ERR_NO_MEMORY; } return 0; } /** * ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq) { size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc); cq->rq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size, &cq->rq.desc_buf.pa, GFP_KERNEL | __GFP_ZERO); if (!cq->rq.desc_buf.va) return ICE_ERR_NO_MEMORY; cq->rq.desc_buf.size = size; return 0; } /** * ice_free_cq_ring - Free control queue ring * @hw: pointer to the hardware structure * @ring: pointer to the specific control queue ring * * This assumes the posted buffers have already been cleaned * and de-allocated */ static void ice_free_cq_ring(struct ice_hw *hw, struct ice_ctl_q_ring *ring) { dmam_free_coherent(ice_hw_to_dev(hw), ring->desc_buf.size, ring->desc_buf.va, ring->desc_buf.pa); ring->desc_buf.va = NULL; ring->desc_buf.pa = 0; ring->desc_buf.size = 0; } /** * ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { int i; /* We'll be allocating the buffer info memory first, then we can * allocate the mapped buffers for the event processing */ cq->rq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_rq_entries, sizeof(cq->rq.desc_buf), GFP_KERNEL); if (!cq->rq.dma_head) return ICE_ERR_NO_MEMORY; cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head; /* allocate the mapped buffers */ for (i = 0; i < cq->num_rq_entries; i++) { struct ice_aq_desc *desc; struct ice_dma_mem *bi; bi = &cq->rq.r.rq_bi[i]; bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw), cq->rq_buf_size, &bi->pa, GFP_KERNEL | __GFP_ZERO); if (!bi->va) goto unwind_alloc_rq_bufs; bi->size = cq->rq_buf_size; /* now configure the descriptors for use */ desc = ICE_CTL_Q_DESC(cq->rq, i); desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF); if (cq->rq_buf_size > ICE_AQ_LG_BUF) desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB); desc->opcode = 0; /* This is in accordance with Admin queue design, there is no * register for buffer size configuration */ desc->datalen = cpu_to_le16(bi->size); desc->retval = 0; desc->cookie_high = 0; desc->cookie_low = 0; desc->params.generic.addr_high = cpu_to_le32(upper_32_bits(bi->pa)); desc->params.generic.addr_low = cpu_to_le32(lower_32_bits(bi->pa)); desc->params.generic.param0 = 0; desc->params.generic.param1 = 0; } return 0; unwind_alloc_rq_bufs: /* don't try to free the one that failed... */ i--; for (; i >= 0; i--) { dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.r.rq_bi[i].size, cq->rq.r.rq_bi[i].va, cq->rq.r.rq_bi[i].pa); cq->rq.r.rq_bi[i].va = NULL; cq->rq.r.rq_bi[i].pa = 0; cq->rq.r.rq_bi[i].size = 0; } devm_kfree(ice_hw_to_dev(hw), cq->rq.dma_head); return ICE_ERR_NO_MEMORY; } /** * ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { int i; /* No mapped memory needed yet, just the buffer info structures */ cq->sq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries, sizeof(cq->sq.desc_buf), GFP_KERNEL); if (!cq->sq.dma_head) return ICE_ERR_NO_MEMORY; cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head; /* allocate the mapped buffers */ for (i = 0; i < cq->num_sq_entries; i++) { struct ice_dma_mem *bi; bi = &cq->sq.r.sq_bi[i]; bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw), cq->sq_buf_size, &bi->pa, GFP_KERNEL | __GFP_ZERO); if (!bi->va) goto unwind_alloc_sq_bufs; bi->size = cq->sq_buf_size; } return 0; unwind_alloc_sq_bufs: /* don't try to free the one that failed... */ i--; for (; i >= 0; i--) { dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.r.sq_bi[i].size, cq->sq.r.sq_bi[i].va, cq->sq.r.sq_bi[i].pa); cq->sq.r.sq_bi[i].va = NULL; cq->sq.r.sq_bi[i].pa = 0; cq->sq.r.sq_bi[i].size = 0; } devm_kfree(ice_hw_to_dev(hw), cq->sq.dma_head); return ICE_ERR_NO_MEMORY; } static