linux/linux-5.4.31/drivers/net/ethernet/aquantia/atlantic/aq_ring.c

499 lines
11 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* aQuantia Corporation Network Driver
* Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
*/
/* File aq_ring.c: Definition of functions for Rx/Tx rings. */
#include "aq_ring.h"
#include "aq_nic.h"
#include "aq_hw.h"
#include "aq_hw_utils.h"
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
static inline void aq_free_rxpage(struct aq_rxpage *rxpage, struct device *dev)
{
unsigned int len = PAGE_SIZE << rxpage->order;
dma_unmap_page(dev, rxpage->daddr, len, DMA_FROM_DEVICE);
/* Drop the ref for being in the ring. */
__free_pages(rxpage->page, rxpage->order);
rxpage->page = NULL;
}
static int aq_get_rxpage(struct aq_rxpage *rxpage, unsigned int order,
struct device *dev)
{
struct page *page;
dma_addr_t daddr;
int ret = -ENOMEM;
page = dev_alloc_pages(order);
if (unlikely(!page))
goto err_exit;
daddr = dma_map_page(dev, page, 0, PAGE_SIZE << order,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev, daddr)))
goto free_page;
rxpage->page = page;
rxpage->daddr = daddr;
rxpage->order = order;
rxpage->pg_off = 0;
return 0;
free_page:
__free_pages(page, order);
err_exit:
return ret;
}
static int aq_get_rxpages(struct aq_ring_s *self, struct aq_ring_buff_s *rxbuf,
int order)
{
int ret;
if (rxbuf->rxdata.page) {
/* One means ring is the only user and can reuse */
if (page_ref_count(rxbuf->rxdata.page) > 1) {
/* Try reuse buffer */
rxbuf->rxdata.pg_off += AQ_CFG_RX_FRAME_MAX;
if (rxbuf->rxdata.pg_off + AQ_CFG_RX_FRAME_MAX <=
(PAGE_SIZE << order)) {
self->stats.rx.pg_flips++;
} else {
/* Buffer exhausted. We have other users and
* should release this page and realloc
*/
aq_free_rxpage(&rxbuf->rxdata,
aq_nic_get_dev(self->aq_nic));
self->stats.rx.pg_losts++;
}
} else {
rxbuf->rxdata.pg_off = 0;
self->stats.rx.pg_reuses++;
}
}
if (!rxbuf->rxdata.page) {
ret = aq_get_rxpage(&rxbuf->rxdata, order,
aq_nic_get_dev(self->aq_nic));
return ret;
}
return 0;
}
static struct aq_ring_s *aq_ring_alloc(struct aq_ring_s *self,
struct aq_nic_s *aq_nic)
{
int err = 0;
self->buff_ring =
kcalloc(self->size, sizeof(struct aq_ring_buff_s), GFP_KERNEL);
if (!self->buff_ring) {
err = -ENOMEM;
goto err_exit;
}
self->dx_ring = dma_alloc_coherent(aq_nic_get_dev(aq_nic),
self->size * self->dx_size,
&self->dx_ring_pa, GFP_KERNEL);
if (!self->dx_ring) {
err = -ENOMEM;
goto err_exit;
}
err_exit:
if (err < 0) {
aq_ring_free(self);
self = NULL;
}
return self;
}
struct aq_ring_s *aq_ring_tx_alloc(struct aq_ring_s *self,
struct aq_nic_s *aq_nic,
unsigned int idx,
struct aq_nic_cfg_s *aq_nic_cfg)
{
int err = 0;
self->aq_nic = aq_nic;
self->idx = idx;
self->size = aq_nic_cfg->txds;
self->dx_size = aq_nic_cfg->aq_hw_caps->txd_size;
self = aq_ring_alloc(self, aq_nic);
if (!self) {
err = -ENOMEM;
goto err_exit;
}
err_exit:
if (err < 0) {
aq_ring_free(self);
self = NULL;
}
return self;
}
struct aq_ring_s *aq_ring_rx_alloc(struct aq_ring_s *self,
struct aq_nic_s *aq_nic,
unsigned int idx,
struct aq_nic_cfg_s *aq_nic_cfg)
{
int err = 0;
self->aq_nic = aq_nic;
self->idx = idx;
self->size = aq_nic_cfg->rxds;
self->dx_size = aq_nic_cfg->aq_hw_caps->rxd_size;
self->page_order = fls(AQ_CFG_RX_FRAME_MAX / PAGE_SIZE +
(AQ_CFG_RX_FRAME_MAX % PAGE_SIZE ? 1 : 0)) - 1;
if (aq_nic_cfg->rxpageorder > self->page_order)
