linux/linux-5.4.31/drivers/net/ethernet/brocade/bna/bna_hw_defs.h

404 lines
12 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Linux network driver for QLogic BR-series Converged Network Adapter.
*/
/*
* Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
* Copyright (c) 2014-2015 QLogic Corporation
* All rights reserved
* www.qlogic.com
*/
/* File for interrupt macros and functions */
#ifndef __BNA_HW_DEFS_H__
#define __BNA_HW_DEFS_H__
#include "bfi_reg.h"
/* SW imposed limits */
#define BFI_ENET_DEF_TXQ 1
#define BFI_ENET_DEF_RXP 1
#define BFI_ENET_DEF_UCAM 1
#define BFI_ENET_DEF_RITSZ 1
#define BFI_ENET_MAX_MCAM 256
#define BFI_INVALID_RID -1
#define BFI_IBIDX_SIZE 4
#define BFI_VLAN_WORD_SHIFT 5 /* 32 bits */
#define BFI_VLAN_WORD_MASK 0x1F
#define BFI_VLAN_BLOCK_SHIFT 9 /* 512 bits */
#define BFI_VLAN_BMASK_ALL 0xFF
#define BFI_COALESCING_TIMER_UNIT 5 /* 5us */
#define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */
#define BFI_MAX_INTERPKT_COUNT 0xFF
#define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */
#define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */
#define BFI_TX_INTERPKT_COUNT 12 /* Pkt Cnt = 12 */
#define BFI_TX_INTERPKT_TIMEO 15 /* 15 * 0.5 = 7.5us */
#define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */
#define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */
#define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */
#define BFI_TXQ_WI_SIZE 64 /* bytes */
#define BFI_RXQ_WI_SIZE 8 /* bytes */
#define BFI_CQ_WI_SIZE 16 /* bytes */
#define BFI_TX_MAX_WRR_QUOTA 0xFFF
#define BFI_TX_MAX_VECTORS_PER_WI 4
#define BFI_TX_MAX_VECTORS_PER_PKT 0xFF
#define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF
#define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF
/* Small Q buffer size */
#define BFI_SMALL_RXBUF_SIZE 128
#define BFI_TX_MAX_PRIO 8
#define BFI_TX_PRIO_MAP_ALL 0xFF
/*
*
* Register definitions and macros
*
*/
#define BNA_PCI_REG_CT_ADDRSZ (0x40000)
#define ct_reg_addr_init(_bna, _pcidev) \
{ \
struct bna_reg_offset reg_offset[] = \
{{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK}, \
{HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK}, \
{HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK}, \
{HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} }; \
\
(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
reg_offset[(_pcidev)->pci_func].fn_int_status;\
(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
reg_offset[(_pcidev)->pci_func].fn_int_mask;\
}
#define ct_bit_defn_init(_bna, _pcidev) \
{ \
(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 | \
__HFN_INT_MBOX_LPU1); \
(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 | \
__HFN_INT_MBOX_LPU1); \
(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK); \
(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK); \
(_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT; \
(_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT; \
}
#define ct2_reg_addr_init(_bna, _pcidev) \
{ \
(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
CT2_HOSTFN_INT_STATUS; \
(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
CT2_HOSTFN_INTR_MASK; \
}
#define ct2_bit_defn_init(_bna, _pcidev) \
{ \
(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
__HFN_INT_MBOX_LPU1_CT2); \
(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
__HFN_INT_MBOX_LPU1_CT2); \
(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2); \
(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2); \
(_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2; \
(_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2; \
}
#define bna_reg_addr_init(_bna, _pcidev) \
{ \
switch ((_pcidev)->device_id) { \
case PCI_DEVICE_ID_BROCADE_CT: \
ct_reg_addr_init((_bna), (_pcidev)); \
