2131 lines
61 KiB
C
2131 lines
61 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* uvc_video.c -- USB Video Class driver - Video handling
|
||
|
*
|
||
|
* Copyright (C) 2005-2010
|
||
|
* Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/usb.h>
|
||
|
#include <linux/videodev2.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include <asm/unaligned.h>
|
||
|
|
||
|
#include <media/v4l2-common.h>
|
||
|
|
||
|
#include "uvcvideo.h"
|
||
|
|
||
|
/* ------------------------------------------------------------------------
|
||
|
* UVC Controls
|
||
|
*/
|
||
|
|
||
|
static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
|
||
|
u8 intfnum, u8 cs, void *data, u16 size,
|
||
|
int timeout)
|
||
|
{
|
||
|
u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
|
||
|
unsigned int pipe;
|
||
|
|
||
|
pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
|
||
|
: usb_sndctrlpipe(dev->udev, 0);
|
||
|
type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
|
||
|
|
||
|
return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
|
||
|
unit << 8 | intfnum, data, size, timeout);
|
||
|
}
|
||
|
|
||
|
static const char *uvc_query_name(u8 query)
|
||
|
{
|
||
|
switch (query) {
|
||
|
case UVC_SET_CUR:
|
||
|
return "SET_CUR";
|
||
|
case UVC_GET_CUR:
|
||
|
return "GET_CUR";
|
||
|
case UVC_GET_MIN:
|
||
|
return "GET_MIN";
|
||
|
case UVC_GET_MAX:
|
||
|
return "GET_MAX";
|
||
|
case UVC_GET_RES:
|
||
|
return "GET_RES";
|
||
|
case UVC_GET_LEN:
|
||
|
return "GET_LEN";
|
||
|
case UVC_GET_INFO:
|
||
|
return "GET_INFO";
|
||
|
case UVC_GET_DEF:
|
||
|
return "GET_DEF";
|
||
|
default:
|
||
|
return "<invalid>";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
|
||
|
u8 intfnum, u8 cs, void *data, u16 size)
|
||
|
{
|
||
|
int ret;
|
||
|
u8 error;
|
||
|
u8 tmp;
|
||
|
|
||
|
ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
|
||
|
UVC_CTRL_CONTROL_TIMEOUT);
|
||
|
if (likely(ret == size))
|
||
|
return 0;
|
||
|
|
||
|
uvc_printk(KERN_ERR,
|
||
|
"Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
|
||
|
uvc_query_name(query), cs, unit, ret, size);
|
||
|
|
||
|
if (ret != -EPIPE)
|
||
|
return ret;
|
||
|
|
||
|
tmp = *(u8 *)data;
|
||
|
|
||
|
ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
|
||
|
UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
|
||
|
UVC_CTRL_CONTROL_TIMEOUT);
|
||
|
|
||
|
error = *(u8 *)data;
|
||
|
*(u8 *)data = tmp;
|
||
|
|
||
|
if (ret != 1)
|
||
|
return ret < 0 ? ret : -EPIPE;
|
||
|
|
||
|
uvc_trace(UVC_TRACE_CONTROL, "Control error %u\n", error);
|
||
|
|
||
|
switch (error) {
|
||
|
case 0:
|
||
|
/* Cannot happen - we received a STALL */
|
||
|
return -EPIPE;
|
||
|
case 1: /* Not ready */
|
||
|
return -EBUSY;
|
||
|
case 2: /* Wrong state */
|
||
|
return -EILSEQ;
|
||
|
case 3: /* Power */
|
||
|
return -EREMOTE;
|
||
|
case 4: /* Out of range */
|
||
|
return -ERANGE;
|
||
|
case 5: /* Invalid unit */
|
||
|
case 6: /* Invalid control */
|
||
|
case 7: /* Invalid Request */
|
||
|
case 8: /* Invalid value within range */
|
||
|
return -EINVAL;
|
||
|
default: /* reserved or unknown */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return -EPIPE;
|
||
|
}
|
||
|
|
||
|
static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
|
||
|
struct uvc_streaming_control *ctrl)
|
||
|
{
|
||
|
struct uvc_format *format = NULL;
|
||
|
struct uvc_frame *frame = NULL;
|
||
|
unsigned int i;
|
||
|
|
||
|
for (i = 0; i < stream->nformats; ++i) {
|
||
|
if (stream->format[i].index == ctrl->bFormatIndex) {
|
||
|
format = &stream->format[i];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (format == NULL)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < format->nframes; ++i) {
|
||
|
if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
|
||
|
frame = &format->frame[i];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (frame == NULL)
|
||
|
return;
|
||
|
|
||
|
if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
|
||
|
(ctrl->dwMaxVideoFrameSize == 0 &&
|
||
|
stream->dev->uvc_version < 0x0110))
|
||
|
ctrl->dwMaxVideoFrameSize =
|
||
|
frame->dwMaxVideoFrameBufferSize;
|
||
|
|
||
|
/* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
|
||
|
* compute the bandwidth on 16 bits and erroneously sign-extend it to
|
||
|
* 32 bits, resulting in a huge bandwidth value. Detect and fix that
|
||
|
* condition by setting the 16 MSBs to 0 when they're all equal to 1.