enum ice_status ice_cfg_cq_regs(struct ice_hw *hw, struct ice_ctl_q_ring *ring, u16 num_entries) { /* Clear Head and Tail */ wr32(hw, ring->head, 0); wr32(hw, ring->tail, 0); /* set starting point */ wr32(hw, ring->len, (num_entries | ring->len_ena_mask)); wr32(hw, ring->bal, lower_32_bits(ring->desc_buf.pa)); wr32(hw, ring->bah, upper_32_bits(ring->desc_buf.pa)); /* Check one register to verify that config was applied */ if (rd32(hw, ring->bal) != lower_32_bits(ring->desc_buf.pa)) return ICE_ERR_AQ_ERROR; return 0; } /** * ice_cfg_sq_regs - configure Control ATQ registers * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * Configure base address and length registers for the transmit queue */ static enum ice_status ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { return ice_cfg_cq_regs(hw, &cq->sq, cq->num_sq_entries); } /** * ice_cfg_rq_regs - configure Control ARQ register * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * Configure base address and length registers for the receive (event queue) */ static enum ice_status ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status status; status = ice_cfg_cq_regs(hw, &cq->rq, cq->num_rq_entries); if (status) return status; /* Update tail in the HW to post pre-allocated buffers */ wr32(hw, cq->rq.tail, (u32)(cq->num_rq_entries - 1)); return 0; } /** * ice_init_sq - main initialization routine for Control ATQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * This is the main initialization routine for the Control Send Queue * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure: * - cq->num_sq_entries * - cq->sq_buf_size * * Do *NOT* hold the lock when calling this as the memory allocation routines * called are not going to be atomic context safe */ static enum ice_status ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code; if (cq->sq.count > 0) { /* queue already initialized */ ret_code = ICE_ERR_NOT_READY; goto init_ctrlq_exit; } /* verify input for valid configuration */ if (!cq->num_sq_entries || !cq->sq_buf_size) { ret_code = ICE_ERR_CFG; goto init_ctrlq_exit; } cq->sq.next_to_use = 0; cq->sq.next_to_clean = 0; /* allocate the ring memory */ ret_code = ice_alloc_ctrlq_sq_ring(hw, cq); if (ret_code) goto init_ctrlq_exit; /* allocate buffers in the rings */ ret_code = ice_alloc_sq_bufs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* initialize base registers */ ret_code = ice_cfg_sq_regs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* success! */ cq->sq.count = cq->num_sq_entries; goto init_ctrlq_exit; init_ctrlq_free_rings: ice_free_cq_ring(hw, &cq->sq); init_ctrlq_exit: return ret_code; } /** * ice_init_rq - initialize ARQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * The main initialization routine for the Admin Receive (Event) Queue. * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure: * - cq->num_rq_entries * - cq->rq_buf_size * * Do *NOT* hold the lock when calling this as the memory allocation routines * called are not going to be atomic context safe */ static enum ice_status ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code; if (cq->rq.count > 0) { /* queue already initialized */ ret_code = ICE_ERR_NOT_READY; goto init_ctrlq_exit; } /* verify input for valid configuration */ if (!cq->num_rq_entries || !cq->rq_buf_size) { ret_code = ICE_ERR_CFG; goto init_ctrlq_exit; } cq->rq.next_to_use = 0; cq->rq.next_to_clean = 0; /* allocate the ring memory */ ret_code = ice_alloc_ctrlq_rq_ring(hw, cq); if (ret_code) goto init_ctrlq_exit; /* allocate buffers in the rings */ ret_code = ice_alloc_rq_bufs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* initialize