ct_bit_defn_init((_bna), (_pcidev)); \
break; \
case BFA_PCI_DEVICE_ID_CT2: \
ct2_reg_addr_init((_bna), (_pcidev)); \
ct2_bit_defn_init((_bna), (_pcidev)); \
break; \
} \
}
#define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
/* Interrupt related bits, flags and macros */
#define IB_STATUS_BITS 0x0000ffff
#define BNA_IS_MBOX_INTR(_bna, _intr_status) \
((_intr_status) & (_bna)->bits.mbox_status_bits)
#define BNA_IS_HALT_INTR(_bna, _intr_status) \
((_intr_status) & (_bna)->bits.halt_status_bits)
#define BNA_IS_ERR_INTR(_bna, _intr_status) \
((_intr_status) & (_bna)->bits.error_status_bits)
#define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status) \
(BNA_IS_MBOX_INTR(_bna, _intr_status) | \
BNA_IS_ERR_INTR(_bna, _intr_status))
#define BNA_IS_INTX_DATA_INTR(_intr_status) \
((_intr_status) & IB_STATUS_BITS)
#define bna_halt_clear(_bna) \
do { \
u32 init_halt; \
init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
init_halt &= ~__FW_INIT_HALT_P; \
writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt); \
init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
} while (0)
#define bna_intx_disable(_bna, _cur_mask) \
{ \
(_cur_mask) = readl((_bna)->regs.fn_int_mask); \
writel(0xffffffff, (_bna)->regs.fn_int_mask); \
}
#define bna_intx_enable(bna, new_mask) \
writel((new_mask), (bna)->regs.fn_int_mask)
#define bna_mbox_intr_disable(bna) \
do { \
u32 mask; \
mask = readl((bna)->regs.fn_int_mask); \
writel((mask | (bna)->bits.mbox_mask_bits | \
(bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
mask = readl((bna)->regs.fn_int_mask); \
} while (0)
#define bna_mbox_intr_enable(bna) \
do { \
u32 mask; \
mask = readl((bna)->regs.fn_int_mask); \
writel((mask & ~((bna)->bits.mbox_mask_bits | \
(bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
mask = readl((bna)->regs.fn_int_mask); \
} while (0)
#define bna_intr_status_get(_bna, _status) \
{ \
(_status) = readl((_bna)->regs.fn_int_status); \
if (_status) { \
writel(((_status) & ~(_bna)->bits.mbox_status_bits), \
(_bna)->regs.fn_int_status); \
} \
}
/*
* MAX ACK EVENTS : No. of acks that can be accumulated in driver,
* before acking to h/w. The no. of bits is 16 in the doorbell register,
* however we keep this limited to 15 bits.
* This is because around the edge of 64K boundary (16 bits), one
* single poll can make the accumulated ACK counter cross the 64K boundary,
* causing problems, when we try to ack with a value greater than 64K.
* 15 bits (32K) should be large enough to accumulate, anyways, and the max.
* acked events to h/w can be (32K + max poll weight) (currently 64).
*/
#define BNA_IB_MAX_ACK_EVENTS BIT(15)
/* These macros build the data portion of the TxQ/RxQ doorbell */
#define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi))
#define BNA_DOORBELL_Q_STOP (0x40000000)
/* These macros build the data portion of the IB doorbell */
#define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
(0x80000000 | ((_timeout) << 16) | (_events))
#define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
/* Set the coalescing timer for the given ib */
#define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \
((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
/* Acks 'events' # of events for a given ib while disabling interrupts */
#define bna_ib_ack_disable_irq(_i_dbell, _events) \
(writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
(_i_dbell)->doorbell_addr));
/* Acks 'events' # of events for a given ib */
#define bna_ib_ack(_i_dbell, _events) \
(writel(((_i_dbell)->doorbell_ack | (_events)), \
(_i_dbell)->doorbell_addr));
#define bna_ib_start(_bna, _ib, _is_regular) \
{ \
u32 intx_mask; \
struct bna_ib *ib = _ib; \
if ((ib->intr_type == BNA_INTR_T_INTX)) { \
bna_intx_disable((_bna), intx_mask); \
intx_mask &= ~(ib->intr_vector); \