|
||
|
*/
|
||
|
if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
|
||
|
ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
|
||
|
|
||
|
if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
|
||
|
stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
|
||
|
stream->intf->num_altsetting > 1) {
|
||
|
u32 interval;
|
||
|
u32 bandwidth;
|
||
|
|
||
|
interval = (ctrl->dwFrameInterval > 100000)
|
||
|
? ctrl->dwFrameInterval
|
||
|
: frame->dwFrameInterval[0];
|
||
|
|
||
|
/* Compute a bandwidth estimation by multiplying the frame
|
||
|
* size by the number of video frames per second, divide the
|
||
|
* result by the number of USB frames (or micro-frames for
|
||
|
* high-speed devices) per second and add the UVC header size
|
||
|
* (assumed to be 12 bytes long).
|
||
|
*/
|
||
|
bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
|
||
|
bandwidth *= 10000000 / interval + 1;
|
||
|
bandwidth /= 1000;
|
||
|
if (stream->dev->udev->speed == USB_SPEED_HIGH)
|
||
|
bandwidth /= 8;
|
||
|
bandwidth += 12;
|
||
|
|
||
|
/* The bandwidth estimate is too low for many cameras. Don't use
|
||
|
* maximum packet sizes lower than 1024 bytes to try and work
|
||
|
* around the problem. According to measurements done on two
|
||
|
* different camera models, the value is high enough to get most
|
||
|
* resolutions working while not preventing two simultaneous
|
||
|
* VGA streams at 15 fps.
|
||
|
*/
|
||
|
bandwidth = max_t(u32, bandwidth, 1024);
|
||
|
|
||
|
ctrl->dwMaxPayloadTransferSize = bandwidth;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
|
||
|
{
|
||
|
/*
|
||
|
* Return the size of the video probe and commit controls, which depends
|
||
|
* on the protocol version.
|
||
|
*/
|
||
|
if (stream->dev->uvc_version < 0x0110)
|
||
|
return 26;
|
||
|
else if (stream->dev->uvc_version < 0x0150)
|
||
|
return 34;
|
||
|
else
|
||
|
return 48;
|
||
|
}
|
||
|
|
||
|
static int uvc_get_video_ctrl(struct uvc_streaming *stream,
|
||
|
struct uvc_streaming_control *ctrl, int probe, u8 query)
|
||
|
{
|
||
|
u16 size = uvc_video_ctrl_size(stream);
|
||
|
u8 *data;
|
||
|
int ret;
|
||
|
|
||
|
if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
|
||
|
query == UVC_GET_DEF)
|
||
|
return -EIO;
|
||
|
|
||
|
data = kmalloc(size, GFP_KERNEL);
|
||
|
if (data == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
|
||
|
probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
|
||
|
size, uvc_timeout_param);
|
||
|
|
||
|
if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
|
||
|
/* Some cameras, mostly based on Bison Electronics chipsets,
|
||
|
* answer a GET_MIN or GET_MAX request with the wCompQuality
|
||
|
* field only.
|
||
|
*/
|
||
|
uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
|
||
|
"compliance - GET_MIN/MAX(PROBE) incorrectly "
|
||
|
"supported. Enabling workaround.\n");
|
||
|
memset(ctrl, 0, sizeof(*ctrl));
|
||
|
ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
|
||
|
ret = 0;
|
||
|
goto out;
|
||
|
} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
|
||
|
/* Many cameras don't support the GET_DEF request on their
|
||
|
* video probe control. Warn once and return, the caller will
|
||
|
* fall back to GET_CUR.