self->page_order = aq_nic_cfg->rxpageorder;
self = aq_ring_alloc(self, aq_nic);
if (!self) {
err = -ENOMEM;
goto err_exit;
}
err_exit:
if (err < 0) {
aq_ring_free(self);
self = NULL;
}
return self;
}
int aq_ring_init(struct aq_ring_s *self)
{
self->hw_head = 0;
self->sw_head = 0;
self->sw_tail = 0;
return 0;
}
static inline bool aq_ring_dx_in_range(unsigned int h, unsigned int i,
unsigned int t)
{
return (h < t) ? ((h < i) && (i < t)) : ((h < i) || (i < t));
}
void aq_ring_update_queue_state(struct aq_ring_s *ring)
{
if (aq_ring_avail_dx(ring) <= AQ_CFG_SKB_FRAGS_MAX)
aq_ring_queue_stop(ring);
else if (aq_ring_avail_dx(ring) > AQ_CFG_RESTART_DESC_THRES)
aq_ring_queue_wake(ring);
}
void aq_ring_queue_wake(struct aq_ring_s *ring)
{
struct net_device *ndev = aq_nic_get_ndev(ring->aq_nic);
if (__netif_subqueue_stopped(ndev, ring->idx)) {
netif_wake_subqueue(ndev, ring->idx);
ring->stats.tx.queue_restarts++;
}
}
void aq_ring_queue_stop(struct aq_ring_s *ring)
{
struct net_device *ndev = aq_nic_get_ndev(ring->aq_nic);
if (!__netif_subqueue_stopped(ndev, ring->idx))
netif_stop_subqueue(ndev, ring->idx);
}
bool aq_ring_tx_clean(struct aq_ring_s *self)
{
struct device *dev = aq_nic_get_dev(self->aq_nic);
unsigned int budget;
for (budget = AQ_CFG_TX_CLEAN_BUDGET;
budget && self->sw_head != self->hw_head; budget--) {
struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head];
if (likely(buff->is_mapped)) {
if (unlikely(buff->is_sop)) {
if (!buff->is_eop &&
buff->eop_index != 0xffffU &&
(!aq_ring_dx_in_range(self->sw_head,
buff->eop_index,
self->hw_head)))
break;
dma_unmap_single(dev, buff->pa, buff->len,
DMA_TO_DEVICE);
} else {
dma_unmap_page(dev, buff->pa, buff->len,
DMA_TO_DEVICE);
}
}
if (unlikely(buff->is_eop)) {
++self->stats.rx.packets;
self->stats.tx.bytes += buff->skb->len;
dev_kfree_skb_any(buff->skb);
}
buff->pa = 0U;
buff->eop_index = 0xffffU;
self->sw_head = aq_ring_next_dx(self, self->sw_head);
}
return !!budget;
}
static void aq_rx_checksum(struct aq_ring_s *self,
struct aq_ring_buff_s *buff,
struct sk_buff *skb)
{
if (!(self->aq_nic->ndev->features & NETIF_F_RXCSUM))
return;
if (unlikely(buff->is_cso_err)) {
++self->stats.rx.errors;
skb->ip_summed = CHECKSUM_NONE;
return;
}
if (buff->is_ip_cso) {
__skb_incr_checksum_unnecessary(skb);
} else {
skb->ip_summed = CHECKSUM_NONE;
}
if (buff->is_udp_cso || buff->is_tcp_cso)
__skb_incr_checksum_unnecessary(skb);
}
#define AQ_SKB_ALIGN SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
int aq_ring_rx_clean(struct aq_ring_s *self,
struct napi_struct *napi,
int *work_done,
int budget)
{
struct net_device *ndev = aq_nic_get_ndev(self->aq_nic);
bool is_rsc_completed = true;
int err = 0;
for (; (self->sw_head != self->hw_head) && budget;
self->sw_head = aq_ring_next_dx(self, self->sw_head),
--budget, ++(*work_done)) {
struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head];
struct aq_ring_buff_s *buff_ = NULL;
struct sk_buff *skb = NULL;
unsigned int next_ = 0U;
unsigned int i = 0U;
u16 hdr_len;
if (buff->is_cleaned)
continue;
if (!buff->is_eop) {
buff_ = buff;
do {
next_ = buff_->next,
buff_ = &self->buff_ring[next_];
is_rsc_completed =
aq_ring_dx_in_range(self->sw_head,
next_,
self->hw_head);
if (unlikely(!is_rsc_completed))
break;
buff->is_error |= buff_->is_error;
buff->is_cso_err |= buff_->is_cso_err;
} while (!buff_->is_eop);
if (!is_rsc_completed) {