base registers */ ret_code = ice_cfg_rq_regs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* success! */ cq->rq.count = cq->num_rq_entries; goto init_ctrlq_exit; init_ctrlq_free_rings: ice_free_cq_ring(hw, &cq->rq); init_ctrlq_exit: return ret_code; } #define ICE_FREE_CQ_BUFS(hw, qi, ring) \ do { \ int i; \ /* free descriptors */ \ for (i = 0; i < (qi)->num_##ring##_entries; i++) \ if ((qi)->ring.r.ring##_bi[i].pa) { \ dmam_free_coherent(ice_hw_to_dev(hw), \ (qi)->ring.r.ring##_bi[i].size,\ (qi)->ring.r.ring##_bi[i].va,\ (qi)->ring.r.ring##_bi[i].pa);\ (qi)->ring.r.ring##_bi[i].va = NULL; \ (qi)->ring.r.ring##_bi[i].pa = 0; \ (qi)->ring.r.ring##_bi[i].size = 0; \ } \ /* free the buffer info list */ \ if ((qi)->ring.cmd_buf) \ devm_kfree(ice_hw_to_dev(hw), (qi)->ring.cmd_buf); \ /* free DMA head */ \ devm_kfree(ice_hw_to_dev(hw), (qi)->ring.dma_head); \ } while (0) /** * ice_shutdown_sq - shutdown the Control ATQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * The main shutdown routine for the Control Transmit Queue */ static enum ice_status ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code = 0; mutex_lock(&cq->sq_lock); if (!cq->sq.count) { ret_code = ICE_ERR_NOT_READY; goto shutdown_sq_out; } /* Stop firmware AdminQ processing */ wr32(hw, cq->sq.head, 0); wr32(hw, cq->sq.tail, 0); wr32(hw, cq->sq.len, 0); wr32(hw, cq->sq.bal, 0); wr32(hw, cq->sq.bah, 0); cq->sq.count = 0; /* to indicate uninitialized queue */ /* free ring buffers and the ring itself */ ICE_FREE_CQ_BUFS(hw, cq, sq); ice_free_cq_ring(hw, &cq->sq); shutdown_sq_out: mutex_unlock(&cq->sq_lock); return ret_code; } /** * ice_aq_ver_check - Check the reported AQ API version. * @hw: pointer to the hardware structure * * Checks if the driver should load on a given AQ API version. * * Return: 'true' iff the driver should attempt to load. 'false' otherwise. */ static bool ice_aq_ver_check(struct ice_hw *hw) { if (hw->api_maj_ver > EXP_FW_API_VER_MAJOR) { /* Major API version is newer than expected, don't load */ dev_warn(ice_hw_to_dev(hw), "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); return false; } else if (hw->api_maj_ver == EXP_FW_API_VER_MAJOR) { if (hw->api_min_ver > (EXP_FW_API_VER_MINOR + 2)) dev_info(ice_hw_to_dev(hw), "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); else if ((hw->api_min_ver + 2) < EXP_FW_API_VER_MINOR) dev_info(ice_hw_to_dev(hw), "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); } else { /* Major API version is older than expected, log a warning */ dev_info(ice_hw_to_dev(hw), "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); } return true; } /** * ice_shutdown_rq - shutdown Control ARQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * The main shutdown routine for the Control Receive Queue */ static enum ice_status ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code = 0; mutex_lock(&cq->rq_lock); if (!cq->rq.count) { ret_code = ICE_ERR_NOT_READY; goto shutdown_rq_out; } /* Stop Control Queue processing */ wr32(hw, cq->rq.head, 0); wr32(hw, cq->rq.tail, 0); wr32(hw, cq->rq.len, 0); wr32(hw, cq->rq.bal, 0); wr32(hw, cq->rq.bah, 0); /* set rq.count to 0 to indicate uninitialized queue */ cq->rq.count = 0; /* free ring buffers and the ring itself */ ICE_FREE_CQ_BUFS(hw, cq, rq); ice_free_cq_ring(hw, &cq->rq); shutdown_rq_out: mutex_unlock(&cq->rq_lock); return ret_code; } /** * ice_init_check_adminq - Check version for Admin Queue to know if its alive * @hw: pointer to the hardware structure */ static enum ice_status ice_init_check_adminq(struct ice_hw *hw) { struct ice_ctl_q_info *cq = &hw->adminq; enum ice_status status; status = ice_aq_get_fw_ver(hw, NULL); if (status) goto init_ctrlq_free_rq; if (!ice_aq_ver_check(hw)) { status = ICE_ERR_FW_API_VER; goto init_ctrlq_free_rq; } return 0; init_ctrlq_free_rq: ice_shutdown_rq(hw, cq); ice_shutdown_sq(hw, cq); return status; } /** * ice_init_ctrlq - main initialization routine for any control Queue * @hw: pointer to the hardware structure * @q_type: specific Control queue type * * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure: * - cq->num_sq_entries * - cq->num_rq_entries * - cq->rq_buf_size * - cq->sq_buf_size * * NOTE: this function does not initialize the controlq locks */ static enum ice_status ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type) { struct ice_ctl_q_info *cq; enum ice_status ret_code; switch (q_type) { case ICE_CTL_Q_ADMIN: ice_adminq_init_regs(hw); cq = &hw->adminq; break; case ICE_CTL_Q_MAILBOX: ice_mailbox_init_regs(hw); cq = &hw->mailboxq; break; default: return ICE_ERR_PARAM; } cq->qtype = q_type; /* verify input for valid configuration */ if (!cq->num_rq_entries || !cq->num_sq_entries || !cq->rq_buf_size || !cq->sq_buf_size) { return ICE_ERR_CFG; } /* setup SQ command write back timeout */ cq->sq_cmd_timeout = ICE_CTL_Q_SQ_CMD_TIMEOUT; /* allocate the ATQ */ ret_code = ice_init_sq(hw, cq); if (ret_code) return ret_code; /* allocate the ARQ */ ret_code = ice_init_rq(hw, cq); if (ret_code) goto init_ctrlq_free_sq; /* success! */ return 0; init_ctrlq_free_sq: ice_shutdown_sq(hw, cq); return ret_code; } /** * ice_init_all_ctrlq - main initialization routine for all control queues * @hw: pointer to the hardware structure * * Prior to calling this function, the driver MUST* set the following fields * in the cq->structure for all control queues: * - cq->num_sq_entries * - cq->num_rq_entries * - cq->rq_buf_size * - cq->sq_buf_size * * NOTE: this function does not initialize the controlq locks. */ enum ice_status ice_init_all_ctrlq(struct ice_hw *hw) { enum ice_status ret_code; /* Init FW admin queue */ ret_code = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN); if (ret_code) return ret_code; ret_code = ice_init_check_adminq(hw); if (ret_code) return ret_code; /* Init Mailbox queue */ return ice_init_ctrlq(hw, ICE_CTL_Q_MAILBOX); } /** * ice_init_ctrlq_locks - Initialize locks for a control queue * @cq: pointer to the control queue * * Initializes the send and receive queue locks for a given control queue. */ static void ice_init_ctrlq_locks(struct ice_ctl_q_info *cq) { mutex_init(&cq->sq_lock); mutex_init(&cq->rq_lock); } /** * ice_create_all_ctrlq - main initialization routine for all control queues * @hw: pointer to the hardware structure * * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure for all control queues: * - cq->num_sq_entries * - cq->num_rq_entries * - cq->rq_buf_size * - cq->sq_buf_size * * This function creates all the control queue locks and then calls * ice_init_all_ctrlq. It should be called once during driver load. If the * driver needs to re-initialize control queues at run time it should call * ice_init_all_ctrlq instead. */ enum ice_status ice_create_all_ctrlq(struct ice_hw *hw) { ice_init_ctrlq_locks(&hw->adminq); ice_init_ctrlq_locks(&hw->mailboxq); return ice_init_all_ctrlq(hw); } /** * ice_shutdown_ctrlq - shutdown routine for any control queue * @hw: pointer to the hardware structure * @q_type: specific Control queue type * * NOTE: this function does not destroy the control queue locks. */ static void ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type) { struct ice_ctl_q_info *cq; switch (q_type) { case ICE_CTL_Q_ADMIN: cq = &hw->adminq; if (ice_check_sq_alive(hw, cq)) ice_aq_q_shutdown(hw, true); break; case