/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CHELSIO_T4_FCOE #include #endif /* CONFIG_CHELSIO_T4_FCOE */ #include "cxgb4.h" #include "t4_regs.h" #include "t4_values.h" #include "t4_msg.h" #include "t4fw_api.h" #include "cxgb4_ptp.h" #include "cxgb4_uld.h" /* * Rx buffer size. We use largish buffers if possible but settle for single * pages under memory shortage. */ #if PAGE_SHIFT >= 16 # define FL_PG_ORDER 0 #else # define FL_PG_ORDER (16 - PAGE_SHIFT) #endif /* RX_PULL_LEN should be <= RX_COPY_THRES */ #define RX_COPY_THRES 256 #define RX_PULL_LEN 128 /* * Main body length for sk_buffs used for Rx Ethernet packets with fragments. * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. */ #define RX_PKT_SKB_LEN 512 /* * Max number of Tx descriptors we clean up at a time. Should be modest as * freeing skbs isn't cheap and it happens while holding locks. We just need * to free packets faster than they arrive, we eventually catch up and keep * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should * also match the CIDX Flush Threshold. */ #define MAX_TX_RECLAIM 32 /* * Max number of Rx buffers we replenish at a time. Again keep this modest, * allocating buffers isn't cheap either. */ #define MAX_RX_REFILL 16U /* * Period of the Rx queue check timer. This timer is infrequent as it has * something to do only when the system experiences severe memory shortage. */ #define RX_QCHECK_PERIOD (HZ / 2) /* * Period of the Tx queue check timer. */ #define TX_QCHECK_PERIOD (HZ / 2) /* * Max number of Tx descriptors to be reclaimed by the Tx timer. */ #define MAX_TIMER_TX_RECLAIM 100 /* * Timer index used when backing off due to memory shortage. */ #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) /* * Suspension threshold for non-Ethernet Tx queues. We require enough room * for a full sized WR. */ #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) /* * Max Tx descriptor space we allow for an Ethernet packet to be inlined * into a WR. */ #define MAX_IMM_TX_PKT_LEN 256 /* * Max size of a WR sent through a control Tx queue. */ #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN struct rx_sw_desc { /* SW state per Rx descriptor */ struct page *page; dma_addr_t dma_addr; }; /* * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. * We could easily support more but there doesn't seem to be much need for * that ... */ #define FL_MTU_SMALL 1500 #define FL_MTU_LARGE 9000 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, unsigned int mtu) { struct sge *s = &adapter->sge; return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); } #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) /* * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses * these to specify the buffer size as an index into the SGE Free List Buffer * Size register array. We also use bit 4, when the buffer has been unmapped * for DMA, but this is of course never sent to the hardware and is only used * to prevent double unmappings. All of the above requires that the Free List * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal * Free List Buffer alignment is 32 bytes, this works out for us ... */ enum { RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ /* * XXX We shouldn't depend on being able to use these indices. * XXX Especially when some other Master PF has initialized the * XXX adapter or we use the Firmware Configuration File. We * XXX should really search through the Host Buffer Size register * XXX array for the appropriately sized buffer indices. */ RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ }; static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; #define MIN_NAPI_WORK 1 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) { return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; } static inline bool is_buf_mapped(const struct rx_sw_desc *d) { return !(d->dma_addr & RX_UNMAPPED_BUF); } /** * txq_avail - return the number of available slots in a Tx queue * @q: the Tx queue * * Returns the number of descriptors in a Tx queue available to write new * packets. */ static inline unsigned int txq_avail(const struct sge_txq *q) { return q->size - 1 - q->in_use; } /** * fl_cap - return the capacity of a free-buffer list * @fl: the FL * * Returns the capacity of a free-buffer list. The capacity is less than * the size because one descriptor needs to be left unpopulated, otherwise * HW will think the FL is empty. */ static inline unsigned int fl_cap(const struct sge_fl *fl) { return fl->size - 8; /* 1 descriptor = 8 buffers */ } /** * fl_starving - return whether a Free List is starving. * @adapter: pointer to the adapter * @fl: the Free List * * Tests specified Free List to see whether the number of buffers * available to the hardware has falled below our "starvation" * threshold. */ static inline bool fl_starving(const struct adapter *adapter, const struct sge_fl *fl) { const struct sge *s = &adapter->sge; return fl->avail - fl->pend_cred <= s->fl_starve_thres; } int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, dma_addr_t *addr) { const skb_frag_t *fp, *end; const struct skb_shared_info *si; *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(dev, *addr)) goto out_err; si = skb_shinfo(skb); end = &si->frags[si->nr_frags]; for (fp = si->frags; fp < end; fp++) { *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), DMA_TO_DEVICE); if (dma_mapping_error(dev, *addr)) goto unwind; } return 0; unwind: while (fp-- > si->frags) dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); out_err: return -ENOMEM; } EXPORT_SYMBOL(cxgb4_map_skb); #ifdef CONFIG_NEED_DMA_MAP_STATE static void unmap_skb(struct device *dev, const struct sk_buff *skb, const dma_addr_t *addr) { const skb_frag_t *fp, *end; const struct skb_shared_info *si; dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); si = skb_shinfo(skb); end = &si->frags[si->nr_frags]; for (fp = si->frags; fp < end; fp++) dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); } /** * deferred_unmap_destructor - unmap a packet when it is freed * @skb: the packet * * This is the packet destructor used for Tx packets that need to remain * mapped until they are freed rather than until their Tx descriptors are * freed. */ static void deferred_unmap_destructor(struct sk_buff *skb) { unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); } #endif static void unmap_sgl(struct device *dev, const struct sk_buff *skb, const struct ulptx_sgl *sgl, const struct sge_txq *q) { const struct ulptx_sge_pair *p; unsigned int nfrags = skb_shinfo(skb)->nr_frags; if (likely(skb_headlen(skb))) dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), DMA_TO_DEVICE); else { dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), DMA_TO_DEVICE); nfrags--; } /* * the complexity below is because of the possibility of a wrap-around * in the middle of an SGL */ for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), ntohl(p->len[0]), DMA_TO_DEVICE); dma_unmap_page(dev, be64_to_cpu(p->addr[1]), ntohl(p->len[1]), DMA_TO_DEVICE); p++; } else if ((u8 *)p == (u8 *)q->stat) { p = (const struct ulptx_sge_pair *)q->desc; goto unmap; } else if ((u8 *)p + 8 == (u8 *)q->stat) { const __be64 *addr = (const __be64 *)q->desc; dma_unmap_page(dev, be64_to_cpu(addr[0]), ntohl(p->len[0]), DMA_TO_DEVICE); dma_unmap_page(dev, be64_to_cpu(addr[1]), ntohl(p->len[1]), DMA_TO_DEVICE); p = (const struct ulptx_sge_pair *)&addr[2]; } else { const __be64 *addr = (const __be64 *)q->desc; dma_unmap_page(dev, be64_to_cpu(p->addr[0]), ntohl(p->len[0]), DMA_TO_DEVICE); dma_unmap_page(dev, be64_to_cpu(addr[0]), ntohl(p->len[1]), DMA_TO_DEVICE); p = (const struct ulptx_sge_pair *)&addr[1]; } } if (nfrags) { __be64 addr; if ((u8 *)p == (u8 *)q->stat) p = (const struct ulptx_sge_pair *)q->desc; addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : *(const __be64 *)q->desc; dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), DMA_TO_DEVICE); } } /** * free_tx_desc - reclaims Tx descriptors and their buffers * @adapter: the adapter * @q: the Tx queue to reclaim descriptors from * @n: the number of descriptors to reclaim * @unmap: whether the buffers should be unmapped for DMA * * Reclaims Tx descriptors from an SGE Tx queue and frees the associated * Tx buffers. Called with the Tx queue lock held. */ void free_tx_desc(struct adapter *adap, struct sge_txq *q, unsigned int n, bool unmap) { struct tx_sw_desc *d; unsigned int cidx = q->cidx; struct device *dev = adap->pdev_dev; d = &q->sdesc[cidx]; while (n--) { if (d->skb) { /* an SGL is present */ if (unmap) unmap_sgl(dev, d->skb, d->sgl, q); dev_consume_skb_any(d->skb); d->skb = NULL; } ++d; if (++cidx == q->size) { cidx = 0; d = q->sdesc; } } q->cidx = cidx; } /* * Return the number of reclaimable descriptors in a Tx queue. */ static inline int reclaimable(const struct sge_txq *q) { int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); hw_cidx -= q->cidx; return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; } /** * reclaim_completed_tx - reclaims completed TX Descriptors * @adap: the adapter * @q: the Tx queue to reclaim completed descriptors from * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 * @unmap: whether the buffers should be unmapped for DMA * * Reclaims Tx Descriptors that the SGE has indicated it has processed, * and frees the associated buffers if possible. If @max == -1, then * we'll use a defaiult maximum. Called with the TX Queue locked. */ static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, int maxreclaim, bool unmap) { int reclaim = reclaimable(q); if (reclaim) { /* * Limit the amount of clean up work we do at a time to keep * the Tx lock hold time O(1). */ if (maxreclaim < 0) maxreclaim = MAX_TX_RECLAIM; if (reclaim > maxreclaim) reclaim = maxreclaim; free_tx_desc(adap, q, reclaim, unmap); q->in_use -= reclaim; } return reclaim; } /** * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors * @adap: the adapter * @q: the Tx queue to reclaim completed descriptors from * @unmap: whether the buffers should be unmapped for DMA * * Reclaims Tx descriptors that the SGE has indicated it has processed, * and frees the associated buffers if possible. Called with the Tx * queue locked. */ void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, bool unmap) { (void)reclaim_completed_tx(adap, q, -1, unmap); } EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); static inline int get_buf_size(struct adapter *adapter, const struct rx_sw_desc *d) { struct sge *s = &adapter->sge; unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; int buf_size; switch (rx_buf_size_idx) { case RX_SMALL_PG_BUF: buf_size = PAGE_SIZE; break; case RX_LARGE_PG_BUF: buf_size = PAGE_SIZE << s->fl_pg_order; break; case RX_SMALL_MTU_BUF: buf_size = FL_MTU_SMALL_BUFSIZE(adapter); break; case RX_LARGE_MTU_BUF: buf_size = FL_MTU_LARGE_BUFSIZE(adapter); break; default: BUG(); } return buf_size; } /** * free_rx_bufs - free the Rx buffers on an SGE free list * @adap: the adapter * @q: the SGE free list to free buffers from * @n: how many buffers to free * * Release the next @n buffers on an SGE free-buffer Rx queue. The * buffers must be made inaccessible to HW before calling this function. */ static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) { while (n--) { struct rx_sw_desc *d = &q->sdesc[q->cidx]; if (is_buf_mapped(d)) dma_unmap_page(adap->pdev_dev, get_buf_addr(d), get_buf_size(adap, d), PCI_DMA_FROMDEVICE); put_page(d->page); d->page = NULL; if (++q->cidx == q->size) q->cidx = 0; q->avail--; } } /** * unmap_rx_buf - unmap the current Rx buffer on an SGE free list * @adap: the adapter * @q: the SGE free list * * Unmap the current buffer on an SGE free-buffer Rx queue. The * buffer must be made inaccessible to HW before calling this function. * * This is similar to @free_rx_bufs above but does not free the buffer. * Do note that the FL still loses any further access to the buffer. */ static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) { struct rx_sw_desc *d = &q->sdesc[q->cidx]; if (is_buf_mapped(d)) dma_unmap_page(adap->pdev_dev, get_buf_addr(d), get_buf_size(adap, d), PCI_DMA_FROMDEVICE); d->page = NULL; if (++q->cidx == q->size) q->cidx = 0; q->avail--; } static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) { if (q->pend_cred >= 8) { u32 val = adap->params.arch.sge_fl_db; if (is_t4(adap->params.chip)) val |= PIDX_V(q->pend_cred / 8); else val |= PIDX_T5_V(q->pend_cred / 8); /* Make sure all memory writes to the Free List queue are * committed before we tell the hardware about them. */ wmb(); /* If we don't have access to the new User Doorbell (T5+), use * the old doorbell mechanism; otherwise use the new BAR2 * mechanism. */ if (unlikely(q->bar2_addr == NULL)) { t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), val | QID_V(q->cntxt_id)); } else { writel(val | QID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_KDOORBELL); /* This Write memory Barrier will force the write to * the User Doorbell area to be flushed. */ wmb(); } q->pend_cred &= 7; } } static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, dma_addr_t mapping) { sd->page = pg; sd->dma_addr = mapping; /* includes size low bits */ } /** * refill_fl - refill an SGE Rx buffer ring * @adap: the adapter * @q: the ring to refill * @n: the number of new buffers to allocate * @gfp: the gfp flags for the allocations * * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, * allocated with the supplied gfp flags. The caller must assure that * @n does not exceed the queue's capacity. If afterwards the queue is * found critically low mark it as starving in the bitmap of starving FLs. * * Returns the number of buffers allocated. */ static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) { struct sge *s = &adap->sge; struct page *pg; dma_addr_t mapping; unsigned int cred = q->avail; __be64 *d = &q->desc[q->pidx]; struct rx_sw_desc *sd = &q->sdesc[q->pidx]; int node; #ifdef CONFIG_DEBUG_FS if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) goto out; #endif gfp |= __GFP_NOWARN; node = dev_to_node(adap->pdev_dev); if (s->fl_pg_order == 0) goto alloc_small_pages; /* * Prefer large buffers */ while (n) { pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); if (unlikely(!pg)) { q->large_alloc_failed++; break; /* fall back to single pages */ } mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE << s->fl_pg_order, PCI_DMA_FROMDEVICE); if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { __free_pages(pg, s->fl_pg_order); q->mapping_err++; goto out; /* do not try small pages for this error */ } mapping |= RX_LARGE_PG_BUF; *d++ = cpu_to_be64(mapping); set_rx_sw_desc(sd, pg, mapping); sd++; q->avail++; if (++q->pidx == q->size) { q->pidx = 0; sd = q->sdesc; d = q->desc; } n--; } alloc_small_pages: while (n--) { pg = alloc_pages_node(node, gfp, 0); if (unlikely(!pg)) { q->alloc_failed++; break; } mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { put_page(pg); q->mapping_err++; goto out; } *d++ = cpu_to_be64(mapping); set_rx_sw_desc(sd, pg, mapping); sd++; q->avail++; if (++q->pidx == q->size) { q->pidx = 0; sd = q->sdesc; d = q->desc; } } out: cred = q->avail - cred; q->pend_cred += cred; ring_fl_db(adap, q); if (unlikely(fl_starving(adap, q))) { smp_wmb(); q->low++; set_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.starving_fl); } return cred; } static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) { refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), GFP_ATOMIC); } /** * alloc_ring - allocate resources for an SGE descriptor ring * @dev: the PCI device's core device * @nelem: the number of descriptors * @elem_size: the size of each descriptor * @sw_size: the size of the SW state associated with each ring element * @phys: the physical address of the allocated ring * @metadata: address of the array holding the SW state for the ring * @stat_size: extra space in HW ring for status information * @node: preferred node for memory allocations * * Allocates resources for an SGE descriptor ring, such as Tx queues, * free buffer lists, or response queues. Each SGE ring requires * space for its HW descriptors plus, optionally, space for the SW state * associated with each HW entry (the metadata). The function returns * three values: the virtual address for the HW ring (the return value * of the function), the bus address of the HW ring, and the address * of the SW ring. */ static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, size_t sw_size, dma_addr_t *phys, void *metadata, size_t stat_size, int node) { size_t len = nelem * elem_size + stat_size; void *s = NULL; void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); if (!p) return NULL; if (sw_size) { s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); if (!s) { dma_free_coherent(dev, len, p, *phys); return NULL; } } if (metadata) *(void **)metadata = s; return p; } /** * sgl_len - calculates the size of an SGL of the given capacity * @n: the number of SGL entries * * Calculates the number of flits needed for a scatter/gather list that * can hold the given number of entries. */ static inline unsigned int sgl_len(unsigned int n) { /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA * addresses. The DSGL Work Request starts off with a 32-bit DSGL * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, * repeated sequences of { Length[i], Length[i+1], Address[i], * Address[i+1] } (this ensures that all addresses are on 64-bit * boundaries). If N is even, then Length[N+1] should be set to 0 and * Address[N+1] is omitted. * * The following calculation incorporates all of the above. It's * somewhat hard to follow but, briefly: the "+2" accounts for the * first two flits which include the DSGL header, Length0 and * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 * flits for every pair of the remaining N) +1 if (n-1) is odd; and * finally the "+((n-1)&1)" adds the one remaining flit needed if * (n-1) is odd ... */ n--; return (3 * n) / 2 + (n & 1) + 2; } /** * flits_to_desc - returns the num of Tx descriptors for the given flits * @n: the number of flits * * Returns the number of Tx descriptors needed for the supplied number * of flits. */ static inline unsigned int flits_to_desc(unsigned int n) { BUG_ON(n > SGE_MAX_WR_LEN / 8); return DIV_ROUND_UP(n, 8); } /** * is_eth_imm - can an Ethernet packet be sent as immediate data? * @skb: the packet * * Returns whether an Ethernet packet is small enough to fit as * immediate data. Return value corresponds to headroom required. */ static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) { int hdrlen = 0; if (skb->encapsulation && skb_shinfo(skb)->gso_size && chip_ver > CHELSIO_T5) { hdrlen = sizeof(struct cpl_tx_tnl_lso); hdrlen += sizeof(struct cpl_tx_pkt_core); } else { hdrlen = skb_shinfo(skb)->gso_size ? sizeof(struct cpl_tx_pkt_lso_core) : 0; hdrlen += sizeof(struct cpl_tx_pkt); } if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) return hdrlen; return 0; } /** * calc_tx_flits - calculate the number of flits for a packet Tx WR * @skb: the packet * * Returns the number of flits needed for a Tx WR for the given Ethernet * packet, including the needed WR and CPL headers. */ static inline unsigned int calc_tx_flits(const struct sk_buff *skb, unsigned int chip_ver) { unsigned int flits; int hdrlen = is_eth_imm(skb, chip_ver); /* If the skb is small enough, we can pump it out as a work request * with only immediate data. In that case we just have to have the * TX Packet header plus the skb data in the Work Request. */ if (hdrlen) return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); /* Otherwise, we're going to have to construct a Scatter gather list * of the skb body and fragments. We also include the flits necessary * for the TX Packet Work Request and CPL. We always have a firmware * Write Header (incorporated as part of the cpl_tx_pkt_lso and * cpl_tx_pkt structures), followed by either a TX Packet Write CPL * message or, if we're doing a Large Send Offload, an LSO CPL message * with an embedded TX Packet Write CPL message. */ flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); if (skb_shinfo(skb)->gso_size) { if (skb->encapsulation && chip_ver > CHELSIO_T5) hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_tnl_lso); else hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_lso_core); hdrlen += sizeof(struct cpl_tx_pkt_core); flits += (hdrlen / sizeof(__be64)); } else { flits += (sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); } return flits; } /** * calc_tx_descs - calculate the number of Tx descriptors for a packet * @skb: the packet * * Returns the number of Tx descriptors needed for the given Ethernet * packet, including the needed WR and CPL headers. */ static inline unsigned int calc_tx_descs(const struct sk_buff *skb, unsigned int chip_ver) { return flits_to_desc(calc_tx_flits(skb, chip_ver)); } /** * cxgb4_write_sgl - populate a scatter/gather list for a packet * @skb: the packet * @q: the Tx queue we are writing into * @sgl: starting location for writing the SGL * @end: points right after the end of the SGL * @start: start offset into skb main-body data to include in the SGL * @addr: the list of bus addresses for the SGL elements * * Generates a gather list for the buffers that make up a packet. * The caller must provide adequate space for the SGL that will be written. * The SGL includes all of the packet's page fragments and the data in its * main body except for the first @start bytes. @sgl must be 16-byte * aligned and within a Tx descriptor with available space. @end points * right after the end of the SGL but does not account for any potential * wrap around, i.e., @end > @sgl. */ void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, struct ulptx_sgl *sgl, u64 *end, unsigned int start, const dma_addr_t *addr) { unsigned int i, len; struct ulptx_sge_pair *to; const struct skb_shared_info *si = skb_shinfo(skb); unsigned int nfrags = si->nr_frags; struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; len = skb_headlen(skb) - start; if (likely(len)) { sgl->len0 = htonl(len); sgl->addr0 = cpu_to_be64(addr[0] + start); nfrags++; } else { sgl->len0 = htonl(skb_frag_size(&si->frags[0])); sgl->addr0 = cpu_to_be64(addr[1]); } sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE_V(nfrags)); if (likely(--nfrags == 0)) return; /* * Most of the complexity below deals with the possibility we hit the * end of the queue in the middle of writing the SGL. For this case * only we create the SGL in a temporary buffer and then copy it. */ to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); to->addr[0] = cpu_to_be64(addr[i]); to->addr[1] = cpu_to_be64(addr[++i]); } if (nfrags) { to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); to->len[1] = cpu_to_be32(0); to->addr[0] = cpu_to_be64(addr[i + 1]); } if (unlikely((u8 *)end > (u8 *)q->stat)) { unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; if (likely(part0)) memcpy(sgl->sge, buf, part0); part1 = (u8 *)end - (u8 *)q->stat; memcpy(q->desc, (u8 *)buf + part0, part1); end = (void *)q->desc + part1; } if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ *end = 0; } EXPORT_SYMBOL(cxgb4_write_sgl); /* This function copies 64 byte coalesced work request to * memory mapped BAR2 space. For coalesced WR SGE fetches * data from the FIFO instead of from Host. */ static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) { int count = 8; while (count) { writeq(*src, dst); src++; dst++; count--; } } /** * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell * @adap: the adapter * @q: the Tx queue * @n: number of new descriptors to give to HW * * Ring the doorbel for a Tx queue. */ inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) { /* Make sure that all writes to the TX Descriptors are committed * before we tell the hardware about them. */ wmb(); /* If we don't have access to the new User Doorbell (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(q->bar2_addr == NULL)) { u32 val = PIDX_V(n); unsigned long flags; /* For T4 we need to participate in the Doorbell Recovery * mechanism. */ spin_lock_irqsave(&q->db_lock, flags); if (!q->db_disabled) t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), QID_V(q->cntxt_id) | val); else q->db_pidx_inc += n; q->db_pidx = q->pidx; spin_unlock_irqrestore(&q->db_lock, flags); } else { u32 val = PIDX_T5_V(n); /* T4 and later chips share the same PIDX field offset within * the doorbell, but T5 and later shrank the field in order to * gain a bit for Doorbell Priority. The field was absurdly * large in the first place (14 bits) so we just use the T5 * and later limits and warn if a Queue ID is too large. */ WARN_ON(val & DBPRIO_F); /* If we're only writing a single TX Descriptor and we can use * Inferred QID registers, we can use the Write Combining * Gather Buffer; otherwise we use the simple doorbell. */ if (n == 1 && q->bar2_qid == 0) { int index = (q->pidx ? (q->pidx - 1) : (q->size - 1)); u64 *wr = (u64 *)&q->desc[index]; cxgb_pio_copy((u64 __iomem *) (q->bar2_addr + SGE_UDB_WCDOORBELL), wr); } else { writel(val | QID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_KDOORBELL); } /* This Write Memory Barrier will force the write to the User * Doorbell area to be flushed. This is needed to prevent * writes on different CPUs for the same queue from hitting * the adapter out of order. This is required when some Work * Requests take the Write Combine Gather Buffer path (user * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some * take the traditional path where we simply increment the * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the * hardware DMA read the actual Work Request. */ wmb(); } } EXPORT_SYMBOL(cxgb4_ring_tx_db); /** * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors * @skb: the packet * @q: the Tx queue where the packet will be inlined * @pos: starting position in the Tx queue where to inline the packet * * Inline a packet's contents directly into Tx descriptors, starting at * the given position within the Tx DMA ring. * Most of the complexity of this operation is dealing with wrap arounds * in the middle of the packet we want to inline. */ void cxgb4_inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, void *pos) { int left = (void *)q->stat - pos; u64 *p; if (likely(skb->len <= left)) { if (likely(!skb->data_len)) skb_copy_from_linear_data(skb, pos, skb->len); else skb_copy_bits(skb, 0, pos, skb->len); pos += skb->len; } else { skb_copy_bits(skb, 0, pos, left); skb_copy_bits(skb, left, q->desc, skb->len - left); pos = (void *)q->desc + (skb->len - left); } /* 0-pad to multiple of 16 */ p = PTR_ALIGN(pos, 8); if ((uintptr_t)p & 8) *p = 0; } EXPORT_SYMBOL(cxgb4_inline_tx_skb); static void *inline_tx_skb_header(const struct sk_buff *skb, const struct sge_txq *q, void *pos, int length) { u64 *p; int left = (void *)q->stat - pos; if (likely(length <= left)) { memcpy(pos, skb->data, length); pos += length; } else { memcpy(pos, skb->data, left); memcpy(q->desc, skb->data + left, length - left); pos = (void *)q->desc + (length - left); } /* 0-pad to multiple of 16 */ p = PTR_ALIGN(pos, 8); if ((uintptr_t)p & 8) { *p = 0; return p + 1; } return p; } /* * Figure out what HW csum a packet wants and return the appropriate control * bits. */ static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) { int csum_type; bool inner_hdr_csum = false; u16 proto, ver; if (skb->encapsulation && (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) inner_hdr_csum = true; if (inner_hdr_csum) { ver = inner_ip_hdr(skb)->version; proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : inner_ipv6_hdr(skb)->nexthdr; } else { ver = ip_hdr(skb)->version; proto = (ver == 4) ? ip_hdr(skb)->protocol : ipv6_hdr(skb)->nexthdr; } if (ver == 4) { if (proto == IPPROTO_TCP) csum_type = TX_CSUM_TCPIP; else if (proto == IPPROTO_UDP) csum_type = TX_CSUM_UDPIP; else { nocsum: /* * unknown protocol, disable HW csum * and hope a bad packet is detected */ return TXPKT_L4CSUM_DIS_F; } } else { /* * this doesn't work with extension headers */ if (proto == IPPROTO_TCP) csum_type = TX_CSUM_TCPIP6; else if (proto == IPPROTO_UDP) csum_type = TX_CSUM_UDPIP6; else goto nocsum; } if (likely(csum_type >= TX_CSUM_TCPIP)) { int eth_hdr_len, l4_len; u64 hdr_len; if (inner_hdr_csum) { /* This allows checksum offload for all encapsulated * packets like GRE etc.. */ l4_len = skb_inner_network_header_len(skb); eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; } else { l4_len = skb_network_header_len(skb); eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; } hdr_len = TXPKT_IPHDR_LEN_V(l4_len); if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); else hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; } else { int start = skb_transport_offset(skb); return TXPKT_CSUM_TYPE_V(csum_type) | TXPKT_CSUM_START_V(start) | TXPKT_CSUM_LOC_V(start + skb->csum_offset); } } static void eth_txq_stop(struct sge_eth_txq *q) { netif_tx_stop_queue(q->txq); q->q.stops++; } static inline void txq_advance(struct sge_txq *q, unsigned int n) { q->in_use += n; q->pidx += n; if (q->pidx >= q->size) q->pidx -= q->size; } #ifdef CONFIG_CHELSIO_T4_FCOE static inline int cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, const struct port_info *pi, u64 *cntrl) { const struct cxgb_fcoe *fcoe = &pi->fcoe; if (!