linux/linux-5.4.31/sound/firewire/fireworks/fireworks_pcm.c

385 lines
9.7 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* fireworks_pcm.c - a part of driver for Fireworks based devices
*
* Copyright (c) 2009-2010 Clemens Ladisch
* Copyright (c) 2013-2014 Takashi Sakamoto
*/
#include "./fireworks.h"
/*
* NOTE:
* Fireworks changes its AMDTP channels for PCM data according to its sampling
* rate. There are three modes. Here _XX is either _rx or _tx.
* 0: 32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
* 1: 88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
* 2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
*
* The number of PCM channels for analog input and output are always fixed but
* the number of PCM channels for digital input and output are differed.
*
* Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
* model, the number of PCM channels for digital input has more restriction
* depending on which digital interface is selected.
* - S/PDIF coaxial and optical : use input 1-2
* - ADAT optical at 32.0-48.0 kHz : use input 1-8
* - ADAT optical at 88.2-96.0 kHz : use input 1-4 (S/MUX format)
*
* The data in AMDTP channels for blank PCM channels are zero.
*/
static const unsigned int freq_table[] = {
/* multiplier mode 0 */
[0] = 32000,
[1] = 44100,
[2] = 48000,
/* multiplier mode 1 */
[3] = 88200,
[4] = 96000,
/* multiplier mode 2 */
[5] = 176400,
[6] = 192000,
};
static inline unsigned int
get_multiplier_mode_with_index(unsigned int index)
{
return ((int)index - 1) / 2;
}
int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
if (freq_table[i] == sampling_rate) {
*mode = get_multiplier_mode_with_index(i);
return 0;
}
}
return -EINVAL;
}
static int
hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
unsigned int *pcm_channels = rule->private;
struct snd_interval *r =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
const struct snd_interval *c =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval t = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int i, mode;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
mode = get_multiplier_mode_with_index(i);
if (!snd_interval_test(c, pcm_channels[mode]))
continue;
t.min = min(t.min, freq_table[i]);
t.max = max(t.max, freq_table[i]);
}
return snd_interval_refine(r, &t);
}
static int
hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
unsigned int *pcm_channels = rule->private;
struct snd_interval *c =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
const struct snd_interval *r =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval t = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int i, mode;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
mode = get_multiplier_mode_with_index(i);
if (!snd_interval_test(r, freq_table[i]))
continue;
t.min = min(t.min, pcm_channels[mode]);
t.max = max(t.max, pcm_channels[mode]);
}
return snd_interval_refine(c, &t);
}
static void
limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
{
unsigned int i, mode;
hw->channels_min = UINT_MAX;
hw->channels_max = 0;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
mode = get_multiplier_mode_with_index(i);
if (pcm_channels[mode] == 0)
continue;
hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
}
}
static int
pcm_init_hw_params(struct snd_efw *efw,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct amdtp_stream *s;
unsigned int *pcm_channels;
int err;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
s = &efw->tx_stream;
pcm_channels = efw->pcm_capture_channels;
} else {
runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
s = &efw->rx_stream;
pcm_channels = efw->pcm_playback_channels;
}
/* limit rates */
runtime->hw.rates = efw->supported_sampling_rate,
snd_pcm_limit_hw_rates(runtime);
limit_channels(&runtime->hw, pcm_channels);
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
hw_rule_channels, pcm_channels,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (err < 0)
goto end;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
hw_rule_rate, pcm_channels,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
if (err < 0)
goto end;
err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
end:
return err;
}
static int pcm_open(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
unsigned int sampling_rate;
enum snd_efw_clock_source clock_source;
int err;
err = snd_efw_stream_lock_try(efw);
if (err < 0)
goto end;
err = pcm_init_hw_params(efw, substream);
if (err < 0)
goto err_locked;
err = snd_efw_command_get_clock_source(efw, &clock_source);
if (err < 0)
goto err_locked;
/*
* When source of clock is not internal or any PCM streams are running,
* available sampling rate is limited at current sampling rate.
*/
if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
amdtp_stream_pcm_running(&efw->tx_stream) ||
amdtp_stream_pcm_running(&efw->rx_stream)) {
err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
if (err < 0)
goto err_locked;
substream->runtime->hw.rate_min = sampling_rate;
substream->runtime->hw.rate_max = sampling_rate;
}
snd_pcm_set_sync(substream);
end:
return err;
err_locked:
snd_efw_stream_lock_release(efw);
return err;
}
static int pcm_close(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
snd_efw_stream_lock_release(efw);
return 0;
}
static int pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_efw *efw = substream->private_data;
int err;
err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
params_buffer_bytes(hw_params));
if (err < 0)
return err;
if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
unsigned int rate = params_rate(hw_params);
mutex_lock(&efw->mutex);
err = snd_efw_stream_reserve_duplex(efw, rate);
if (err >= 0)
++efw->substreams_counter;
mutex_unlock(&efw->mutex);
}
return err;
}
static int pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
mutex_lock(&efw->mutex);
if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN)
--efw->substreams_counter;
snd_efw_stream_stop_duplex(efw);
mutex_unlock(&efw->mutex);
return snd_pcm_lib_free_vmalloc_buffer(substream);
}
static int pcm_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
int err;
err = snd_efw_stream_start_duplex(efw);
if (err >= 0)
amdtp_stream_pcm_prepare(&efw->tx_stream);
return err;
}
static int pcm_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
int err;
err = snd_efw_stream_start_duplex(efw);
if (err >= 0)
amdtp_stream_pcm_prepare(&efw->rx_stream);
return err;
}
static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_efw *efw = substream->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
break;
default:
return -EINVAL;
}
return 0;
}
static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_efw *efw = substream->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
{
struct snd_efw *efw = sbstrm->private_data;
return amdtp_stream_pcm_pointer(&efw->tx_stream);
}
static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
{
struct snd_efw *efw = sbstrm->private_data;
return amdtp_stream_pcm_pointer(&efw->rx_stream);
}
static int pcm_capture_ack(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
return amdtp_stream_pcm_ack(&efw->tx_stream);
}
static int pcm_playback_ack(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
return amdtp_stream_pcm_ack(&efw->rx_stream);
}
int snd_efw_create_pcm_devices(struct snd_efw *efw)
{
static const struct snd_pcm_ops capture_ops = {
.open = pcm_open,
.close = pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = pcm_hw_params,
.hw_free = pcm_hw_free,
.prepare = pcm_capture_prepare,
.trigger = pcm_capture_trigger,
.pointer = pcm_capture_pointer,
.ack = pcm_capture_ack,
.page = snd_pcm_lib_get_vmalloc_page,
};
static const struct snd_pcm_ops playback_ops = {
.open = pcm_open,
.close = pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = pcm_hw_params,
.hw_free = pcm_hw_free,
.prepare = pcm_playback_prepare,
.trigger = pcm_playback_trigger,
.pointer = pcm_playback_pointer,
.ack = pcm_playback_ack,
.page = snd_pcm_lib_get_vmalloc_page,
};
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
if (err < 0)
goto end;
pcm->private_data = efw;
snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
end:
return err;
}