ICE_CTL_Q_MAILBOX: cq = &hw->mailboxq; break; default: return; } ice_shutdown_sq(hw, cq); ice_shutdown_rq(hw, cq); } /** * ice_shutdown_all_ctrlq - shutdown routine for all control queues * @hw: pointer to the hardware structure * * NOTE: this function does not destroy the control queue locks. The driver * may call this at runtime to shutdown and later restart control queues, such * as in response to a reset event. */ void ice_shutdown_all_ctrlq(struct ice_hw *hw) { /* Shutdown FW admin queue */ ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN); /* Shutdown PF-VF Mailbox */ ice_shutdown_ctrlq(hw, ICE_CTL_Q_MAILBOX); } /** * ice_destroy_ctrlq_locks - Destroy locks for a control queue * @cq: pointer to the control queue * * Destroys the send and receive queue locks for a given control queue. */ static void ice_destroy_ctrlq_locks(struct ice_ctl_q_info *cq) { mutex_destroy(&cq->sq_lock); mutex_destroy(&cq->rq_lock); } /** * ice_destroy_all_ctrlq - exit routine for all control queues * @hw: pointer to the hardware structure * * This function shuts down all the control queues and then destroys the * control queue locks. It should be called once during driver unload. The * driver should call ice_shutdown_all_ctrlq if it needs to shut down and * reinitialize control queues, such as in response to a reset event. */ void ice_destroy_all_ctrlq(struct ice_hw *hw) { /* shut down all the control queues first */ ice_shutdown_all_ctrlq(hw); ice_destroy_ctrlq_locks(&hw->adminq); ice_destroy_ctrlq_locks(&hw->mailboxq); } /** * ice_clean_sq - cleans Admin send queue (ATQ) * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * returns the number of free desc */ static u16 ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { struct ice_ctl_q_ring *sq = &cq->sq; u16 ntc = sq->next_to_clean; struct ice_sq_cd *details; struct ice_aq_desc *desc; desc = ICE_CTL_Q_DESC(*sq, ntc); details = ICE_CTL_Q_DETAILS(*sq, ntc); while (rd32(hw, cq->sq.head) != ntc) { ice_debug(hw, ICE_DBG_AQ_MSG, "ntc %d head %d.\n", ntc, rd32(hw, cq->sq.head)); memset(desc, 0, sizeof(*desc)); memset(details, 0, sizeof(*details)); ntc++; if (ntc == sq->count) ntc = 0; desc = ICE_CTL_Q_DESC(*sq, ntc); details = ICE_CTL_Q_DETAILS(*sq, ntc); } sq->next_to_clean = ntc; return ICE_CTL_Q_DESC_UNUSED(sq); } /** * ice_sq_done - check if FW has processed the Admin Send Queue (ATQ) * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * * Returns true if the firmware has processed all descriptors on the * admin send queue. Returns false if there are still requests pending. */ static bool ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq) { /* AQ designers suggest use of head for better * timing reliability than DD bit */ return rd32(hw, cq->sq.head) == cq->sq.next_to_use; } /** * ice_sq_send_cmd - send command to Control Queue (ATQ) * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * @desc: prefilled descriptor describing the command (non DMA mem) * @buf: buffer to use for indirect commands (or NULL for direct commands) * @buf_size: size of buffer for indirect commands (or 0 for direct commands) * @cd: pointer to command details structure * * This is the main send command routine for the ATQ. It runs the queue, * cleans the queue, etc. */ enum ice_status ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq, struct ice_aq_desc *desc, void *buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_dma_mem *dma_buf = NULL; struct ice_aq_desc *desc_on_ring; bool cmd_completed = false; enum ice_status status = 0; struct ice_sq_cd *details; u32 total_delay = 0; u16 retval = 0; u32 val = 0; /* if reset is in progress return a soft error */ if (hw->reset_ongoing) return ICE_ERR_RESET_ONGOING; mutex_lock(&cq->sq_lock); cq->sq_last_status = ICE_AQ_RC_OK; if (!cq->sq.count) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send queue not initialized.