|
||
|
*/
|
||
|
uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
|
||
|
"compliance - GET_DEF(PROBE) not supported. "
|
||
|
"Enabling workaround.\n");
|
||
|
ret = -EIO;
|
||
|
goto out;
|
||
|
} else if (ret != size) {
|
||
|
uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
|
||
|
"%d (exp. %u).\n", query, probe ? "probe" : "commit",
|
||
|
ret, size);
|
||
|
ret = -EIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
|
||
|
ctrl->bFormatIndex = data[2];
|
||
|
ctrl->bFrameIndex = data[3];
|
||
|
ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
|
||
|
ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
|
||
|
ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
|
||
|
ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
|
||
|
ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
|
||
|
ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
|
||
|
ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
|
||
|
ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
|
||
|
|
||
|
if (size >= 34) {
|
||
|
ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
|
||
|
ctrl->bmFramingInfo = data[30];
|
||
|
ctrl->bPreferedVersion = data[31];
|
||
|
ctrl->bMinVersion = data[32];
|
||
|
ctrl->bMaxVersion = data[33];
|
||
|
} else {
|
||
|
ctrl->dwClockFrequency = stream->dev->clock_frequency;
|
||
|
ctrl->bmFramingInfo = 0;
|
||
|
ctrl->bPreferedVersion = 0;
|
||
|
ctrl->bMinVersion = 0;
|
||
|
ctrl->bMaxVersion = 0;
|
||
|
}
|
||
|
|
||
|
/* Some broken devices return null or wrong dwMaxVideoFrameSize and
|
||
|
* dwMaxPayloadTransferSize fields. Try to get the value from the
|
||
|
* format and frame descriptors.
|
||
|
*/
|
||
|
uvc_fixup_video_ctrl(stream, ctrl);
|
||
|
ret = 0;
|
||
|
|
||
|
out:
|
||
|
kfree(data);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int uvc_set_video_ctrl(struct uvc_streaming *stream,
|
||
|
struct uvc_streaming_control *ctrl, int probe)
|
||
|
{
|
||
|
u16 size = uvc_video_ctrl_size(stream);
|
||
|
u8 *data;
|
||
|
int ret;
|
||
|
|
||
|
data = kzalloc(size, GFP_KERNEL);
|
||
|
if (data == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
|
||
|
data[2] = ctrl->bFormatIndex;
|
||
|
data[3] = ctrl->bFrameIndex;
|
||
|
*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
|
||
|
*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
|
||
|
*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
|
||
|
*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
|
||
|
*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
|
||
|
*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
|
||
|
put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
|
||
|
put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
|
||
|
|
||
|
if (size >= 34) {
|
||
|
put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
|
||
|
data[30] = ctrl->bmFramingInfo;
|
||
|
data[31] = ctrl->bPreferedVersion;
|
||
|
data[32] = ctrl->bMinVersion;
|
||
|
data[33] = ctrl->bMaxVersion;
|
||
|
}
|
||
|
|
||
|
ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
|
||
|
probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
|
||
|
size, uvc_timeout_param);
|
||
|
if (ret != size) {
|
||
|
uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
|
||
|
"%d (exp. %u).\n", probe ? "probe" : "commit",
|
||
|
ret, size);
|
||
|
ret = -EIO;
|
||
|
}
|
||
|
|
||
|
kfree(data);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int uvc_probe_video(struct uvc_streaming *stream,
|
||
|
struct uvc_streaming_control *probe)
|
||
|
{
|
||
|
struct uvc_streaming_control probe_min, probe_max;
|
||
|
u16 bandwidth;
|
||
|
unsigned int i;
|
||
|
int ret;
|
||
|
|
||
|
/* Perform probing. The device should adjust the requested values
|
||
|
* according to its capabilities. However, some devices, namely the
|
||
|
* first generation UVC Logitech webcams, don't implement the Video
|
||
|
* Probe control properly, and just return the needed bandwidth. For
|
||
|
* that reason, if the needed bandwidth exceeds the maximum available
|
||
|
* bandwidth, try to lower the quality.
