393 lines
12 KiB
C
393 lines
12 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
|
||
|
*/
|
||
|
#include "sja1105.h"
|
||
|
|
||
|
/* The adjfine API clamps ppb between [-32,768,000, 32,768,000], and
|
||
|
* therefore scaled_ppm between [-2,147,483,648, 2,147,483,647].
|
||
|
* Set the maximum supported ppb to a round value smaller than the maximum.
|
||
|
*
|
||
|
* Percentually speaking, this is a +/- 0.032x adjustment of the
|
||
|
* free-running counter (0.968x to 1.032x).
|
||
|
*/
|
||
|
#define SJA1105_MAX_ADJ_PPB 32000000
|
||
|
#define SJA1105_SIZE_PTP_CMD 4
|
||
|
|
||
|
/* Timestamps are in units of 8 ns clock ticks (equivalent to a fixed
|
||
|
* 125 MHz clock) so the scale factor (MULT / SHIFT) needs to be 8.
|
||
|
* Furthermore, wisely pick SHIFT as 28 bits, which translates
|
||
|
* MULT into 2^31 (0x80000000). This is the same value around which
|
||
|
* the hardware PTPCLKRATE is centered, so the same ppb conversion
|
||
|
* arithmetic can be reused.
|
||
|
*/
|
||
|
#define SJA1105_CC_SHIFT 28
|
||
|
#define SJA1105_CC_MULT (8 << SJA1105_CC_SHIFT)
|
||
|
|
||
|
/* Having 33 bits of cycle counter left until a 64-bit overflow during delta
|
||
|
* conversion, we multiply this by the 8 ns counter resolution and arrive at
|
||
|
* a comfortable 68.71 second refresh interval until the delta would cause
|
||
|
* an integer overflow, in absence of any other readout.
|
||
|
* Approximate to 1 minute.
|
||
|
*/
|
||
|
#define SJA1105_REFRESH_INTERVAL (HZ * 60)
|
||
|
|
||
|
/* This range is actually +/- SJA1105_MAX_ADJ_PPB
|
||
|
* divided by 1000 (ppb -> ppm) and with a 16-bit
|
||
|
* "fractional" part (actually fixed point).
|
||
|
* |
|
||
|
* v
|
||
|
* Convert scaled_ppm from the +/- ((10^6) << 16) range
|
||
|
* into the +/- (1 << 31) range.
|
||
|
*
|
||
|
* This forgoes a "ppb" numeric representation (up to NSEC_PER_SEC)
|
||
|
* and defines the scaling factor between scaled_ppm and the actual
|
||
|
* frequency adjustments (both cycle counter and hardware).
|
||
|
*
|
||
|
* ptpclkrate = scaled_ppm * 2^31 / (10^6 * 2^16)
|
||
|
* simplifies to
|
||
|
* ptpclkrate = scaled_ppm * 2^9 / 5^6
|
||
|
*/
|
||
|
#define SJA1105_CC_MULT_NUM (1 << 9)
|
||
|
#define SJA1105_CC_MULT_DEM 15625
|
||
|
|
||
|
#define ptp_to_sja1105(d) container_of((d), struct sja1105_private, ptp_caps)
|
||
|
#define cc_to_sja1105(d) container_of((d), struct sja1105_private, tstamp_cc)
|
||
|
#define dw_to_sja1105(d) container_of((d), struct sja1105_private, refresh_work)
|
||
|
|
||
|
struct sja1105_ptp_cmd {
|
||
|
u64 resptp; /* reset */
|
||
|
};
|
||
|
|
||
|
int sja1105_get_ts_info(struct dsa_switch *ds, int port,
|
||
|
struct ethtool_ts_info *info)
|
||
|
{
|
||
|
struct sja1105_private *priv = ds->priv;
|
||
|
|
||
|
/* Called during cleanup */
|
||
|
if (!priv->clock)
|
||
|
return -ENODEV;
|
||
|
|
||
|
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
|
||
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
||
|
SOF_TIMESTAMPING_RAW_HARDWARE;
|
||
|
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
|
||
|
(1 << HWTSTAMP_TX_ON);
|
||
|
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
|
||
|
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT);
|
||
|
info->phc_index = ptp_clock_index(priv->clock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int sja1105et_ptp_cmd(const void *ctx, const void *data)
|
||
|