\n"); status = ICE_ERR_AQ_EMPTY; goto sq_send_command_error; } if ((buf && !buf_size) || (!buf && buf_size)) { status = ICE_ERR_PARAM; goto sq_send_command_error; } if (buf) { if (buf_size > cq->sq_buf_size) { ice_debug(hw, ICE_DBG_AQ_MSG, "Invalid buffer size for Control Send queue: %d.\n", buf_size); status = ICE_ERR_INVAL_SIZE; goto sq_send_command_error; } desc->flags |= cpu_to_le16(ICE_AQ_FLAG_BUF); if (buf_size > ICE_AQ_LG_BUF) desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB); } val = rd32(hw, cq->sq.head); if (val >= cq->num_sq_entries) { ice_debug(hw, ICE_DBG_AQ_MSG, "head overrun at %d in the Control Send Queue ring\n", val); status = ICE_ERR_AQ_EMPTY; goto sq_send_command_error; } details = ICE_CTL_Q_DETAILS(cq->sq, cq->sq.next_to_use); if (cd) *details = *cd; else memset(details, 0, sizeof(*details)); /* Call clean and check queue available function to reclaim the * descriptors that were processed by FW/MBX; the function returns the * number of desc available. The clean function called here could be * called in a separate thread in case of asynchronous completions. */ if (ice_clean_sq(hw, cq) == 0) { ice_debug(hw, ICE_DBG_AQ_MSG, "Error: Control Send Queue is full.\n"); status = ICE_ERR_AQ_FULL; goto sq_send_command_error; } /* initialize the temp desc pointer with the right desc */ desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use); /* if the desc is available copy the temp desc to the right place */ memcpy(desc_on_ring, desc, sizeof(*desc_on_ring)); /* if buf is not NULL assume indirect command */ if (buf) { dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use]; /* copy the user buf into the respective DMA buf */ memcpy(dma_buf->va, buf, buf_size); desc_on_ring->datalen = cpu_to_le16(buf_size); /* Update the address values in the desc with the pa value * for respective buffer */ desc_on_ring->params.generic.addr_high = cpu_to_le32(upper_32_bits(dma_buf->pa)); desc_on_ring->params.generic.addr_low = cpu_to_le32(lower_32_bits(dma_buf->pa)); } /* Debug desc and buffer */ ice_debug(hw, ICE_DBG_AQ_MSG, "ATQ: Control Send queue desc and buffer:\n"); ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc_on_ring, buf, buf_size); (cq->sq.next_to_use)++; if (cq->sq.next_to_use == cq->sq.count) cq->sq.next_to_use = 0; wr32(hw, cq->sq.tail, cq->sq.next_to_use); do { if (ice_sq_done(hw, cq)) break; udelay(ICE_CTL_Q_SQ_CMD_USEC); total_delay++; } while (total_delay < cq->sq_cmd_timeout); /* if ready, copy the desc back to temp */ if (ice_sq_done(hw, cq)) { memcpy(desc, desc_on_ring, sizeof(*desc)); if (buf) { /* get returned length to copy */ u16 copy_size = le16_to_cpu(desc->datalen); if (copy_size > buf_size) { ice_debug(hw, ICE_DBG_AQ_MSG, "Return len %d > than buf len %d\n", copy_size, buf_size); status = ICE_ERR_AQ_ERROR; } else { memcpy(buf, dma_buf->va, copy_size); } } retval = le16_to_cpu(desc->retval); if (retval) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue command completed with error 0x%x\n", retval); /* strip off FW internal code */ retval &= 0xff; } cmd_completed = true; if (!status && retval != ICE_AQ_RC_OK) status = ICE_ERR_AQ_ERROR; cq->sq_last_status = (enum ice_aq_err)retval; } ice_debug(hw, ICE_DBG_AQ_MSG, "ATQ: desc and buffer writeback:\n"); ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc, buf, buf_size); /* save writeback AQ if requested */ if (details->wb_desc) memcpy(details->wb_desc, desc_on_ring, sizeof(*details->wb_desc)); /* update the error if time out occurred */ if (!cmd_completed) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue Writeback timeout.