err = 0;
goto err_exit;
}
if (buff->is_error || buff->is_cso_err) {
buff_ = buff;
do {
next_ = buff_->next,
buff_ = &self->buff_ring[next_];
buff_->is_cleaned = true;
} while (!buff_->is_eop);
++self->stats.rx.errors;
continue;
}
}
if (buff->is_error) {
++self->stats.rx.errors;
continue;
}
dma_sync_single_range_for_cpu(aq_nic_get_dev(self->aq_nic),
buff->rxdata.daddr,
buff->rxdata.pg_off,
buff->len, DMA_FROM_DEVICE);
/* for single fragment packets use build_skb() */
if (buff->is_eop &&
buff->len <= AQ_CFG_RX_FRAME_MAX - AQ_SKB_ALIGN) {
skb = build_skb(aq_buf_vaddr(&buff->rxdata),
AQ_CFG_RX_FRAME_MAX);
if (unlikely(!skb)) {
err = -ENOMEM;
goto err_exit;
}
skb_put(skb, buff->len);
page_ref_inc(buff->rxdata.page);
} else {
skb = napi_alloc_skb(napi, AQ_CFG_RX_HDR_SIZE);
if (unlikely(!skb)) {
err = -ENOMEM;
goto err_exit;
}
hdr_len = buff->len;
if (hdr_len > AQ_CFG_RX_HDR_SIZE)
hdr_len = eth_get_headlen(skb->dev,
aq_buf_vaddr(&buff->rxdata),
AQ_CFG_RX_HDR_SIZE);
memcpy(__skb_put(skb, hdr_len), aq_buf_vaddr(&buff->rxdata),
ALIGN(hdr_len, sizeof(long)));
if (buff->len - hdr_len > 0) {
skb_add_rx_frag(skb, 0, buff->rxdata.page,
buff->rxdata.pg_off + hdr_len,
buff->len - hdr_len,
AQ_CFG_RX_FRAME_MAX);
page_ref_inc(buff->rxdata.page);
}
if (!buff->is_eop) {
buff_ = buff;
i = 1U;
do {
next_ = buff_->next,
buff_ = &self->buff_ring[next_];
dma_sync_single_range_for_cpu(
aq_nic_get_dev(self->aq_nic),
buff_->rxdata.daddr,
buff_->rxdata.pg_off,
buff_->len,
DMA_FROM_DEVICE);
skb_add_rx_frag(skb, i++,
buff_->rxdata.page,
buff_->rxdata.pg_off,
buff_->len,
AQ_CFG_RX_FRAME_MAX);
page_ref_inc(buff_->rxdata.page);
buff_->is_cleaned = 1;
buff->is_ip_cso &= buff_->is_ip_cso;
buff->is_udp_cso &= buff_->is_udp_cso;
buff->is_tcp_cso &= buff_->is_tcp_cso;
buff->is_cso_err |= buff_->is_cso_err;
} while (!buff_->is_eop);
}
}
if (buff->is_vlan)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
buff->vlan_rx_tag);
skb->protocol = eth_type_trans(skb, ndev);
aq_rx_checksum(self, buff, skb);
skb_set_hash(skb, buff->rss_hash,
buff->is_hash_l4 ? PKT_HASH_TYPE_L4 :
PKT_HASH_TYPE_NONE);
skb_record_rx_queue(skb, self->idx);
++self->stats.rx.packets;
self->stats.rx.bytes += skb->len;
napi_gro_receive(napi, skb);
}
err_exit:
return err;
}
int aq_ring_rx_fill(struct aq_ring_s *self)
{
unsigned int page_order = self->page_order;
struct aq_ring_buff_s *buff = NULL;
int err = 0;
int i = 0;
if (aq_ring_avail_dx(self) < min_t(unsigned int, AQ_CFG_RX_REFILL_THRES,
self->size / 2))
return err;
for (i = aq_ring_avail_dx(self); i--;
self->sw_tail = aq_ring_next_dx(self, self->sw_tail)) {
buff = &self->buff_ring[self->sw_tail];
buff->flags = 0U;
buff->len = AQ_CFG_RX_FRAME_MAX;
err = aq_get_rxpages(self, buff, page_order);
if (err)
goto err_exit;
buff->pa = aq_buf_daddr(&buff->rxdata);
buff = NULL;
}
err_exit:
return err;
}
void aq_ring_rx_deinit(struct aq_ring_s *self)
{
if (!self)
goto err_exit;
for (; self->sw_head != self->sw_tail;
self->sw_head = aq_ring_next_dx(self, self->sw_head)) {
struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head];
aq_free_rxpage(&buff->rxdata, aq_nic_get_dev(self->aq_nic));
}
err_exit:;
}
void aq_ring_free(struct aq_ring_s *self)
{
if (!self)
goto err_exit;
kfree(self->buff_ring);
if (self->dx_ring)
dma_free_coherent(aq_nic_get_dev(self->aq_nic),
self->size * self->dx_size, self->dx_ring,
self->dx_ring_pa);
err_exit:;
}