{
|
||
|
const struct sja1105_ptp_cmd *cmd = data;
|
||
|
const struct sja1105_private *priv = ctx;
|
||
|
const struct sja1105_regs *regs = priv->info->regs;
|
||
|
const int size = SJA1105_SIZE_PTP_CMD;
|
||
|
u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
|
||
|
/* No need to keep this as part of the structure */
|
||
|
u64 valid = 1;
|
||
|
|
||
|
sja1105_pack(buf, &valid, 31, 31, size);
|
||
|
sja1105_pack(buf, &cmd->resptp, 2, 2, size);
|
||
|
|
||
|
return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control,
|
||
|
buf, SJA1105_SIZE_PTP_CMD);
|
||
|
}
|
||
|
|
||
|
int sja1105pqrs_ptp_cmd(const void *ctx, const void *data)
|
||
|
{
|
||
|
const struct sja1105_ptp_cmd *cmd = data;
|
||
|
const struct sja1105_private *priv = ctx;
|
||
|
const struct sja1105_regs *regs = priv->info->regs;
|
||
|
const int size = SJA1105_SIZE_PTP_CMD;
|
||
|
u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
|
||
|
/* No need to keep this as part of the structure */
|
||
|
u64 valid = 1;
|
||
|
|
||
|
sja1105_pack(buf, &valid, 31, 31, size);
|
||
|
sja1105_pack(buf, &cmd->resptp, 3, 3, size);
|
||
|
|
||
|
return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control,
|
||
|
buf, SJA1105_SIZE_PTP_CMD);
|
||
|
}
|
||
|
|
||
|
/* The switch returns partial timestamps (24 bits for SJA1105 E/T, which wrap
|
||
|
* around in 0.135 seconds, and 32 bits for P/Q/R/S, wrapping around in 34.35
|
||
|
* seconds).
|
||
|
*
|
||
|
* This receives the RX or TX MAC timestamps, provided by hardware as
|
||
|
* the lower bits of the cycle counter, sampled at the time the timestamp was
|
||
|
* collected.
|
||
|
*
|
||
|
* To reconstruct into a full 64-bit-wide timestamp, the cycle counter is
|
||
|
* read and the high-order bits are filled in.
|
||
|
*
|
||
|
* Must be called within one wraparound period of the partial timestamp since
|
||
|
* it was generated by the MAC.
|
||
|
*/
|
||
|
u64 sja1105_tstamp_reconstruct(struct sja1105_private *priv, u64 now,
|
||
|
u64 ts_partial)
|
||
|
{
|
||
|
u64 partial_tstamp_mask = CYCLECOUNTER_MASK(priv->info->ptp_ts_bits);
|
||
|
u64 ts_reconstructed;
|
||
|
|
||
|
ts_reconstructed = (now & ~partial_tstamp_mask) | ts_partial;
|
||
|
|
||
|
/* Check lower bits of current cycle counter against the timestamp.
|
||
|
* If the current cycle counter is lower than the partial timestamp,
|
||
|
* then wraparound surely occurred and must be accounted for.
|
||
|
*/
|
||
|
if ((now & partial_tstamp_mask) <= ts_partial)
|
||
|
ts_reconstructed -= (partial_tstamp_mask + 1);
|
||
|
|
||
|
return ts_reconstructed;
|
||
|
}
|
||
|
|
||
|
/* Reads the SPI interface for an egress timestamp generated by the switch
|
||
|
* for frames sent using management routes.
|
||
|
*
|
||
|
* SJA1105 E/T layout of the 4-byte SPI payload:
|
||
|
*
|
||
|
* 31 23 15 7 0
|
||
|
* | | | | |
|
||
|
* +-----+-----+-----+ ^
|
||
|
* ^ |
|
||
|
* | |
|
||
|
* 24-bit timestamp Update bit
|
||
|
*
|
||
|
*
|
||
|
* SJA1105 P/Q/R/S layout of the 8-byte SPI payload:
|
||
|
*
|
||
|
* 31 23 15 7 0 63 55 47 39 32
|
||
|
* | | | | | | | | | |
|
||
|
* ^ +-----+-----+-----+-----+
|
||
|
* | ^
|
||
|
* | |
|
||
|
* Update bit 32-bit timestamp
|
||
|
*
|
||
|
* Notice that the update bit is in the same place.
|
||
|
* To have common code for E/T and P/Q/R/S for reading the timestamp,
|
||
|
* we need to juggle with the offset and the bit indices.