|
||
|
*/
|
||
|
ret = uvc_set_video_ctrl(stream, probe, 1);
|
||
|
if (ret < 0)
|
||
|
goto done;
|
||
|
|
||
|
/* Get the minimum and maximum values for compression settings. */
|
||
|
if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
|
||
|
ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
|
||
|
if (ret < 0)
|
||
|
goto done;
|
||
|
ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
|
||
|
if (ret < 0)
|
||
|
goto done;
|
||
|
|
||
|
probe->wCompQuality = probe_max.wCompQuality;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 2; ++i) {
|
||
|
ret = uvc_set_video_ctrl(stream, probe, 1);
|
||
|
if (ret < 0)
|
||
|
goto done;
|
||
|
ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
|
||
|
if (ret < 0)
|
||
|
goto done;
|
||
|
|
||
|
if (stream->intf->num_altsetting == 1)
|
||
|
break;
|
||
|
|
||
|
bandwidth = probe->dwMaxPayloadTransferSize;
|
||
|
if (bandwidth <= stream->maxpsize)
|
||
|
break;
|
||
|
|
||
|
if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
|
||
|
ret = -ENOSPC;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* TODO: negotiate compression parameters */
|
||
|
probe->wKeyFrameRate = probe_min.wKeyFrameRate;
|
||
|
probe->wPFrameRate = probe_min.wPFrameRate;
|
||
|
probe->wCompQuality = probe_max.wCompQuality;
|
||
|
probe->wCompWindowSize = probe_min.wCompWindowSize;
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int uvc_commit_video(struct uvc_streaming *stream,
|
||
|
struct uvc_streaming_control *probe)
|
||
|
{
|
||
|
return uvc_set_video_ctrl(stream, probe, 0);
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* Clocks and timestamps
|
||
|
*/
|
||
|
|
||
|
static inline ktime_t uvc_video_get_time(void)
|
||
|
{
|
||
|
if (uvc_clock_param == CLOCK_MONOTONIC)
|
||
|
return ktime_get();
|
||
|
else
|
||
|
return ktime_get_real();
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
|
||
|
const u8 *data, int len)
|
||
|
{
|
||
|
struct uvc_clock_sample *sample;
|
||
|
unsigned int header_size;
|
||
|
bool has_pts = false;
|
||
|
bool has_scr = false;
|
||
|
unsigned long flags;
|
||
|
ktime_t time;
|
||
|
u16 host_sof;
|
||
|
u16 dev_sof;
|
||
|
|
||
|
switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
|
||
|
case UVC_STREAM_PTS | UVC_STREAM_SCR:
|
||
|
header_size = 12;
|
||
|
has_pts = true;
|
||
|
has_scr = true;
|
||
|
break;
|
||
|
case UVC_STREAM_PTS:
|
||
|
header_size = 6;
|
||
|
has_pts = true;
|
||
|
break;
|
||
|
case UVC_STREAM_SCR:
|
||
|
header_size = 8;
|
||
|
has_scr = true;
|
||
|
break;
|
||
|
default:
|
||
|
header_size = 2;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Check for invalid headers. */
|
||
|
if (len < header_size)
|
||
|
return;
|
||
|
|
||
|
/* Extract the timestamps:
|
||
|
*
|
||
|
* - store the frame PTS in the buffer structure
|
||
|
* - if the SCR field is present, retrieve the host SOF counter and
|
||
|
* kernel timestamps and store them with the SCR STC and SOF fields
|
||
|
* in the ring buffer
|
||
|
*/
|
||
|
if (has_pts && buf != NULL)
|
||
|
buf->pts = get_unaligned_le32(&data[2]);
|
||
|
|
||
|
if (!has_scr)
|
||
|
return;
|
||
|
|
||
|
/* To limit the amount of data, drop SCRs with an SOF identical to the
|
||
|
* previous one.
|
||
|
*/
|
||
|
dev_sof = get_unaligned_le16(&data[header_size - 2]);
|
||
|
if (dev_sof == stream->clock.last_sof)
|
||
|
return;
|
||
|
|
||
|
stream->clock.last_sof = dev_sof;
|
||
|
|
||
|
host_sof = usb_get_current_frame_number(stream->dev->udev);
|
||
|
time = uvc_video_get_time();
|
||
|
|
||
|
/* The UVC specification allows device implementations that can't obtain
|
||
|
* the USB frame number to keep their own frame counters as long as they
|
||
|
* match the size and frequency of the frame number associated with USB
|
||
|
* SOF tokens. The SOF values sent by such devices differ from the USB
|
||
|
* SOF tokens by a fixed offset that needs to be estimated and accounted
|
||
|
* for to make timestamp recovery as accurate as possible.
|
||
|
*
|
||
|
* The offset is estimated the first time a device SOF value is received
|
||
|
* as the difference between the host and device SOF values. As the two
|
||
|
* SOF values can differ slightly due to transmission delays, consider
|
||
|
* that the offset is null if the difference is not higher than 10 ms
|
||
|
* (negative differences can not happen and are thus considered as an
|
||
|
* offset). The video commit control wDelay field should be used to
|
||
|
* compute a dynamic threshold instead of using a fixed 10 ms value, but
|
||
|
* devices don't report reliable wDelay values.