\n"); status = ICE_ERR_AQ_TIMEOUT; } sq_send_command_error: mutex_unlock(&cq->sq_lock); return status; } /** * ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function * @desc: pointer to the temp descriptor (non DMA mem) * @opcode: the opcode can be used to decide which flags to turn off or on * * Fill the desc with default values */ void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode) { /* zero out the desc */ memset(desc, 0, sizeof(*desc)); desc->opcode = cpu_to_le16(opcode); desc->flags = cpu_to_le16(ICE_AQ_FLAG_SI); } /** * ice_clean_rq_elem * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * @e: event info from the receive descriptor, includes any buffers * @pending: number of events that could be left to process * * This function cleans one Admin Receive Queue element and returns * the contents through e. It can also return how many events are * left to process through 'pending'. */ enum ice_status ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq, struct ice_rq_event_info *e, u16 *pending) { u16 ntc = cq->rq.next_to_clean; enum ice_status ret_code = 0; struct ice_aq_desc *desc; struct ice_dma_mem *bi; u16 desc_idx; u16 datalen; u16 flags; u16 ntu; /* pre-clean the event info */ memset(&e->desc, 0, sizeof(e->desc)); /* take the lock before we start messing with the ring */ mutex_lock(&cq->rq_lock); if (!cq->rq.count) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive queue not initialized.\n"); ret_code = ICE_ERR_AQ_EMPTY; goto clean_rq_elem_err; } /* set next_to_use to head */ ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); if (ntu == ntc) { /* nothing to do - shouldn't need to update ring's values */ ret_code = ICE_ERR_AQ_NO_WORK; goto clean_rq_elem_out; } /* now clean the next descriptor */ desc = ICE_CTL_Q_DESC(cq->rq, ntc); desc_idx = ntc; cq->rq_last_status = (enum ice_aq_err)le16_to_cpu(desc->retval); flags = le16_to_cpu(desc->flags); if (flags & ICE_AQ_FLAG_ERR) { ret_code = ICE_ERR_AQ_ERROR; ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive Queue Event received with error 0x%x\n", cq->rq_last_status); } memcpy(&e->desc, desc, sizeof(e->desc)); datalen = le16_to_cpu(desc->datalen); e->msg_len = min(datalen, e->buf_len); if (e->msg_buf && e->msg_len) memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len); ice_debug(hw, ICE_DBG_AQ_MSG, "ARQ: desc and buffer:\n"); ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc, e->msg_buf, cq->rq_buf_size); /* Restore the original datalen and buffer address in the desc, * FW updates datalen to indicate the event message size */ bi = &cq->rq.r.rq_bi[ntc]; memset(desc, 0, sizeof(*desc)); desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF); if (cq->rq_buf_size > ICE_AQ_LG_BUF) desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB); desc->datalen = cpu_to_le16(bi->size); desc->params.generic.addr_high = cpu_to_le32(upper_32_bits(bi->pa)); desc->params.generic.addr_low = cpu_to_le32(lower_32_bits(bi->pa)); /* set tail = the last cleaned desc index. */ wr32(hw, cq->rq.tail, ntc); /* ntc is updated to tail + 1 */ ntc++; if (ntc == cq->num_rq_entries) ntc = 0; cq->rq.next_to_clean = ntc; cq->rq.next_to_use = ntu; clean_rq_elem_out: /* Set pending if needed, unlock and return */ if (pending) { /* re-read HW head to calculate actual pending messages */ ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); *pending = (u16)((ntc > ntu ? cq->rq.count : 0) + (ntu - ntc)); } clean_rq_elem_err: mutex_unlock(&cq->rq_lock); return ret_code; }