(fcoe->flags & CXGB_FCOE_ENABLED)) return 0; if (skb->protocol != htons(ETH_P_FCOE)) return 0; skb_reset_mac_header(skb); skb->mac_len = sizeof(struct ethhdr); skb_set_network_header(skb, skb->mac_len); skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); if (!cxgb_fcoe_sof_eof_supported(adap, skb)) return -ENOTSUPP; /* FC CRC offload */ *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); return 0; } #endif /* CONFIG_CHELSIO_T4_FCOE */ /* Returns tunnel type if hardware supports offloading of the same. * It is called only for T5 and onwards. */ enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) { u8 l4_hdr = 0; enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; struct port_info *pi = netdev_priv(skb->dev); struct adapter *adapter = pi->adapter; if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB)) return tnl_type; switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): l4_hdr = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): l4_hdr = ipv6_hdr(skb)->nexthdr; break; default: return tnl_type; } switch (l4_hdr) { case IPPROTO_UDP: if (adapter->vxlan_port == udp_hdr(skb)->dest) tnl_type = TX_TNL_TYPE_VXLAN; else if (adapter->geneve_port == udp_hdr(skb)->dest) tnl_type = TX_TNL_TYPE_GENEVE; break; default: return tnl_type; } return tnl_type; } static inline void t6_fill_tnl_lso(struct sk_buff *skb, struct cpl_tx_tnl_lso *tnl_lso, enum cpl_tx_tnl_lso_type tnl_type) { u32 val; int in_eth_xtra_len; int l3hdr_len = skb_network_header_len(skb); int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; const struct skb_shared_info *ssi = skb_shinfo(skb); bool v6 = (ip_hdr(skb)->version == 6); val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | CPL_TX_TNL_LSO_FIRST_F | CPL_TX_TNL_LSO_LAST_F | (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | CPL_TX_TNL_LSO_IPLENSETOUT_F | (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); tnl_lso->op_to_IpIdSplitOut = htonl(val); tnl_lso->IpIdOffsetOut = 0; /* Get the tunnel header length */ val = skb_inner_mac_header(skb) - skb_mac_header(skb); in_eth_xtra_len = skb_inner_network_header(skb) - skb_inner_mac_header(skb) - ETH_HLEN; switch (tnl_type) { case TX_TNL_TYPE_VXLAN: case TX_TNL_TYPE_GENEVE: tnl_lso->UdpLenSetOut_to_TnlHdrLen = htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | CPL_TX_TNL_LSO_UDPLENSETOUT_F); break; default: tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; break; } tnl_lso->UdpLenSetOut_to_TnlHdrLen |= htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); tnl_lso->r1 = 0; val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); tnl_lso->Flow_to_TcpHdrLen = htonl(val); tnl_lso->IpIdOffset = htons(0); tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); tnl_lso->TCPSeqOffset = htonl(0); tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); } /** * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update * @adap: the adapter * @eq: the Ethernet TX Queue * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 * * We're typically called here to update the state of an Ethernet TX * Queue with respect to the hardware's progress in consuming the TX * Work Requests that we've put on that Egress Queue. This happens * when we get Egress Queue Update messages and also prophylactically * in regular timer-based Ethernet TX Queue maintenance. */ int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, int maxreclaim) { unsigned int reclaimed, hw_cidx; struct sge_txq *q = &eq->q; int hw_in_use; if (!q->in_use || !__netif_tx_trylock(eq->txq)) return 0; /* Reclaim pending completed TX Descriptors. */ reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); hw_in_use = q->pidx - hw_cidx; if (hw_in_use < 0) hw_in_use += q->size; /* If the TX Queue is currently stopped and there's now more than half * the queue available, restart it. Otherwise bail out since the rest * of what we want do here is with the possibility of shipping any * currently buffered Coalesced TX Work Request. */ if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { netif_tx_wake_queue(eq->txq); eq->q.restarts++; } __netif_tx_unlock(eq->txq); return reclaimed; } /** * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue * @skb: the packet * @dev: the egress net device * * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. */ static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) { u32 wr_mid, ctrl0, op; u64 cntrl, *end, *sgl; int qidx, credits; unsigned int flits, ndesc; struct adapter *adap; struct sge_eth_txq *q; const struct port_info *pi; struct fw_eth_tx_pkt_wr *wr; struct cpl_tx_pkt_core *cpl; const struct skb_shared_info *ssi; dma_addr_t addr[MAX_SKB_FRAGS + 1]; bool immediate = false; int len, max_pkt_len; bool ptp_enabled = is_ptp_enabled(skb, dev); unsigned int chip_ver; enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; #ifdef CONFIG_CHELSIO_T4_FCOE int err; #endif /* CONFIG_CHELSIO_T4_FCOE */ /* * The chip min packet length is 10 octets but play safe and reject * anything shorter than an Ethernet header. */ if (unlikely(skb->len < ETH_HLEN)) { out_free: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Discard the packet if the length is greater than mtu */ max_pkt_len = ETH_HLEN + dev->mtu; if (skb_vlan_tagged(skb)) max_pkt_len += VLAN_HLEN; if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) goto out_free; pi = netdev_priv(dev); adap = pi->adapter; ssi = skb_shinfo(skb); #ifdef CONFIG_CHELSIO_IPSEC_INLINE if (xfrm_offload(skb) && !ssi->gso_size) return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); #endif /* CHELSIO_IPSEC_INLINE */ qidx = skb_get_queue_mapping(skb); if (ptp_enabled) { spin_lock(&adap->ptp_lock); if (!(adap->ptp_tx_skb)) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; adap->ptp_tx_skb = skb_get(skb); } else { spin_unlock(&adap->ptp_lock); goto out_free; } q = &adap->sge.ptptxq; } else { q = &adap->sge.ethtxq[qidx + pi->first_qset]; } skb_tx_timestamp(skb); reclaim_completed_tx(adap, &q->q, -1, true); cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; #ifdef CONFIG_CHELSIO_T4_FCOE err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); if (unlikely(err == -ENOTSUPP)) { if (ptp_enabled) spin_unlock(&adap->ptp_lock); goto out_free; } #endif /* CONFIG_CHELSIO_T4_FCOE */ chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); flits = calc_tx_flits(skb, chip_ver); ndesc = flits_to_desc(flits); credits = txq_avail(&q->q) - ndesc; if (unlikely(credits < 0)) { eth_txq_stop(q); dev_err(adap->pdev_dev, "%s: Tx ring %u full while queue awake!\n", dev->name, qidx); if (ptp_enabled) spin_unlock(&adap->ptp_lock); return NETDEV_TX_BUSY; } if (is_eth_imm(skb, chip_ver)) immediate = true; if (skb->encapsulation && chip_ver > CHELSIO_T5) tnl_type = cxgb_encap_offload_supported(skb); if (!immediate && unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { q->mapping_err++; if (ptp_enabled) spin_unlock(&adap->ptp_lock); goto out_free; } wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); if (unlikely(credits < ETHTXQ_STOP_THRES)) { /* After we're done injecting the Work Request for this * packet, we'll be below our "stop threshold" so stop the TX * Queue now and schedule a request for an SGE Egress Queue * Update message. The queue will get started later on when * the firmware processes this Work Request and sends us an * Egress Queue Status Update message indicating that space * has opened up. */ eth_txq_stop(q); wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; } wr = (void *)&q->q.desc[q->q.pidx]; wr->equiq_to_len16 = htonl(wr_mid); wr->r3 = cpu_to_be64(0); end = (u64 *)wr + flits; len = immediate ? skb->len : 0; len += sizeof(*cpl); if (ssi->gso_size) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; int l3hdr_len = skb_network_header_len(skb); int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); if (tnl_type) len += sizeof(*tnl_lso); else len += sizeof(*lso); wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | FW_WR_IMMDLEN_V(len)); if (tnl_type) { struct iphdr *iph = ip_hdr(skb); t6_fill_tnl_lso(skb, tnl_lso, tnl_type); cpl = (void *)(tnl_lso + 1); /* Driver is expected to compute partial checksum that * does not include the IP Total Length. */ if (iph->version == 4) { iph->check = 0; iph->tot_len = 0; iph->check = (u16)(~ip_fast_csum((u8 *)iph, iph->ihl)); } if (skb->ip_summed == CHECKSUM_PARTIAL) cntrl = hwcsum(adap->params.chip, skb); } else { lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | LSO_IPV6_V(v6) | LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | LSO_IPHDR_LEN_V(l3hdr_len / 4) | LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); lso->ipid_ofst = htons(0); lso->mss = htons(ssi->gso_size); lso->seqno_offset = htonl(0); if (is_t4(adap->params.chip)) lso->len = htonl(skb->len); else lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); cpl = (void *)(lso + 1); if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); else cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); cntrl |= TXPKT_CSUM_TYPE_V(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | TXPKT_IPHDR_LEN_V(l3hdr_len); } sgl = (u64 *)(cpl + 1); /* sgl start here */ if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { /* If current position is already at the end of the * txq, reset the current to point to start of the queue * and update the end ptr as well. */ if (sgl == (u64 *)q->q.stat) { int left = (u8 *)end - (u8 *)q->q.stat; end = (void *)q->q.desc + left; sgl = (void *)q->q.desc; } } q->tso++; q->tx_cso += ssi->gso_segs; } else { if (ptp_enabled) op = FW_PTP_TX_PKT_WR; else op = FW_ETH_TX_PKT_WR; wr->op_immdlen = htonl(FW_WR_OP_V(op) | FW_WR_IMMDLEN_V(len)); cpl = (void *)(wr + 1); sgl = (u64 *)(cpl + 1); if (skb->ip_summed == CHECKSUM_PARTIAL) { cntrl = hwcsum(adap->params.chip, skb) | TXPKT_IPCSUM_DIS_F; q->tx_cso++; } } if (skb_vlan_tag_present(skb)) { q->vlan_ins++; cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); #ifdef CONFIG_CHELSIO_T4_FCOE if (skb->protocol == htons(ETH_P_FCOE)) cntrl |= TXPKT_VLAN_V( ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); #endif /* CONFIG_CHELSIO_T4_FCOE */ } ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | TXPKT_PF_V(adap->pf); if (ptp_enabled) ctrl0 |= TXPKT_TSTAMP_F; #ifdef CONFIG_CHELSIO_T4_DCB if (is_t4(adap->params.chip)) ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); else ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); #endif cpl->ctrl0 = htonl(ctrl0); cpl->pack = htons(0); cpl->len = htons(skb->len); cpl->ctrl1 = cpu_to_be64(cntrl); if (immediate) { cxgb4_inline_tx_skb(skb, &q->q, sgl); dev_consume_skb_any(skb); } else { int last_desc; cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr); skb_orphan(skb); last_desc = q->q.pidx + ndesc - 1; if (last_desc >= q->q.size) last_desc -= q->q.size; q->q.sdesc[last_desc].skb = skb; q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl; } txq_advance(&q->q, ndesc); cxgb4_ring_tx_db(adap, &q->q, ndesc); if (ptp_enabled) spin_unlock(&adap->ptp_lock); return NETDEV_TX_OK; } /* Constants ... */ enum { /* Egress Queue sizes, producer and consumer indices are all in units * of Egress Context Units bytes. Note that as far as the hardware is * concerned, the free list is an Egress Queue (the host produces free * buffers which the hardware consumes) and free list entries are * 64-bit PCI DMA addresses. */ EQ_UNIT = SGE_EQ_IDXSIZE, FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + sizeof(struct cpl_tx_pkt_lso_core) + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), }; /** * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? * @skb: the packet * * Returns whether an Ethernet packet is small enough to fit completely as * immediate data. */ static inline int t4vf_is_eth_imm(const struct sk_buff *skb) { /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request * which does not accommodate immediate data. We could dike out all * of the support code for immediate data but that would tie our hands * too much if we ever want to enhace the firmware. It would also * create more differences between the PF and VF Drivers. */ return false; } /** * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR * @skb: the packet * * Returns the number of flits needed for a TX Work Request for the * given Ethernet packet, including the needed WR and CPL headers. */ static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) { unsigned int flits; /* If the skb is small enough, we can pump it out as a work request * with only immediate data. In that case we just have to have the * TX Packet header plus the skb data in the Work Request. */ if (t4vf_is_eth_imm(skb)) return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), sizeof(__be64)); /* Otherwise, we're going to have to construct a Scatter gather list * of the skb body and fragments. We also include the flits necessary * for the TX Packet Work Request and CPL. We always have a firmware * Write Header (incorporated as part of the cpl_tx_pkt_lso and * cpl_tx_pkt structures), followed by either a TX Packet Write CPL * message or, if we're doing a Large Send Offload, an LSO CPL message * with an embedded TX Packet Write CPL message. */ flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); if (skb_shinfo(skb)->gso_size) flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + sizeof(struct cpl_tx_pkt_lso_core) + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); else flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); return flits; } /** * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue * @skb: the packet * @dev: the egress net device * * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. */ static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) { dma_addr_t addr[MAX_SKB_FRAGS + 1]; const struct skb_shared_info *ssi; struct fw_eth_tx_pkt_vm_wr *wr; int qidx, credits, max_pkt_len; struct cpl_tx_pkt_core *cpl; const struct port_info *pi; unsigned int flits, ndesc; struct sge_eth_txq *txq; struct adapter *adapter; u64 cntrl, *end; u32 wr_mid; const size_t fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + sizeof(wr->ethtype) + sizeof(wr->vlantci); /* The chip minimum packet length is 10 octets but the firmware * command that we are using requires that we copy the Ethernet header * (including the VLAN tag) into the header so we reject anything * smaller than that ... */ if (unlikely(skb->len < fw_hdr_copy_len)) goto out_free; /* Discard the packet if the length is greater than mtu */ max_pkt_len = ETH_HLEN + dev->mtu; if (skb_vlan_tag_present(skb)) max_pkt_len += VLAN_HLEN; if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) goto out_free; /* Figure out which TX Queue we're going to use. */ pi = netdev_priv(dev); adapter = pi->adapter; qidx = skb_get_queue_mapping(skb); WARN_ON(qidx >= pi->nqsets); txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; /* Take this opportunity to reclaim any TX Descriptors whose DMA * transfers have completed. */ reclaim_completed_tx(adapter, &txq->q, -1, true); /* Calculate the number of flits and TX Descriptors we're going to * need along with how many TX Descriptors will be left over after * we inject our Work Request. */ flits = t4vf_calc_tx_flits(skb); ndesc = flits_to_desc(flits); credits = txq_avail(&txq->q) - ndesc; if (unlikely(credits < 0)) { /* Not enough room for this packet's Work Request. Stop the * TX Queue and return a "busy" condition. The queue will get * started later on when the firmware informs us that space * has opened up. */ eth_txq_stop(txq); dev_err(adapter->pdev_dev, "%s: TX ring %u full while queue awake!\n", dev->name, qidx); return NETDEV_TX_BUSY; } if (!t4vf_is_eth_imm(skb) && unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) { /* We need to map the skb into PCI DMA space (because it can't * be in-lined directly into the Work Request) and the mapping * operation failed. Record the error and drop the packet. */ txq->mapping_err++; goto out_free; } wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); if (unlikely(credits < ETHTXQ_STOP_THRES)) { /* After we're done injecting the Work Request for this * packet, we'll be below our "stop threshold" so stop the TX * Queue now and schedule a request for an SGE Egress Queue * Update message. The queue will get started later on when * the firmware processes this Work Request and sends us an * Egress Queue Status Update message indicating that space * has opened up. */ eth_txq_stop(txq); wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; } /* Start filling in our Work Request. Note that we do _not_ handle * the WR Header wrapping around the TX Descriptor Ring. If our * maximum header size ever exceeds one TX Descriptor, we'll need to * do something else here. */ WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); wr = (void *)&txq->q.desc[txq->q.pidx]; wr->equiq_to_len16 = cpu_to_be32(wr_mid); wr->r3[0] = cpu_to_be32(0); wr->r3[1] = cpu_to_be32(0); skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); end = (u64 *)wr + flits; /* If this is a Large Send Offload packet we'll put in an LSO CPL * message with an encapsulated TX Packet CPL message. Otherwise we * just use a TX Packet CPL message. */ ssi = skb_shinfo(skb); if (ssi->gso_size) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; int l3hdr_len = skb_network_header_len(skb); int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | FW_WR_IMMDLEN_V(sizeof(*lso) + sizeof(*cpl))); /* Fill in the LSO CPL message. */ lso->lso_ctrl = cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | LSO_IPV6_V(v6) | LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | LSO_IPHDR_LEN_V(l3hdr_len / 4) | LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); lso->ipid_ofst = cpu_to_be16(0); lso->mss = cpu_to_be16(ssi->gso_size); lso->seqno_offset = cpu_to_be32(0); if (is_t4(adapter->params.chip)) lso->len = cpu_to_be32(skb->len); else lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); /* Set up TX Packet CPL pointer, control word and perform * accounting. */ cpl = (void *)(lso + 1); if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); else cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); cntrl |= TXPKT_CSUM_TYPE_V(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | TXPKT_IPHDR_LEN_V(l3hdr_len); txq->tso++; txq->tx_cso += ssi->gso_segs; } else { int len; len = (t4vf_is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl)); wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | FW_WR_IMMDLEN_V(len)); /* Set up TX Packet CPL pointer, control word and perform * accounting. */ cpl = (void *)(wr + 1); if (skb->ip_summed == CHECKSUM_PARTIAL) { cntrl = hwcsum(adapter->params.chip, skb) | TXPKT_IPCSUM_DIS_F; txq->tx_cso++; } else { cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; } } /* If there's a VLAN tag present, add that to the list of things to * do in this Work Request. */ if (skb_vlan_tag_present(skb)) { txq->vlan_ins++; cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); } /* Fill in the TX Packet CPL message header. */ cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->port_id) | TXPKT_PF_V(0)); cpl->pack = cpu_to_be16(0); cpl->len = cpu_to_be16(skb->len); cpl->ctrl1 = cpu_to_be64(cntrl); /* Fill in the body of the TX Packet CPL message with either in-lined * data or a Scatter/Gather List. */ if (t4vf_is_eth_imm(skb)) { /* In-line the packet's data and free the skb since we don't * need it any longer. */ cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); dev_consume_skb_any(skb); } else { /* Write the skb's Scatter/Gather list into the TX Packet CPL * message and retain a pointer to the skb so we can free it * later when its DMA completes. (We store the skb pointer * in the Software Descriptor corresponding to the last TX * Descriptor used by the Work Request.) * * The retained skb will be freed when the corresponding TX * Descriptors are reclaimed after their DMAs complete. * However, this could take quite a while since, in general, * the hardware is set up to be lazy about sending DMA * completion notifications to us and we mostly perform TX * reclaims in the transmit routine. * * This is good for performamce but means that we rely on new * TX packets arriving to run the destructors of completed * packets, which open up space in their sockets' send queues. * Sometimes we do not get such new packets causing TX to * stall. A single UDP transmitter is a good example of this * situation. We have a clean up timer that periodically * reclaims completed packets but it doesn't run often enough * (nor do we want it to) to prevent lengthy stalls. A * solution to this problem is to run the destructor early, * after the packet is queued but before it's DMAd. A con is * that we lie to socket memory accounting, but the amount of * extra memory is reasonable (limited by the number of TX * descriptors), the packets do actually get freed quickly by * new packets almost always, and for protocols like TCP that * wait for acks to really free up the data the extra memory * is even less. On the positive side we run the destructors * on the sending CPU rather than on a potentially different * completing CPU, usually a good thing. * * Run the destructor before telling the DMA engine about the * packet to make sure it doesn't complete and get freed * prematurely. */ struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); struct sge_txq *tq = &txq->q; int last_desc; /* If the Work Request header was an exact multiple of our TX * Descriptor length, then it's possible that the starting SGL * pointer lines up exactly with the end of our TX Descriptor * ring. If that's the case, wrap around to the beginning * here ... */ if (unlikely((void *)sgl == (void *)tq->stat)) { sgl = (void *)tq->desc; end = (void *)((void *)tq->desc + ((void *)end - (void *)tq->stat)); } cxgb4_write_sgl(skb, tq, sgl, end, 0, addr); skb_orphan(skb); last_desc = tq->pidx + ndesc - 1; if (last_desc >= tq->size) last_desc -= tq->size; tq->sdesc[last_desc].skb = skb; tq->sdesc[last_desc].sgl = sgl; } /* Advance our internal TX Queue state, tell the hardware about * the new TX descriptors and return success. */ txq_advance(&txq->q, ndesc); cxgb4_ring_tx_db(adapter, &txq->q, ndesc); return NETDEV_TX_OK; out_free: /* An error of some sort happened. Free the TX skb and tell the * OS that we've "dealt" with the packet ... */ dev_kfree_skb_any(skb); return NETDEV_TX_OK; } netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct port_info *pi = netdev_priv(dev); if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) return cxgb4_vf_eth_xmit(skb, dev); return cxgb4_eth_xmit(skb, dev); } /** * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs * @q: the SGE control Tx queue * * This is a variant of cxgb4_reclaim_completed_tx() that is used * for Tx queues that send only immediate data (presently just * the control queues) and thus do not have any sk_buffs to release. */ static inline void reclaim_completed_tx_imm(struct sge_txq *q) { int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); int reclaim = hw_cidx - q->cidx; if (reclaim < 0) reclaim += q->size; q->in_use -= reclaim; q->cidx = hw_cidx; } /** * is_imm - check whether a packet can be sent as immediate data * @skb: the packet * * Returns true if a packet can be sent as a WR with immediate data. */ static inline int is_imm(const struct sk_buff *skb) { return skb->len <= MAX_CTRL_WR_LEN; } /** * ctrlq_check_stop - check if a control queue is full and should stop * @q: the queue * @wr: most recent WR written to the queue * * Check if a control queue has become full and should be stopped. * We clean up control queue descriptors very lazily, only when we are out. * If the queue is still full after reclaiming any completed descriptors * we suspend it and have the last WR wake it up. */ static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) { reclaim_completed_tx_imm(&q->q); if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); q->q.stops++; q->full = 1; } } /** * ctrl_xmit - send a packet through an SGE control Tx queue * @q: the control queue * @skb: the packet * * Send a packet through an SGE control Tx queue. Packets sent through * a control queue must fit entirely as immediate data. */ static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) { unsigned int ndesc; struct fw_wr_hdr *wr; if (unlikely(!is_imm(skb))) { WARN_ON(1); dev_kfree_skb(skb); return NET_XMIT_DROP; } ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); spin_lock(&q->sendq.lock); if (unlikely(q->full)) { skb->priority = ndesc; /* save for restart */ __skb_queue_tail(&q->sendq, skb); spin_unlock(&q->sendq.lock); return NET_XMIT_CN; } wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; cxgb4_inline_tx_skb(skb, &q->q, wr); txq_advance(&q->q, ndesc); if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) ctrlq_check_stop(q, wr); cxgb4_ring_tx_db(q->adap, &q->q, ndesc); spin_unlock(&q->sendq.lock); kfree_skb(skb); return NET_XMIT_SUCCESS; } /** * restart_ctrlq - restart a suspended control queue * @data: the control queue to restart * * Resumes transmission on a suspended Tx control queue. */ static void restart_ctrlq(unsigned long data) { struct sk_buff *skb; unsigned int written = 0; struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; spin_lock(&q->sendq.lock); reclaim_completed_tx_imm(&q->q); BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ while ((skb = __skb_dequeue(&q->sendq)) != NULL) { struct fw_wr_hdr *wr; unsigned int