|
||
|
*
|
||
|
* See uvc_video_clock_host_sof() for an explanation regarding why only
|
||
|
* the 8 LSBs of the delta are kept.
|
||
|
*/
|
||
|
if (stream->clock.sof_offset == (u16)-1) {
|
||
|
u16 delta_sof = (host_sof - dev_sof) & 255;
|
||
|
if (delta_sof >= 10)
|
||
|
stream->clock.sof_offset = delta_sof;
|
||
|
else
|
||
|
stream->clock.sof_offset = 0;
|
||
|
}
|
||
|
|
||
|
dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
|
||
|
|
||
|
spin_lock_irqsave(&stream->clock.lock, flags);
|
||
|
|
||
|
sample = &stream->clock.samples[stream->clock.head];
|
||
|
sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
|
||
|
sample->dev_sof = dev_sof;
|
||
|
sample->host_sof = host_sof;
|
||
|
sample->host_time = time;
|
||
|
|
||
|
/* Update the sliding window head and count. */
|
||
|
stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
|
||
|
|
||
|
if (stream->clock.count < stream->clock.size)
|
||
|
stream->clock.count++;
|
||
|
|
||
|
spin_unlock_irqrestore(&stream->clock.lock, flags);
|
||
|
}
|
||
|
|
||
|
static void uvc_video_clock_reset(struct uvc_streaming *stream)
|
||
|
{
|
||
|
struct uvc_clock *clock = &stream->clock;
|
||
|
|
||
|
clock->head = 0;
|
||
|
clock->count = 0;
|
||
|
clock->last_sof = -1;
|
||
|
clock->sof_offset = -1;
|
||
|
}
|
||
|
|
||
|
static int uvc_video_clock_init(struct uvc_streaming *stream)
|
||
|
{
|
||
|
struct uvc_clock *clock = &stream->clock;
|
||
|
|
||
|
spin_lock_init(&clock->lock);
|
||
|
clock->size = 32;
|
||
|
|
||
|
clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
|
||
|
GFP_KERNEL);
|
||
|
if (clock->samples == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
uvc_video_clock_reset(stream);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
|
||
|
{
|
||
|
kfree(stream->clock.samples);
|
||
|
stream->clock.samples = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* uvc_video_clock_host_sof - Return the host SOF value for a clock sample
|
||
|
*
|
||
|
* Host SOF counters reported by usb_get_current_frame_number() usually don't
|
||
|
* cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
|
||
|
* schedule window. They can be limited to 8, 9 or 10 bits depending on the host
|
||
|
* controller and its configuration.
|
||
|
*
|
||
|
* We thus need to recover the SOF value corresponding to the host frame number.
|
||
|
* As the device and host frame numbers are sampled in a short interval, the
|
||
|
* difference between their values should be equal to a small delta plus an
|
||
|
* integer multiple of 256 caused by the host frame number limited precision.
|
||
|
*
|
||
|
* To obtain the recovered host SOF value, compute the small delta by masking
|
||
|
* the high bits of the host frame counter and device SOF difference and add it
|
||
|
* to the device SOF value.
|
||
|
*/
|
||
|
static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
|
||
|
{
|
||
|
/* The delta value can be negative. */
|
||
|
s8 delta_sof;
|
||
|
|
||
|
delta_sof = (sample->host_sof - sample->dev_sof) & 255;
|
||
|
|
||
|
return (sample->dev_sof + delta_sof) & 2047;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* uvc_video_clock_update - Update the buffer timestamp
|
||
|
*
|
||
|
* This function converts the buffer PTS timestamp to the host clock domain by
|
||
|
* going through the USB SOF clock domain and stores the result in the V4L2
|
||
|
* buffer timestamp field.
|
||
|
*
|
||
|
* The relationship between the device clock and the host clock isn't known.
|
||
|
* However, the device and the host share the common USB SOF clock which can be
|
||
|
* used to recover that relationship.
|
||
|
*
|
||
|
* The relationship between the device clock and the USB SOF clock is considered
|
||
|
* to be linear over the clock samples sliding window and is given by
|
||
|
*
|
||
|
* SOF = m * PTS + p
|
||
|
*
|
||
|
* Several methods to compute the slope (m) and intercept (p) can be used. As
|
||
|
* the clock drift should be small compared to the sliding window size, we
|
||
|
* assume that the line that goes through the points at both ends of the window
|
||
|
* is a good approximation. Naming those points P1 and P2, we get
|
||
|
*
|
||
|
* SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
|
||
|
* + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
|
||
|
*
|
||
|
* to avoid losing precision in the division. Similarly, the host timestamp is
|
||
|
* computed with
|
||
|
*
|
||
|
* TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
|
||
|
*
|
||
|
* SOF values are coded on 11 bits by USB. We extend their precision with 16
|
||
|
* decimal bits, leading to a 11.16 coding.