|
||
|
*/
|
||
|
int sja1105_ptpegr_ts_poll(struct sja1105_private *priv, int port, u64 *ts)
|
||
|
{
|
||
|
const struct sja1105_regs *regs = priv->info->regs;
|
||
|
int tstamp_bit_start, tstamp_bit_end;
|
||
|
int timeout = 10;
|
||
|
u8 packed_buf[8];
|
||
|
u64 update;
|
||
|
int rc;
|
||
|
|
||
|
do {
|
||
|
rc = sja1105_spi_send_packed_buf(priv, SPI_READ,
|
||
|
regs->ptpegr_ts[port],
|
||
|
packed_buf,
|
||
|
priv->info->ptpegr_ts_bytes);
|
||
|
if (rc < 0)
|
||
|
return rc;
|
||
|
|
||
|
sja1105_unpack(packed_buf, &update, 0, 0,
|
||
|
priv->info->ptpegr_ts_bytes);
|
||
|
if (update)
|
||
|
break;
|
||
|
|
||
|
usleep_range(10, 50);
|
||
|
} while (--timeout);
|
||
|
|
||
|
if (!timeout)
|
||
|
return -ETIMEDOUT;
|
||
|
|
||
|
/* Point the end bit to the second 32-bit word on P/Q/R/S,
|
||
|
* no-op on E/T.
|
||
|
*/
|
||
|
tstamp_bit_end = (priv->info->ptpegr_ts_bytes - 4) * 8;
|
||
|
/* Shift the 24-bit timestamp on E/T to be collected from 31:8.
|
||
|
* No-op on P/Q/R/S.
|
||
|
*/
|
||
|
tstamp_bit_end += 32 - priv->info->ptp_ts_bits;
|
||
|
tstamp_bit_start = tstamp_bit_end + priv->info->ptp_ts_bits - 1;
|
||
|
|
||
|
*ts = 0;
|
||
|
|
||
|
sja1105_unpack(packed_buf, ts, tstamp_bit_start, tstamp_bit_end,
|
||
|
priv->info->ptpegr_ts_bytes);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int sja1105_ptp_reset(struct sja1105_private *priv)
|
||
|
{
|
||
|
struct dsa_switch *ds = priv->ds;
|
||
|
struct sja1105_ptp_cmd cmd = {0};
|
||
|
int rc;
|
||
|
|
||
|
mutex_lock(&priv->ptp_lock);
|
||
|
|
||
|
cmd.resptp = 1;
|
||
|
dev_dbg(ds->dev, "Resetting PTP clock\n");
|
||
|
rc = priv->info->ptp_cmd(priv, &cmd);
|
||
|
|
||
|
timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc,
|
||
|
ktime_to_ns(ktime_get_real()));
|
||
|
|
||
|
mutex_unlock(&priv->ptp_lock);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int sja1105_ptp_gettime(struct ptp_clock_info *ptp,
|
||
|
struct timespec64 *ts)
|
||
|
{
|
||
|
struct sja1105_private *priv = ptp_to_sja1105(ptp);
|
||
|
u64 ns;
|
||
|
|
||
|
mutex_lock(&priv->ptp_lock);
|
||
|
ns = timecounter_read(&priv->tstamp_tc);
|
||
|
mutex_unlock(&priv->ptp_lock);
|
||
|
|
||
|
*ts = ns_to_timespec64(ns);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sja1105_ptp_settime(struct ptp_clock_info *ptp,
|
||
|
const struct timespec64 *ts)
|
||
|
{
|
||
|
struct sja1105_private *priv = ptp_to_sja1105(ptp);
|
||
|
u64 ns = timespec64_to_ns(ts);
|
||
|
|
||
|
mutex_lock(&priv->ptp_lock);
|
||
|
timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, ns);
|
||
|
mutex_unlock(&priv->ptp_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sja1105_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
|
||
|
{
|
||
|
struct sja1105_private *priv = ptp_to_sja1105(ptp);
|
||
|
s64 clkrate;
|
||
|
|
||
|
clkrate = (s64)scaled_ppm * SJA1105_CC_MULT_NUM;
|
||
|
clkrate = div_s64(clkrate, SJA1105_CC_MULT_DEM);
|
||
|
|
||
|
mutex_lock(&priv->ptp_lock);
|
||
|
|
||
|
/* Force a readout to update the timer *before* changing its frequency.
|
||
|
*
|
||
|
* This way, its corrected time curve can at all times be modeled
|
||
|
* as a linear "A * x + B" function, where:
|
||
|
*
|
||
|
* - B are past frequency adjustments and offset shifts, all
|
||
|
* accumulated into the cycle_last variable.
|
||
|
*
|
||
|
* - A is the new frequency adjustments we're just about to set.
|
||
|
*
|
||
|
* Reading now makes B accumulate the correct amount of time,
|
||
|
* corrected at the old rate, before changing it.