bna_intx_enable((_bna), intx_mask); \
} \
bna_ib_coalescing_timer_set(&ib->door_bell, \
ib->coalescing_timeo); \
if (_is_regular) \
bna_ib_ack(&ib->door_bell, 0); \
}
#define bna_ib_stop(_bna, _ib) \
{ \
u32 intx_mask; \
struct bna_ib *ib = _ib; \
writel(BNA_DOORBELL_IB_INT_DISABLE, \
ib->door_bell.doorbell_addr); \
if (ib->intr_type == BNA_INTR_T_INTX) { \
bna_intx_disable((_bna), intx_mask); \
intx_mask |= ib->intr_vector; \
bna_intx_enable((_bna), intx_mask); \
} \
}
#define bna_txq_prod_indx_doorbell(_tcb) \
(writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
(_tcb)->q_dbell));
#define bna_rxq_prod_indx_doorbell(_rcb) \
(writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
(_rcb)->q_dbell));
/* TxQ, RxQ, CQ related bits, offsets, macros */
/* TxQ Entry Opcodes */
#define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */
#define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */
#define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */
/* TxQ Entry Control Flags */
#define BNA_TXQ_WI_CF_FCOE_CRC BIT(8)
#define BNA_TXQ_WI_CF_IPID_MODE BIT(5)
#define BNA_TXQ_WI_CF_INS_PRIO BIT(4)
#define BNA_TXQ_WI_CF_INS_VLAN BIT(3)
#define BNA_TXQ_WI_CF_UDP_CKSUM BIT(2)
#define BNA_TXQ_WI_CF_TCP_CKSUM BIT(1)
#define BNA_TXQ_WI_CF_IP_CKSUM BIT(0)
#define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
(((_hdr_size) << 10) | ((_offset) & 0x3FF))
/*
* Completion Q defines
*/
/* CQ Entry Flags */
#define BNA_CQ_EF_MAC_ERROR BIT(0)
#define BNA_CQ_EF_FCS_ERROR BIT(1)
#define BNA_CQ_EF_TOO_LONG BIT(2)
#define BNA_CQ_EF_FC_CRC_OK BIT(3)
#define BNA_CQ_EF_RSVD1 BIT(4)
#define BNA_CQ_EF_L4_CKSUM_OK BIT(5)
#define BNA_CQ_EF_L3_CKSUM_OK BIT(6)
#define BNA_CQ_EF_HDS_HEADER BIT(7)
#define BNA_CQ_EF_UDP BIT(8)
#define BNA_CQ_EF_TCP BIT(9)
#define BNA_CQ_EF_IP_OPTIONS BIT(10)
#define BNA_CQ_EF_IPV6 BIT(11)
#define BNA_CQ_EF_IPV4 BIT(12)
#define BNA_CQ_EF_VLAN BIT(13)
#define BNA_CQ_EF_RSS BIT(14)
#define BNA_CQ_EF_RSVD2 BIT(15)
#define BNA_CQ_EF_MCAST_MATCH BIT(16)
#define BNA_CQ_EF_MCAST BIT(17)
#define BNA_CQ_EF_BCAST BIT(18)
#define BNA_CQ_EF_REMOTE BIT(19)
#define BNA_CQ_EF_LOCAL BIT(20)
/* CAT2 ASIC does not use bit 21 as per the SPEC.
* Bit 31 is set in every end of frame completion
*/
#define BNA_CQ_EF_EOP BIT(31)
/* Data structures */
struct bna_reg_offset {
u32 fn_int_status;
u32 fn_int_mask;
};
struct bna_bit_defn {
u32 mbox_status_bits;
u32 mbox_mask_bits;
u32 error_status_bits;
u32 error_mask_bits;
u32 halt_status_bits;
u32 halt_mask_bits;
};
struct bna_reg {
void __iomem *fn_int_status;
void __iomem *fn_int_mask;
};
/* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
struct bna_dma_addr {
u32 msb;
u32 lsb;
};
struct bna_txq_wi_vector {
u16 reserved;
u16 length; /* Only 14 LSB are valid */
struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
};
/* TxQ Entry Structure
*
* BEWARE: Load values into this structure with correct endianness.
*/
struct bna_txq_entry {
union {
struct {
u8 reserved;
u8 num_vectors; /* number of vectors present */
u16 opcode; /* Either */
/* BNA_TXQ_WI_SEND or */
/* BNA_TXQ_WI_SEND_LSO */
u16 flags; /* OR of all the flags */
u16 l4_hdr_size_n_offset;
u16 vlan_tag;
u16 lso_mss; /* Only 14 LSB are valid */
u32 frame_length; /* Only 24 LSB are valid */
} wi;
struct {
u16 reserved;
u16 opcode; /* Must be */
/* BNA_TXQ_WI_EXTENSION */
u32 reserved2[3]; /* Place holder for */
/* removed vector (12 bytes) */
} wi_ext;
} hdr;
struct bna_txq_wi_vector vector[4];
};
/* RxQ Entry Structure */
struct bna_rxq_entry { /* Rx-Buffer */
struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
};
/* CQ Entry Structure */
struct bna_cq_entry {
u32 flags;
u16 vlan_tag;
u16 length;
u32 rss_hash;
u8 valid;
u8 reserved1;
u8 reserved2;
u8 rxq_id;
};
#endif /* __BNA_HW_DEFS_H__ */