ndesc = skb->priority; /* previously saved */ written += ndesc; /* Write descriptors and free skbs outside the lock to limit * wait times. q->full is still set so new skbs will be queued. */ wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; txq_advance(&q->q, ndesc); spin_unlock(&q->sendq.lock); cxgb4_inline_tx_skb(skb, &q->q, wr); kfree_skb(skb); if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { unsigned long old = q->q.stops; ctrlq_check_stop(q, wr); if (q->q.stops != old) { /* suspended anew */ spin_lock(&q->sendq.lock); goto ringdb; } } if (written > 16) { cxgb4_ring_tx_db(q->adap, &q->q, written); written = 0; } spin_lock(&q->sendq.lock); } q->full = 0; ringdb: if (written) cxgb4_ring_tx_db(q->adap, &q->q, written); spin_unlock(&q->sendq.lock); } /** * t4_mgmt_tx - send a management message * @adap: the adapter * @skb: the packet containing the management message * * Send a management message through control queue 0. */ int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) { int ret; local_bh_disable(); ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); local_bh_enable(); return ret; } /** * is_ofld_imm - check whether a packet can be sent as immediate data * @skb: the packet * * Returns true if a packet can be sent as an offload WR with immediate * data. We currently use the same limit as for Ethernet packets. */ static inline int is_ofld_imm(const struct sk_buff *skb) { struct work_request_hdr *req = (struct work_request_hdr *)skb->data; unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); if (opcode == FW_CRYPTO_LOOKASIDE_WR) return skb->len <= SGE_MAX_WR_LEN; else return skb->len <= MAX_IMM_TX_PKT_LEN; } /** * calc_tx_flits_ofld - calculate # of flits for an offload packet * @skb: the packet * * Returns the number of flits needed for the given offload packet. * These packets are already fully constructed and no additional headers * will be added. */ static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) { unsigned int flits, cnt; if (is_ofld_imm(skb)) return DIV_ROUND_UP(skb->len, 8); flits = skb_transport_offset(skb) / 8U; /* headers */ cnt = skb_shinfo(skb)->nr_frags; if (skb_tail_pointer(skb) != skb_transport_header(skb)) cnt++; return flits + sgl_len(cnt); } /** * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion * @adap: the adapter * @q: the queue to stop * * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting * inability to map packets. A periodic timer attempts to restart * queues so marked. */ static void txq_stop_maperr(struct sge_uld_txq *q) { q->mapping_err++; q->q.stops++; set_bit(q->q.cntxt_id - q->adap->sge.egr_start, q->adap->sge.txq_maperr); } /** * ofldtxq_stop - stop an offload Tx queue that has become full * @q: the queue to stop * @wr: the Work Request causing the queue to become full * * Stops an offload Tx queue that has become full and modifies the packet * being written to request a wakeup. */ static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) { wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); q->q.stops++; q->full = 1; } /** * service_ofldq - service/restart a suspended offload queue * @q: the offload queue * * Services an offload Tx queue by moving packets from its Pending Send * Queue to the Hardware TX ring. The function starts and ends with the * Send Queue locked, but drops the lock while putting the skb at the * head of the Send Queue onto the Hardware TX Ring. Dropping the lock * allows more skbs to be added to the Send Queue by other threads. * The packet being processed at the head of the Pending Send Queue is * left on the queue in case we experience DMA Mapping errors, etc. * and need to give up and restart later. * * service_ofldq() can be thought of as a task which opportunistically * uses other threads execution contexts. We use the Offload Queue * boolean "service_ofldq_running" to make sure that only one instance * is ever running at a time ... */ static void service_ofldq(struct sge_uld_txq *q) { u64 *pos, *before, *end; int credits; struct sk_buff *skb; struct sge_txq *txq; unsigned int left; unsigned int written = 0; unsigned int flits, ndesc; /* If another thread is currently in service_ofldq() processing the * Pending Send Queue then there's nothing to do. Otherwise, flag * that we're doing the work and continue. Examining/modifying * the Offload Queue boolean "service_ofldq_running" must be done * while holding the Pending Send Queue Lock. */ if (q->service_ofldq_running) return; q->service_ofldq_running = true; while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { /* We drop the lock while we're working with the skb at the * head of the Pending Send Queue. This allows more skbs to * be added to the Pending Send Queue while we're working on * this one. We don't need to lock to guard the TX Ring * updates because only one thread of execution is ever * allowed into service_ofldq() at a time. */ spin_unlock(&q->sendq.lock); cxgb4_reclaim_completed_tx(q->adap, &q->q, false); flits = skb->priority; /* previously saved */ ndesc = flits_to_desc(flits); credits = txq_avail(&q->q) - ndesc; BUG_ON(credits < 0); if (unlikely(credits < TXQ_STOP_THRES)) ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); pos = (u64 *)&q->q.desc[q->q.pidx]; if (is_ofld_imm(skb)) cxgb4_inline_tx_skb(skb, &q->q, pos); else if (cxgb4_map_skb(q->adap->pdev_dev, skb, (dma_addr_t *)skb->head)) { txq_stop_maperr(q); spin_lock(&q->sendq.lock); break; } else { int last_desc, hdr_len = skb_transport_offset(skb); /* The WR headers may not fit within one descriptor. * So we need to deal with wrap-around here. */ before = (u64 *)pos; end = (u64 *)pos + flits; txq = &q->q; pos = (void *)inline_tx_skb_header(skb, &q->q, (void *)pos, hdr_len); if (before > (u64 *)pos) { left = (u8 *)end - (u8 *)txq->stat; end = (void *)txq->desc + left; } /* If current position is already at the end of the * ofld queue, reset the current to point to * start of the queue and update the end ptr as well. */ if (pos == (u64 *)txq->stat) { left = (u8 *)end - (u8 *)txq->stat; end = (void *)txq->desc + left; pos = (void *)txq->desc; } cxgb4_write_sgl(skb, &q->q, (void *)pos, end, hdr_len, (dma_addr_t *)skb->head); #ifdef CONFIG_NEED_DMA_MAP_STATE skb->dev = q->adap->port[0]; skb->destructor = deferred_unmap_destructor; #endif last_desc = q->q.pidx + ndesc - 1; if (last_desc >= q->q.size) last_desc -= q->q.size; q->q.sdesc[last_desc].skb = skb; } txq_advance(&q->q, ndesc); written += ndesc; if (unlikely(written > 32)) { cxgb4_ring_tx_db(q->adap, &q->q, written); written = 0; } /* Reacquire the Pending Send Queue Lock so we can unlink the * skb we've just successfully transferred to the TX Ring and * loop for the next skb which may be at the head of the * Pending Send Queue. */ spin_lock(&q->sendq.lock); __skb_unlink(skb, &q->sendq); if (is_ofld_imm(skb)) kfree_skb(skb); } if (likely(written)) cxgb4_ring_tx_db(q->adap, &q->q, written); /*Indicate that no thread is processing the Pending Send Queue * currently. */ q->service_ofldq_running = false; } /** * ofld_xmit - send a packet through an offload queue * @q: the Tx offload queue * @skb: the packet * * Send an offload packet through an SGE offload queue. */ static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) { skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ spin_lock(&q->sendq.lock); /* Queue the new skb onto the Offload Queue's Pending Send Queue. If * that results in this new skb being the only one on the queue, start * servicing it. If there are other skbs already on the list, then * either the queue is currently being processed or it's been stopped * for some reason and it'll be restarted at a later time. Restart * paths are triggered by events like experiencing a DMA Mapping Error * or filling the Hardware TX Ring. */ __skb_queue_tail(&q->sendq, skb); if (q->sendq.qlen == 1) service_ofldq(q); spin_unlock(&q->sendq.lock); return NET_XMIT_SUCCESS; } /** * restart_ofldq - restart a suspended offload queue * @data: the offload queue to restart * * Resumes transmission on a suspended Tx offload queue. */ static void restart_ofldq(unsigned long data) { struct sge_uld_txq *q = (struct sge_uld_txq *)data; spin_lock(&q->sendq.lock); q->full = 0; /* the queue actually is completely empty now */ service_ofldq(q); spin_unlock(&q->sendq.lock); } /** * skb_txq - return the Tx queue an offload packet should use * @skb: the packet * * Returns the Tx queue an offload packet should use as indicated by bits * 1-15 in the packet's queue_mapping. */ static inline unsigned int skb_txq(const struct sk_buff *skb) { return skb->queue_mapping >> 1; } /** * is_ctrl_pkt - return whether an offload packet is a control packet * @skb: the packet * * Returns whether an offload packet should use an OFLD or a CTRL * Tx queue as indicated by bit 0 in the packet's queue_mapping. */ static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) { return skb->queue_mapping & 1; } static inline int uld_send(struct adapter *adap, struct sk_buff *skb, unsigned int tx_uld_type) { struct sge_uld_txq_info *txq_info; struct sge_uld_txq *txq; unsigned int idx = skb_txq(skb); if (unlikely(is_ctrl_pkt(skb))) { /* Single ctrl queue is a requirement for LE workaround path */ if (adap->tids.nsftids) idx = 0; return ctrl_xmit(&adap->sge.ctrlq[idx], skb); } txq_info = adap->sge.uld_txq_info[tx_uld_type]; if (unlikely(!txq_info)) { WARN_ON(true); return NET_XMIT_DROP; } txq = &txq_info->uldtxq[idx]; return ofld_xmit(txq, skb); } /** * t4_ofld_send - send an offload packet * @adap: the adapter * @skb: the packet * * Sends an offload packet. We use the packet queue_mapping to select the * appropriate Tx queue as follows: bit 0 indicates whether the packet * should be sent as regular or control, bits 1-15 select the queue. */ int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) { int ret; local_bh_disable(); ret = uld_send(adap, skb, CXGB4_TX_OFLD); local_bh_enable(); return ret; } /** * cxgb4_ofld_send - send an offload packet * @dev: the net device * @skb: the packet * * Sends an offload packet. This is an exported version of @t4_ofld_send, * intended for ULDs. */ int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) { return t4_ofld_send(netdev2adap(dev), skb); } EXPORT_SYMBOL(cxgb4_ofld_send); static void *inline_tx_header(const void *src, const struct sge_txq *q, void *pos, int length) { int left = (void *)q->stat - pos; u64 *p; if (likely(length <= left)) { memcpy(pos, src, length); pos += length; } else { memcpy(pos, src, left); memcpy(q->desc, src + left, length - left); pos = (void *)q->desc + (length - left); } /* 0-pad to multiple of 16 */ p = PTR_ALIGN(pos, 8); if ((uintptr_t)p & 8) { *p = 0; return p + 1; } return p; } /** * ofld_xmit_direct - copy a WR into offload queue * @q: the Tx offload queue * @src: location of WR * @len: WR length * * Copy an immediate WR into an uncontended SGE offload queue. */ static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, unsigned int len) { unsigned int ndesc; int credits; u64 *pos; /* Use the lower limit as the cut-off */ if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { WARN_ON(1); return NET_XMIT_DROP; } /* Don't return NET_XMIT_CN here as the current * implementation doesn't queue the request * using an skb when the following conditions not met */ if (!spin_trylock(&q->sendq.lock)) return NET_XMIT_DROP; if (q->full || !skb_queue_empty(&q->sendq) || q->service_ofldq_running) { spin_unlock(&q->sendq.lock); return NET_XMIT_DROP; } ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); credits = txq_avail(&q->q) - ndesc; pos = (u64 *)&q->q.desc[q->q.pidx]; /* ofldtxq_stop modifies WR header in-situ */ inline_tx_header(src, &q->q, pos, len); if (unlikely(credits < TXQ_STOP_THRES)) ofldtxq_stop(q, (struct fw_wr_hdr *)pos); txq_advance(&q->q, ndesc); cxgb4_ring_tx_db(q->adap, &q->q, ndesc); spin_unlock(&q->sendq.lock); return NET_XMIT_SUCCESS; } int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, const void *src, unsigned int len) { struct sge_uld_txq_info *txq_info; struct sge_uld_txq *txq; struct adapter *adap; int ret; adap = netdev2adap(dev); local_bh_disable(); txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; if (unlikely(!txq_info)) { WARN_ON(true); local_bh_enable(); return NET_XMIT_DROP; } txq = &txq_info->uldtxq[idx]; ret = ofld_xmit_direct(txq, src, len); local_bh_enable(); return net_xmit_eval(ret); } EXPORT_SYMBOL(cxgb4_immdata_send); /** * t4_crypto_send - send crypto packet * @adap: the adapter * @skb: the packet * * Sends crypto packet. We use the packet queue_mapping to select the * appropriate Tx queue as follows: bit 0 indicates whether the packet * should be sent as regular or control, bits 1-15 select the queue. */ static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) { int ret; local_bh_disable(); ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); local_bh_enable(); return ret; } /** * cxgb4_crypto_send - send crypto packet * @dev: the net device * @skb: the packet * * Sends crypto packet. This is an exported version of @t4_crypto_send, * intended for ULDs. */ int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) { return t4_crypto_send(netdev2adap(dev), skb); } EXPORT_SYMBOL(cxgb4_crypto_send); static inline void copy_frags(struct sk_buff *skb, const struct pkt_gl *gl, unsigned int offset) { int i; /* usually there's just one frag */ __skb_fill_page_desc(skb, 0, gl->frags[0].page, gl->frags[0].offset + offset, gl->frags[0].size - offset); skb_shinfo(skb)->nr_frags = gl->nfrags; for (i = 1; i < gl->nfrags; i++) __skb_fill_page_desc(skb, i, gl->frags[i].page, gl->frags[i].offset, gl->frags[i].size); /* get a reference to the last page, we