|
||
|
*
|
||
|
* Hardware timestamps then become simple points on the curve and
|
||
|
* are approximated using the above function. This is still better
|
||
|
* than letting the switch take the timestamps using the hardware
|
||
|
* rate-corrected clock (PTPCLKVAL) - the comparison in this case would
|
||
|
* be that we're shifting the ruler at the same time as we're taking
|
||
|
* measurements with it.
|
||
|
*
|
||
|
* The disadvantage is that it's possible to receive timestamps when
|
||
|
* a frequency adjustment took place in the near past.
|
||
|
* In this case they will be approximated using the new ppb value
|
||
|
* instead of a compound function made of two segments (one at the old
|
||
|
* and the other at the new rate) - introducing some inaccuracy.
|
||
|
*/
|
||
|
timecounter_read(&priv->tstamp_tc);
|
||
|
|
||
|
priv->tstamp_cc.mult = SJA1105_CC_MULT + clkrate;
|
||
|
|
||
|
mutex_unlock(&priv->ptp_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sja1105_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
||
|
{
|
||
|
struct sja1105_private *priv = ptp_to_sja1105(ptp);
|
||
|
|
||
|
mutex_lock(&priv->ptp_lock);
|
||
|
timecounter_adjtime(&priv->tstamp_tc, delta);
|
||
|
mutex_unlock(&priv->ptp_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u64 sja1105_ptptsclk_read(const struct cyclecounter *cc)
|
||
|
{
|
||
|
struct sja1105_private *priv = cc_to_sja1105(cc);
|
||
|
const struct sja1105_regs *regs = priv->info->regs;
|
||
|
u64 ptptsclk = 0;
|
||
|
int rc;
|
||
|
|
||
|
rc = sja1105_spi_send_int(priv, SPI_READ, regs->ptptsclk,
|
||
|
&ptptsclk, 8);
|
||
|
if (rc < 0)
|
||
|
dev_err_ratelimited(priv->ds->dev,
|
||
|
"failed to read ptp cycle counter: %d\n",
|
||
|
rc);
|
||
|
return ptptsclk;
|
||
|
}
|
||
|
|
||
|
static void sja1105_ptp_overflow_check(struct work_struct *work)
|
||
|
{
|
||
|
struct delayed_work *dw = to_delayed_work(work);
|
||
|
struct sja1105_private *priv = dw_to_sja1105(dw);
|
||
|
struct timespec64 ts;
|
||
|
|
||
|
sja1105_ptp_gettime(&priv->ptp_caps, &ts);
|
||
|
|
||
|
schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL);
|
||
|
}
|
||
|
|
||
|
static const struct ptp_clock_info sja1105_ptp_caps = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.name = "SJA1105 PHC",
|
||
|
.adjfine = sja1105_ptp_adjfine,
|
||
|
.adjtime = sja1105_ptp_adjtime,
|
||
|
.gettime64 = sja1105_ptp_gettime,
|
||
|
.settime64 = sja1105_ptp_settime,
|
||
|
.max_adj = SJA1105_MAX_ADJ_PPB,
|
||
|
};
|
||
|
|
||
|
int sja1105_ptp_clock_register(struct sja1105_private *priv)
|
||
|
{
|
||
|
struct dsa_switch *ds = priv->ds;
|
||
|
|
||
|
/* Set up the cycle counter */
|
||
|
priv->tstamp_cc = (struct cyclecounter) {
|
||
|
.read = sja1105_ptptsclk_read,
|
||
|
.mask = CYCLECOUNTER_MASK(64),
|
||
|
.shift = SJA1105_CC_SHIFT,
|
||
|
.mult = SJA1105_CC_MULT,
|
||
|
};
|
||
|
mutex_init(&priv->ptp_lock);
|
||
|
priv->ptp_caps = sja1105_ptp_caps;
|
||
|
|
||
|
priv->clock = ptp_clock_register(&priv->ptp_caps, ds->dev);
|
||
|
if (IS_ERR_OR_NULL(priv->clock))
|
||
|
return PTR_ERR(priv->clock);
|
||
|
|
||
|
INIT_DELAYED_WORK(&priv->refresh_work, sja1105_ptp_overflow_check);
|
||
|
schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL);
|
||
|
|
||
|
return sja1105_ptp_reset(priv);
|
||
|
}
|
||
|
|
||
|
void sja1105_ptp_clock_unregister(struct sja1105_private *priv)
|
||
|
{
|
||
|
if (IS_ERR_OR_NULL(priv->clock))
|
||
|
return;
|
||
|
|
||
|
cancel_delayed_work_sync(&priv->refresh_work);
|
||
|
ptp_clock_unregister(priv->clock);
|
||
|
priv->clock = NULL;
|
||
|
}
|