don't own it */ get_page(gl->frags[gl->nfrags - 1].page); } /** * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list * @gl: the gather list * @skb_len: size of sk_buff main body if it carries fragments * @pull_len: amount of data to move to the sk_buff's main body * * Builds an sk_buff from the given packet gather list. Returns the * sk_buff or %NULL if sk_buff allocation failed. */ struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, unsigned int skb_len, unsigned int pull_len) { struct sk_buff *skb; /* * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer * size, which is expected since buffers are at least PAGE_SIZEd. * In this case packets up to RX_COPY_THRES have only one fragment. */ if (gl->tot_len <= RX_COPY_THRES) { skb = dev_alloc_skb(gl->tot_len); if (unlikely(!skb)) goto out; __skb_put(skb, gl->tot_len); skb_copy_to_linear_data(skb, gl->va, gl->tot_len); } else { skb = dev_alloc_skb(skb_len); if (unlikely(!skb)) goto out; __skb_put(skb, pull_len); skb_copy_to_linear_data(skb, gl->va, pull_len); copy_frags(skb, gl, pull_len); skb->len = gl->tot_len; skb->data_len = skb->len - pull_len; skb->truesize += skb->data_len; } out: return skb; } EXPORT_SYMBOL(cxgb4_pktgl_to_skb); /** * t4_pktgl_free - free a packet gather list * @gl: the gather list * * Releases the pages of a packet gather list. We do not own the last * page on the list and do not free it. */ static void t4_pktgl_free(const struct pkt_gl *gl) { int n; const struct page_frag *p; for (p = gl->frags, n = gl->nfrags - 1; n--; p++) put_page(p->page); } /* * Process an MPS trace packet. Give it an unused protocol number so it won't * be delivered to anyone and send it to the stack for capture. */ static noinline int handle_trace_pkt(struct adapter *adap, const struct pkt_gl *gl) { struct sk_buff *skb; skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); if (unlikely(!skb)) { t4_pktgl_free(gl); return 0; } if (is_t4(adap->params.chip)) __skb_pull(skb, sizeof(struct cpl_trace_pkt)); else __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); skb_reset_mac_header(skb); skb->protocol = htons(0xffff); skb->dev = adap->port[0]; netif_receive_skb(skb); return 0; } /** * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp * @adap: the adapter * @hwtstamps: time stamp structure to update * @sgetstamp: 60bit iqe timestamp * * Every ingress queue entry has the 60-bit timestamp, convert that timestamp * which is in Core Clock ticks into ktime_t and assign it **/ static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, struct skb_shared_hwtstamps *hwtstamps, u64 sgetstamp) { u64 ns; u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); ns = div_u64(tmp, adap->params.vpd.cclk); memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(ns); } static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) { struct adapter *adapter = rxq->rspq.adap; struct sge *s = &adapter->sge; struct port_info *pi; int ret; struct sk_buff *skb; skb = napi_get_frags(&rxq->rspq.napi); if (unlikely(!skb)) { t4_pktgl_free(gl); rxq->stats.rx_drops++; return; } copy_frags(skb, gl, s->pktshift); if (tnl_hdr_len) skb->csum_level = 1; skb->len = gl->tot_len - s->pktshift; skb->data_len = skb->len; skb->truesize += skb->data_len; skb->ip_summed = CHECKSUM_UNNECESSARY; skb_record_rx_queue(skb, rxq->rspq.idx); pi = netdev_priv(skb->dev); if (pi->rxtstamp) cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), gl->sgetstamp); if (rxq->rspq.netdev->features & NETIF_F_RXHASH) skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, PKT_HASH_TYPE_L3); if (unlikely(pkt->vlan_ex)) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); rxq->stats.vlan_ex++; } ret = napi_gro_frags(&rxq->rspq.napi); if (ret == GRO_HELD) rxq->stats.lro_pkts++; else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) rxq->stats.lro_merged++; rxq->stats.pkts++; rxq->stats.rx_cso++; } enum { RX_NON_PTP_PKT = 0, RX_PTP_PKT_SUC = 1, RX_PTP_PKT_ERR = 2 }; /** * t4_systim_to_hwstamp - read hardware time stamp * @adap: the adapter * @skb: the packet * * Read Time Stamp from MPS packet and insert in skb which * is forwarded to PTP application */ static noinline int t4_systim_to_hwstamp(struct adapter *adapter, struct sk_buff *skb) { struct skb_shared_hwtstamps *hwtstamps; struct cpl_rx_mps_pkt *cpl = NULL; unsigned char *data; int offset; cpl = (struct cpl_rx_mps_pkt *)skb->data; if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & X_CPL_RX_MPS_PKT_TYPE_PTP)) return RX_PTP_PKT_ERR; data = skb->data + sizeof(*cpl); skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) return RX_PTP_PKT_ERR; hwtstamps = skb_hwtstamps(skb); memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); return RX_PTP_PKT_SUC; } /** * t4_rx_hststamp - Recv PTP Event Message * @adap: the adapter * @rsp: the response queue descriptor holding the RX_PKT message * @skb: the packet * * PTP enabled and MPS packet, read HW timestamp */ static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, struct sge_eth_rxq *rxq, struct sk_buff *skb) { int ret; if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && !is_t4(adapter->params.chip))) { ret = t4_systim_to_hwstamp(adapter, skb); if (ret == RX_PTP_PKT_ERR) { kfree_skb(skb); rxq->stats.rx_drops++; } return ret; } return RX_NON_PTP_PKT; } /** * t4_tx_hststamp - Loopback PTP Transmit Event Message * @adap: the adapter * @skb: the packet * @dev: the ingress net device * * Read hardware timestamp for the loopback PTP Tx event message */ static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, struct net_device *dev) { struct port_info *pi = netdev_priv(dev); if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { cxgb4_ptp_read_hwstamp(adapter, pi); kfree_skb(skb); return 0; } return 1; } /** * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue * @rsp: Response Entry pointer into Response Queue * @gl: Gather List pointer * * For adapters which support the SGE Doorbell Queue Timer facility, * we configure the Ethernet TX Queues to send CIDX Updates to the * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE * messages. This adds a small load to PCIe Link RX bandwidth and, * potentially, higher CPU Interrupt load, but allows us to respond * much more quickly to the CIDX Updates. This is important for * Upper Layer Software which isn't willing to have a large amount * of TX Data outstanding before receiving DMA Completions. */ static void t4_tx_completion_handler(struct sge_rspq *rspq, const __be64 *rsp, const struct pkt_gl *gl) { u8 opcode = ((const struct rss_header *)rsp)->opcode; struct port_info *pi = netdev_priv(rspq->netdev); struct adapter *adapter = rspq->adap; struct sge *s = &adapter->sge; struct sge_eth_txq *txq; /* skip RSS header */ rsp++; /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. */ if (unlikely(opcode == CPL_FW4_MSG && ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { rsp++; opcode = ((const struct rss_header *)rsp)->opcode; rsp++; } if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", __func__, opcode); return; } txq = &s->ethtxq[pi->first_qset + rspq->idx]; t4_sge_eth_txq_egress_update(adapter, txq, -1); } /** * t4_ethrx_handler - process an ingress ethernet packet * @q: the response queue that received the packet * @rsp: the response queue descriptor holding the RX_PKT message * @si: the gather list of packet fragments * * Process an ingress ethernet packet and deliver it to the stack. */ int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, const struct pkt_gl *si) { bool csum_ok; struct sk_buff *skb; const struct cpl_rx_pkt *pkt; struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); struct adapter *adapter = q->adap; struct sge *s = &q->adap->sge; int cpl_trace_pkt = is_t4(q->adap->params.chip) ? CPL_TRACE_PKT : CPL_TRACE_PKT_T5; u16 err_vec, tnl_hdr_len = 0; struct port_info *pi; int ret = 0; /* If we're looking at TX Queue CIDX Update, handle that separately * and return. */ if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { t4_tx_completion_handler(q, rsp, si); return 0; } if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) return handle_trace_pkt(q->adap, si); pkt = (const struct cpl_rx_pkt *)rsp; /* Compressed error vector is enabled for T6 only */ if (q->adap->params.tp.rx_pkt_encap) { err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); } else { err_vec = be16_to_cpu(pkt->err_vec); } csum_ok = pkt->csum_calc && !err_vec && (q->netdev->features & NETIF_F_RXCSUM); if (err_vec) rxq->stats.bad_rx_pkts++; if (((pkt->l2info & htonl(RXF_TCP_F)) || tnl_hdr_len) && (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { do_gro(rxq, si, pkt, tnl_hdr_len); return 0; } skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); if (unlikely(!skb)) { t4_pktgl_free(si); rxq->stats.rx_drops++; return 0; } pi = netdev_priv(q->netdev); /* Handle PTP Event Rx packet */ if (unlikely(pi->ptp_enable)) { ret = t4_rx_hststamp(adapter, rsp, rxq, skb); if (ret == RX_PTP_PKT_ERR) return 0; } if (likely(!ret)) __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ /* Handle the PTP Event Tx Loopback packet */ if (unlikely(pi->ptp_enable && !ret && (pkt->l2info & htonl(RXF_UDP_F)) && cxgb4_ptp_is_ptp_rx(skb))) { if (!t4_tx_hststamp(adapter, skb, q->netdev)) return 0; } skb->protocol = eth_type_trans(skb, q->netdev); skb_record_rx_queue(skb, q->idx); if (skb->dev->features & NETIF_F_RXHASH) skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, PKT_HASH_TYPE_L3); rxq->stats.pkts++; if (pi->rxtstamp) cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), si->sgetstamp); if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { if (!pkt->ip_frag) { skb->ip_summed = CHECKSUM_UNNECESSARY; rxq->stats.rx_cso++; } else if (pkt->l2info & htonl(RXF_IP_F)) { __sum16 c = (__force __sum16)pkt->csum; skb->csum = csum_unfold(c); if (tnl_hdr_len) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = 1; } else { skb->ip_summed = CHECKSUM_COMPLETE; } rxq->stats.rx_cso++; } } else { skb_checksum_none_assert(skb); #ifdef CONFIG_CHELSIO_T4_FCOE #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { if (q->adap->params.tp.rx_pkt_encap) csum_ok = err_vec & T6_COMPR_RXERR_SUM_F; else csum_ok = err_vec & RXERR_CSUM_F; if (!csum_ok) skb->ip_summed = CHECKSUM_UNNECESSARY; } } #undef CPL_RX_PKT_FLAGS #endif /* CONFIG_CHELSIO_T4_FCOE */ } if (unlikely(pkt->vlan_ex)) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); rxq->stats.vlan_ex++; } skb_mark_napi_id(skb, &q->napi); netif_receive_skb(skb); return 0; } /** * restore_rx_bufs - put back a packet's Rx buffers * @si: the packet gather list * @q: the SGE free list * @frags: number of FL buffers to restore * * Puts back on an FL the Rx buffers associated with @si. The buffers * have already been unmapped and are left unmapped, we mark them so to * prevent further unmapping attempts. * * This function undoes a series of @unmap_rx_buf calls when we find out * that the current packet can't be processed right away afterall and we * need to come back to it later. This is a very rare event and there's * no effort to make this particularly efficient. */ static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, int frags) { struct rx_sw_desc *d; while (frags--) { if (q->cidx == 0) q->cidx = q->size - 1; else q->cidx--; d = &q->sdesc[q->cidx]; d->page = si->frags[frags].page; d->dma_addr |= RX_UNMAPPED_BUF; q->avail++; } } /** * is_new_response - check if a response is newly written * @r: the response descriptor * @q: the response queue * * Returns true if a response descriptor contains a yet unprocessed * response. */ static inline bool is_new_response(const struct rsp_ctrl *r, const struct sge_rspq *q) { return (r->type_gen >> RSPD_GEN_S) == q->gen; } /** * rspq_next - advance to the next entry in a response queue * @q: the queue * * Updates the state of a response queue to advance it to the next entry. */ static inline void rspq_next(struct sge_rspq *q) { q->cur_desc = (void *)q->cur_desc + q->iqe_len; if (unlikely(++q->cidx == q->size)) { q->cidx = 0; q->gen ^= 1; q->cur_desc = q->desc; } } /** * process_responses - process responses from an SGE response queue * @q: the ingress queue to process * @budget: how many responses can be processed in this round * * Process responses from an SGE response queue up to the supplied budget. * Responses include received packets as well as control messages from FW * or HW. * * Additionally choose the interrupt holdoff time for the next interrupt * on this queue. If the system is under memory shortage use a fairly * long delay to help recovery. */ static int process_responses(struct sge_rspq *q, int budget) { int ret, rsp_type; int budget_left = budget; const struct rsp_ctrl *rc; struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); struct adapter *adapter = q->adap; struct sge *s = &adapter->sge; while (likely(budget_left)) { rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); if (!is_new_response(rc, q)) { if (q->flush_handler) q->flush_handler(q); break; } dma_rmb(); rsp_type = RSPD_TYPE_G(rc->type_gen); if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { struct page_frag *fp; struct pkt_gl si; const struct rx_sw_desc *rsd; u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; if (len & RSPD_NEWBUF_F) { if (likely(q->offset > 0)) { free_rx_bufs(q->adap, &rxq->fl, 1); q->offset = 0; } len = RSPD_LEN_G(len); } si.tot_len = len; /* gather packet fragments */ for (frags = 0, fp = si.frags; ; frags++, fp++) { rsd = &rxq->fl.sdesc[rxq->fl.cidx]; bufsz = get_buf_size(adapter, rsd); fp->page = rsd->page; fp->offset = q->offset; fp->size = min(bufsz, len); len -= fp->size; if (!len) break; unmap_rx_buf(q->adap, &rxq->fl); } si.sgetstamp = SGE_TIMESTAMP_G( be64_to_cpu(rc->last_flit)); /* * Last buffer remains mapped so explicitly make it * coherent for CPU access. */ dma_sync_single_for_cpu(q->adap->pdev_dev, get_buf_addr(rsd), fp->size, DMA_FROM_DEVICE); si.va = page_address(si.frags[0].page) + si.frags[0].offset; prefetch(si.va); si.nfrags = frags + 1; ret = q->handler(q, q->cur_desc, &si); if (likely(ret == 0)) q->offset += ALIGN(fp->size, s->fl_align); else restore_rx_bufs(&si, &rxq->fl, frags); } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { ret = q->handler(q, q->cur_desc, NULL); } else { ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); } if (unlikely(ret)) { /* couldn't process descriptor, back off for recovery */ q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); break; } rspq_next(q); budget_left--; } if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) __refill_fl(q->adap, &rxq->fl); return budget - budget_left; } /** * napi_rx_handler - the NAPI handler for Rx processing * @napi: the napi instance * @budget: how many packets we can process in this round * * Handler for new data events when using NAPI. This does not need any * locking or protection from interrupts as data interrupts are off at * this point and other adapter interrupts do not interfere (the latter * in not a concern at all with MSI-X as non-data interrupts then have * a separate handler). */ static int napi_rx_handler(struct napi_struct *napi, int budget) { unsigned int params; struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); int work_done; u32 val; work_done = process_responses(q, budget); if (likely(work_done < budget)) { int timer_index; napi_complete_done(napi, work_done); timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); if (q->adaptive_rx) { if (work_done > max(timer_pkt_quota[timer_index], MIN_NAPI_WORK)) timer_index = (timer_index + 1); else timer_index = timer_index - 1; timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); q->next_intr_params = QINTR_TIMER_IDX_V(timer_index) | QINTR_CNT_EN_V(0); params = q->next_intr_params; } else { params = q->next_intr_params; q->next_intr_params = q->intr_params; } } else params = QINTR_TIMER_IDX_V(7); val = CIDXINC_V(work_done) | SEINTARM_V(params); /* If we don't have access to the new User GTS (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(q->bar2_addr == NULL)) { t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), val | INGRESSQID_V((u32)q->cntxt_id)); } else { writel(val | INGRESSQID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_GTS); wmb(); } return work_done; } /* * The MSI-X interrupt handler for an SGE response queue. */ irqreturn_t t4_sge_intr_msix(int irq, void *cookie) { struct sge_rspq *q = cookie; napi_schedule(&q->napi); return IRQ_HANDLED; } /* * Process the indirect interrupt entries in the interrupt queue and kick off * NAPI for each queue that has generated an entry. */ static unsigned int process_intrq(struct adapter *adap) { unsigned int credits; const struct rsp_ctrl *rc; struct sge_rspq *q = &adap->sge.intrq; u32 val; spin_lock(&adap->sge.intrq_lock); for (credits = 0; ; credits++) { rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); if (!is_new_response(rc, q)) break; dma_rmb(); if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { unsigned int qid = ntohl(rc->pldbuflen_qid); qid -= adap->sge.ingr_start; napi_schedule(&adap->sge.ingr_map[qid]->napi); } rspq_next(q); } val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); /* If we don't have access to the new User GTS (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(q->bar2_addr == NULL)) { t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), val | INGRESSQID_V(q->cntxt_id)); } else { writel(val | INGRESSQID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_GTS); wmb(); } spin_unlock(&adap->sge.intrq_lock); return credits; } /* * The MSI interrupt handler, which handles data events from SGE response queues * as well as error and other async events as they all use the same MSI vector. */ static irqreturn_t t4_intr_msi(int irq, void *cookie) { struct adapter *adap = cookie; if (adap->flags & CXGB4_MASTER_PF) t4_slow_intr_handler(adap); process_intrq(adap); return IRQ_HANDLED; } /* * Interrupt handler for legacy INTx interrupts. * Handles data events from SGE response queues as well as error and other * async events as they all use the same interrupt line. */ static irqreturn_t t4_intr_intx(int irq, void *cookie) { struct adapter *adap = cookie; t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | process_intrq(adap)) return IRQ_HANDLED; return IRQ_NONE; /* probably shared interrupt */ } /** * t4_intr_handler - select the top-level interrupt handler * @adap: the adapter * * Selects the top-level interrupt handler based on the type of interrupts * (MSI-X, MSI, or INTx). */ irq_handler_t t4_intr_handler(struct adapter *adap) { if (adap->flags & CXGB4_USING_MSIX) return t4_sge_intr_msix; if (adap->flags & CXGB4_USING_MSI) return t4_intr_msi; return t4_intr_intx; } static void sge_rx_timer_cb(struct timer_list *t) { unsigned long m; unsigned int i; struct adapter *adap = from_timer(adap, t, sge.rx_timer); struct sge *s = &adap->sge; for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) for (m = s->starving_fl[i]; m; m &= m - 1) { struct sge_eth_rxq *rxq; unsigned int id = __ffs(m) + i * BITS_PER_LONG; struct sge_fl *fl = s->egr_map[id]; clear_bit(id, s->starving_fl); smp_mb__after_atomic(); if (fl_starving(adap, fl)) { rxq = container_of(fl, struct sge_eth_rxq, fl); if (napi_reschedule(&rxq->rspq.napi)) fl->starving++; else set_bit(id, s->starving_fl); } } /* The remainder of the SGE RX Timer Callback routine is dedicated to * global Master PF activities like checking for chip ingress stalls, * etc. */ if (!(adap->flags & CXGB4_MASTER_PF)) goto done; t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); done: mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); } static void sge_tx_timer_cb(struct timer_list *t) { struct adapter *adap = from_timer(adap, t, sge.tx_timer); struct sge *s = &adap->sge; unsigned long m, period; unsigned int i, budget; for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) for (m = s->txq_maperr[i]; m; m &= m - 1) { unsigned long id = __ffs(m) + i * BITS_PER_LONG; struct sge_uld_txq *txq = s->egr_map[id]; clear_bit(id, s->txq_maperr); tasklet_schedule(&txq->qresume_tsk); } if (!is_t4(adap->params.chip)) { struct sge_eth_txq *q = &s->ptptxq; int avail; spin_lock(&adap->ptp_lock); avail = reclaimable(&q->q); if (avail) { free_tx_desc(adap, &q->q, avail, false); q->q.in_use -= avail; } spin_unlock(&adap->ptp_lock); } budget = MAX_TIMER_TX_RECLAIM; i = s->ethtxq_rover; do { budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], budget); if (!budget) break; if (++i >= s->ethqsets) i = 0; } while (i != s->ethtxq_rover); s->ethtxq_rover = i; if (budget == 0) { /* If we found too many reclaimable packets schedule a timer * in the near future to continue where we left off. */ period = 2; } else { /* We reclaimed all reclaimable TX Descriptors, so reschedule * at the normal period. */ period = TX_QCHECK_PERIOD; } mod_timer(&s->tx_timer, jiffies + period); } /** * bar2_address - return the BAR2 address for an SGE Queue's Registers * @adapter: the adapter * @qid: the SGE Queue ID * @qtype: the SGE Queue Type (Egress or Ingress) * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues * * Returns the BAR2 address for the SGE Queue Registers associated with * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" * Registers are supported (e.g. the Write Combining Doorbell Buffer). */ static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid, enum t4_bar2_qtype qtype, unsigned int *pbar2_qid) { u64 bar2_qoffset; int ret; ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, &bar2_qoffset, pbar2_qid); if (ret) return NULL; return adapter->bar2 + bar2_qoffset; } /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map */ int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, struct net_device *dev, int intr_idx, struct sge_fl *fl, rspq_handler_t hnd, rspq_flush_handler_t flush_hnd, int cong) { int ret, flsz = 0; struct fw_iq_cmd c; struct sge *s = &adap->sge; struct port_info *pi = netdev_priv(dev); int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); /* Size needs to be multiple of 16, including status entry. */ iq->size = roundup(iq->size, 16); iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0, dev_to_node(adap->pdev_dev)); if (!iq->desc) return -ENOMEM; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | FW_LEN16(c)); c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : -intr_idx - 1)); c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | FW_IQ_CMD_IQGTSMODE_F | FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); c.iqsize = htons(iq->size); c.iqaddr = cpu_to_be64(iq->phys_addr); if (cong >= 0) c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC : FW_IQ_IQTYPE_OFLD)); if (fl) { unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); /* Allocate the ring for the hardware free list (with space * for its status page) along with the associated software * descriptor ring. The free list size needs to be a multiple * of the Egress Queue Unit and at least 2 Egress Units larger * than the SGE's Egress Congrestion Threshold * (fl_starve_thres - 1). */ if (fl->size < s->fl_starve_thres - 1 + 2 * 8) fl->size = s->fl_starve_thres - 1 + 2 * 8; fl->size = roundup(fl->size, 8); fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), sizeof(struct rx_sw_desc), &fl->addr, &fl->sdesc, s->stat_len, dev_to_node(adap->pdev_dev)); if (!fl->desc) goto fl_nomem; flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | FW_IQ_CMD_FL0FETCHRO_V(relaxed) | FW_IQ_CMD_FL0DATARO_V(relaxed) | FW_IQ_CMD_FL0PADEN_F); if (cong >= 0) c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | FW_IQ_CMD_FL0CONGCIF_F | FW_IQ_CMD_FL0CONGEN_F); /* In T6, for egress queue type FL there is internal overhead * of 16B for header going into FLM module. Hence the maximum * allowed burst size is 448 bytes. For T4/T5, the hardware * doesn't coalesce fetch requests if more than 64 bytes of * Free List pointers are provided, so we use a 128-byte Fetch * Burst Minimum there (T6 implements coalescing so we can use * the smaller 64-byte value there). */ c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? FETCHBURSTMIN_128B_X : FETCHBURSTMIN_64B_T6_X) | FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? FETCHBURSTMAX_512B_X : FETCHBURSTMAX_256B_X)); c.fl0size = htons(flsz); c.fl0addr = cpu_to_be64(fl->addr); } ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); if (ret) goto err; netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); iq->cur_desc = iq->desc; iq->cidx = 0; iq->gen = 1; iq->next_intr_params = iq->intr_params; iq->cntxt_id = ntohs(c.iqid); iq->abs_id = ntohs(c.physiqid); iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS, &iq->bar2_qid); iq->size--; /* subtract status entry */ iq->netdev = dev; iq->handler = hnd; iq->flush_handler = flush_hnd; memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); skb_queue_head_init(&iq->lro_mgr.lroq); /* set offset to -1 to distinguish ingress queues without FL */ iq->offset = fl ? 0 : -1; adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; if (fl) { fl->cntxt_id = ntohs(c.fl0id); fl->avail = fl->pend_cred = 0; fl->pidx = fl->cidx = 0; fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; /* Note, we must initialize the BAR2 Free List User Doorbell * information before refilling the Free List! */ fl->bar2_addr = bar2_address(adap, fl->cntxt_id, T4_BAR2_QTYPE_EGRESS, &fl->bar2_qid); refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); } /* For T5 and later we attempt to set up the Congestion Manager values * of the new RX Ethernet Queue. This should really be handled by * firmware because it's more complex than any host driver wants to * get involved with and it's different per chip and this is almost * certainly wrong. Firmware would be wrong as well, but it would be * a lot easier to fix in one place ... For now we do something very * simple (and hopefully less wrong). */ if (!is_t4(adap->params.chip) && cong >= 0) { u32 param, val, ch_map = 0; int i; u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); if (cong == 0) { val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); } else { val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); for (i = 0; i < 4; i++) { if (cong & (1 << i)) ch_map |= 1 << (i << cng_ch_bits_log); } val |= CONMCTXT_CNGCHMAP_V(ch_map); } ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret) dev_warn(adap->pdev_dev, "Failed to set Congestion" " Manager Context for Ingress Queue %d: %d\n", iq->cntxt_id, -ret); } return 0; fl_nomem: ret = -ENOMEM; err: if (iq->desc) { dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, iq->desc, iq->phys_addr); iq->desc = NULL; } if (fl && fl->desc) { kfree(fl->sdesc); fl->sdesc = NULL; dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), fl->desc, fl->addr); fl->desc = NULL; } return ret; } static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) { q->cntxt_id = id; q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS, &q->bar2_qid); q->in_use = 0; q->cidx = q->pidx = 0; q->stops = q->restarts = 0; q->stat = (void *)&q->desc[q->size]; spin_lock_init(&q->db_lock); adap->sge.egr_map[id - adap->sge.egr_start] = q; } /** * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue * @adap: the adapter * @txq: the SGE Ethernet TX Queue to initialize * @dev: the Linux Network Device * @netdevq: the corresponding Linux TX Queue * @iqid: the Ingress Queue to which to deliver CIDX Update messages * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers */ int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, struct net_device *dev, struct netdev_queue *netdevq, unsigned int iqid, u8 dbqt) { unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); struct port_info *pi = netdev_priv(dev); struct sge *s = &adap->sge; struct fw_eq_eth_cmd c; int ret, nentries; /* Add status entries */ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, sizeof(struct tx_desc), sizeof(struct tx_sw_desc), &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, netdev_queue_numa_node_read(netdevq)); if (!txq->q.desc) return -ENOMEM; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(adap->pf) | FW_EQ_ETH_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); /* For TX Ethernet Queues using the SGE Doorbell Queue Timer * mechanism, we use Ingress Queue messages for Hardware Consumer * Index Updates on the TX Queue. Otherwise we have the Hardware * write the CIDX Updates into the Status Page at the end of the * TX Queue. */ c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | FW_EQ_ETH_CMD_VIID_V(pi->viid)); c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 ? FETCHBURSTMIN_64B_X : FETCHBURSTMIN_64B_T6_X) | FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | FW_EQ_ETH_CMD_EQSIZE_V(nentries)); c.eqaddr = cpu_to_be64(txq->q.phys_addr); /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the * currently configured Timer Index. THis can be changed later via an * ethtool -C tx-usecs {Timer Val} command. Note that the SGE * Doorbell Queue mode is currently automatically enabled in the * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... */ if (dbqt) c.timeren_timerix = cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); if (ret) { kfree(txq->q.sdesc); txq->q.sdesc = NULL; dma_free_coherent(adap->pdev_dev, nentries * sizeof(struct tx_desc), txq->q.desc, txq->q.phys_addr); txq->q.desc = NULL; return ret; } txq->q.q_type = CXGB4_TXQ_ETH; init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); txq->txq = netdevq; txq->tso = txq->tx_cso = txq->vlan_ins = 0; txq->mapping_err = 0; txq->dbqt = dbqt; return 0; } int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, struct net_device *dev, unsigned int iqid, unsigned int cmplqid) { unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); struct port_info *pi = netdev_priv(dev); struct sge *s = &adap->sge; struct fw_eq_ctrl_cmd c; int ret, nentries; /* Add status entries */ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); txq->q.desc = alloc_ring(adap->pdev_dev, nentries, sizeof(struct tx_desc), 0, &txq->q.phys_addr, NULL, 0, dev_to_node(adap->pdev_dev)); if (!txq->q.desc) return -ENOMEM; c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(adap->pf) | FW_EQ_CTRL_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); c.physeqid_pkd = htonl(0); c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 ? FETCHBURSTMIN_64B_X : FETCHBURSTMIN_64B_T6_X) | FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); c.eqaddr = cpu_to_be64(txq->q.phys_addr); ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); if (ret) { dma_free_coherent(adap->pdev_dev, nentries * sizeof(struct tx_desc), txq->q.desc, txq->q.phys_addr); txq->q.desc = NULL; return ret; } txq->q.q_type = CXGB4_TXQ_CTRL; init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); txq->adap = adap; skb_queue_head_init(&txq->sendq); tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); txq->full = 0; return 0; } int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, unsigned int cmplqid) { u32 param, val; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | FW_PARAMS_PARAM_YZ_V(eqid)); val = cmplqid; return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); } int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, struct net_device *dev, unsigned int iqid, unsigned int uld_type) { unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); int ret, nentries; struct fw_eq_ofld_cmd c; struct sge *s = &adap->sge; struct port_info *pi = netdev_priv(dev); int cmd = FW_EQ_OFLD_CMD; /* Add status entries */ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, sizeof(struct tx_desc), sizeof(struct tx_sw_desc), &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, NUMA_NO_NODE); if (!txq->q.desc) return -ENOMEM; memset(&c, 0, sizeof(c)); if (unlikely(uld_type == CXGB4_TX_CRYPTO)) cmd = FW_EQ_CTRL_CMD; c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(adap->pf) | FW_EQ_OFLD_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 ? FETCHBURSTMIN_64B_X : FETCHBURSTMIN_64B_T6_X) | FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); c.eqaddr = cpu_to_be64(txq->q.phys_addr); ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); if (ret) { kfree(txq->q.sdesc); txq->q.sdesc = NULL; dma_free_coherent(adap->pdev_dev, nentries * sizeof(struct tx_desc), txq->q.desc, txq->q.phys_addr); txq->q.desc = NULL; return ret; } txq->q.q_type = CXGB4_TXQ_ULD; init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); txq->adap = adap; skb_queue_head_init(&txq->sendq); tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); txq->full = 0; txq->mapping_err = 0; return 0; } void free_txq(struct adapter *adap, struct sge_txq *q) { struct sge *s = &adap->sge; dma_free_coherent(adap->pdev_dev, q->size * sizeof(struct tx_desc) + s->stat_len, q->desc, q->phys_addr); q->cntxt_id = 0; q->sdesc = NULL; q->desc = NULL; } void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, struct sge_fl *fl) { struct sge *s = &adap->sge; unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, rq->cntxt_id, fl_id, 0xffff); dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, rq->desc, rq->phys_addr); netif_napi_del(&rq->napi); rq->netdev = NULL; rq->cntxt_id = rq->abs_id = 0; rq->desc = NULL; if (fl) { free_rx_bufs(adap, fl, fl->avail); dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, fl->desc, fl->addr); kfree(fl->sdesc); fl->sdesc = NULL; fl->cntxt_id = 0; fl->desc = NULL; } } /** * t4_free_ofld_rxqs - free a block of consecutive Rx queues * @adap: the adapter * @n: number of queues * @q: pointer to first queue * * Release the resources of a consecutive block of offload Rx queues. */ void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) { for ( ; n; n--, q++) if (q->rspq.desc) free_rspq_fl(adap, &q->rspq, q->fl.size ? &q->fl : NULL); } /** * t4_free_sge_resources - free SGE resources * @adap: the adapter * * Frees resources used by the SGE queue sets. */ void t4_free_sge_resources(struct adapter *adap) { int i; struct sge_eth_rxq *eq; struct sge_eth_txq *etq; /* stop all Rx queues in order to start them draining */ for (i = 0; i < adap->sge.ethqsets; i++) { eq = &adap->sge.ethrxq[i]; if (eq->rspq.desc) t4_iq_stop(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, eq->rspq.cntxt_id, eq->fl.size ? eq->fl.cntxt_id : 0xffff, 0xffff); } /* clean up Ethernet Tx/Rx queues */ for (i = 0; i < adap->sge.ethqsets; i++) { eq = &adap->sge.ethrxq[i]; if (eq->rspq.desc) free_rspq_fl(adap, &eq->rspq, eq->fl.size ? &eq->fl : NULL); etq = &adap->sge.ethtxq[i]; if (etq->q.desc) { t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, etq->q.cntxt_id); __netif_tx_lock_bh(etq->txq); free_tx_desc(adap, &etq->q, etq->q.in_use, true); __netif_tx_unlock_bh(etq->txq); kfree(etq->q.sdesc); free_txq(adap, &etq->q); } } /* clean up control Tx queues */ for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; if (cq->q.desc) { tasklet_kill(&cq->qresume_tsk); t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, cq->q.cntxt_id); __skb_queue_purge(&cq->sendq); free_txq(adap, &cq->q); } } if (adap->sge.fw_evtq.desc) free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); if (adap->sge.intrq.desc) free_rspq_fl(adap, &adap->sge.intrq, NULL); if (!is_t4(adap->params.chip)) { etq = &adap->sge.ptptxq; if (etq->q.desc) { t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, etq->q.cntxt_id); spin_lock_bh(&adap->ptp_lock); free_tx_desc(adap, &etq->q, etq->q.in_use, true); spin_unlock_bh(&adap->ptp_lock); kfree(etq->q.sdesc); free_txq(adap, &etq->q); } } /* clear the reverse egress queue map */ memset(adap->sge.egr_map, 0, adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); } void t4_sge_start(struct adapter *adap) { adap->sge.ethtxq_rover = 0; mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); } /** * t4_sge_stop - disable SGE operation * @adap: the adapter * * Stop tasklets and timers associated with the DMA engine. Note that * this is effective only if measures have been taken to disable any HW * events that may restart them. */ void t4_sge_stop(struct adapter *adap) { int i; struct sge *s = &adap->sge; if (in_interrupt()) /* actions below require waiting */ return; if (s->rx_timer.function) del_timer_sync(&s->rx_timer); if (s->tx_timer.function) del_timer_sync(&s->tx_timer); if (is_offload(adap)) { struct sge_uld_txq_info *txq_info; txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; if (txq_info) { struct sge_uld_txq *txq = txq_info->uldtxq; for_each_ofldtxq(&adap->sge, i) { if (txq->q.desc) tasklet_kill(&txq->qresume_tsk); } } } if (is_pci_uld(adap)) { struct sge_uld_txq_info *txq_info; txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; if (txq_info) { struct sge_uld_txq *txq = txq_info->uldtxq; for_each_ofldtxq(&adap->sge, i) { if (txq->q.desc) tasklet_kill(&txq->qresume_tsk); } } } for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { struct sge_ctrl_txq *cq = &s->ctrlq[i]; if (cq->q.desc) tasklet_kill(&cq->qresume_tsk); } } /** * t4_sge_init_soft - grab core SGE values needed by SGE code * @adap: the adapter * * We need to grab the SGE operating parameters that we need to have * in order to do our job and make sure we can live with them. */ static int t4_sge_init_soft(struct adapter *adap) { struct sge *s = &adap->sge; u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; u32 ingress_rx_threshold; /* * Verify that CPL messages are going to the Ingress Queue for * process_responses() and that only packet data is going to the * Free Lists. */ if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); return -EINVAL; } /* * Validate the Host Buffer Register Array indices that we want to * use ... * * XXX Note that we should really read through the Host Buffer Size * XXX register array and find the indices of the Buffer Sizes which * XXX meet our needs! */ #define READ_FL_BUF(x) \ t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); /* We only bother using the Large Page logic if the Large Page Buffer * is larger than our Page Size Buffer. */ if (fl_large_pg <= fl_small_pg) fl_large_pg = 0; #undef READ_FL_BUF /* The Page Size Buffer must be exactly equal to our Page Size and the * Large Page Size Buffer should be 0 (per above) or a power of 2. */ if (fl_small_pg != PAGE_SIZE || (fl_large_pg & (fl_large_pg-1)) != 0) { dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", fl_small_pg, fl_large_pg); return -EINVAL; } if (fl_large_pg) s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", fl_small_mtu, fl_large_mtu); return -EINVAL; } /* * Retrieve our RX interrupt holdoff timer values and counter * threshold values from the SGE parameters. */ timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); s->timer_val[0] = core_ticks_to_us(adap, TIMERVALUE0_G(timer_value_0_and_1)); s->timer_val[1] = core_ticks_to_us(adap, TIMERVALUE1_G(timer_value_0_and_1)); s->timer_val[2] = core_ticks_to_us(adap, TIMERVALUE2_G(timer_value_2_and_3)); s->timer_val[3] = core_ticks_to_us(adap, TIMERVALUE3_G(timer_value_2_and_3)); s->timer_val[4] = core_ticks_to_us(adap, TIMERVALUE4_G(timer_value_4_and_5)); s->timer_val[5] = core_ticks_to_us(adap, TIMERVALUE5_G(timer_value_4_and_5)); ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); return 0; } /** * t4_sge_init - initialize SGE * @adap: the adapter * * Perform low-level SGE code initialization needed every time after a * chip reset. */ int t4_sge_init(struct adapter *adap) { struct sge *s = &adap->sge; u32 sge_control, sge_conm_ctrl; int ret, egress_threshold; /* * Ingress Padding Boundary and Egress Status Page Size are set up by * t4_fixup_host_params(). */ sge_control = t4_read_reg(adap, SGE_CONTROL_A); s->pktshift = PKTSHIFT_G(sge_control); s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; s->fl_align = t4_fl_pkt_align(adap); ret = t4_sge_init_soft(adap); if (ret < 0) return ret; /* * A FL with <= fl_starve_thres buffers is starving and a periodic * timer will attempt to refill it. This needs to be larger than the * SGE's Egress Congestion Threshold. If it isn't, then we can get * stuck waiting for new packets while the SGE is waiting for us to * give it more Free List entries. (Note that the SGE's Egress * Congestion Threshold is in units of 2 Free List pointers.) For T4, * there was only a single field to control this. For T5 there's the * original field which now only applies to Unpacked Mode Free List * buffers and a new field which only applies to Packed Mode Free List * buffers. */ sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { case CHELSIO_T4: egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); break; case CHELSIO_T5: egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); break; case CHELSIO_T6: egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); break; default: dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", CHELSIO_CHIP_VERSION(adap->params.chip)); return -EINVAL; } s->fl_starve_thres = 2*egress_threshold + 1; t4_idma_monitor_init(adap, &s->idma_monitor); /* Set up timers used for recuring callbacks to process RX and TX * administrative tasks. */ timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); spin_lock_init(&s->intrq_lock); return 0; }