|
||
|
*
|
||
|
* TODO: To avoid surprises with device clock values, PTS/STC timestamps should
|
||
|
* be normalized using the nominal device clock frequency reported through the
|
||
|
* UVC descriptors.
|
||
|
*
|
||
|
* Both the PTS/STC and SOF counters roll over, after a fixed but device
|
||
|
* specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
|
||
|
* sliding window size is smaller than the rollover period, differences computed
|
||
|
* on unsigned integers will produce the correct result. However, the p term in
|
||
|
* the linear relations will be miscomputed.
|
||
|
*
|
||
|
* To fix the issue, we subtract a constant from the PTS and STC values to bring
|
||
|
* PTS to half the 32 bit STC range. The sliding window STC values then fit into
|
||
|
* the 32 bit range without any rollover.
|
||
|
*
|
||
|
* Similarly, we add 2048 to the device SOF values to make sure that the SOF
|
||
|
* computed by (1) will never be smaller than 0. This offset is then compensated
|
||
|
* by adding 2048 to the SOF values used in (2). However, this doesn't prevent
|
||
|
* rollovers between (1) and (2): the SOF value computed by (1) can be slightly
|
||
|
* lower than 4096, and the host SOF counters can have rolled over to 2048. This
|
||
|
* case is handled by subtracting 2048 from the SOF value if it exceeds the host
|
||
|
* SOF value at the end of the sliding window.
|
||
|
*
|
||
|
* Finally we subtract a constant from the host timestamps to bring the first
|
||
|
* timestamp of the sliding window to 1s.
|
||
|
*/
|
||
|
void uvc_video_clock_update(struct uvc_streaming *stream,
|
||
|
struct vb2_v4l2_buffer *vbuf,
|
||
|
struct uvc_buffer *buf)
|
||
|
{
|
||
|
struct uvc_clock *clock = &stream->clock;
|
||
|
struct uvc_clock_sample *first;
|
||
|
struct uvc_clock_sample *last;
|
||
|
unsigned long flags;
|
||
|
u64 timestamp;
|
||
|
u32 delta_stc;
|
||
|
u32 y1, y2;
|
||
|
u32 x1, x2;
|
||
|
u32 mean;
|
||
|
u32 sof;
|
||
|
u64 y;
|
||
|
|
||
|
if (!uvc_hw_timestamps_param)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* We will get called from __vb2_queue_cancel() if there are buffers
|
||
|
* done but not dequeued by the user, but the sample array has already
|
||
|
* been released at that time. Just bail out in that case.
|
||
|
*/
|
||
|
if (!clock->samples)
|
||
|
return;
|
||
|
|
||
|
spin_lock_irqsave(&clock->lock, flags);
|
||
|
|
||
|
if (clock->count < clock->size)
|
||
|
goto done;
|
||
|
|
||
|
first = &clock->samples[clock->head];
|
||
|
last = &clock->samples[(clock->head - 1) % clock->size];
|
||
|
|
||
|
/* First step, PTS to SOF conversion. */
|
||
|
delta_stc = buf->pts - (1UL << 31);
|
||
|
x1 = first->dev_stc - delta_stc;
|
||
|
x2 = last->dev_stc - delta_stc;
|
||
|
if (x1 == x2)
|
||
|
goto done;
|
||
|
|
||
|
y1 = (first->dev_sof + 2048) << 16;
|
||
|
y2 = (last->dev_sof + 2048) << 16;
|
||
|
if (y2 < y1)
|
||
|
y2 += 2048 << 16;
|
||
|
|
||
|
y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
|
||
|
- (u64)y2 * (u64)x1;
|
||
|
y = div_u64(y, x2 - x1);
|
||
|
|
||
|
sof = y;
|
||
|
|
||
|
uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
|
||
|
"(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
|
||
|
stream->dev->name, buf->pts,
|
||
|
y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
|
||
|
sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
|
||
|
x1, x2, y1, y2, clock->sof_offset);
|
||
|
|
||
|
/* Second step, SOF to host clock conversion. */
|
||
|
x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
|
||
|
x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
|
||
|
if (x2 < x1)
|
||
|
x2 += 2048 << 16;
|
||
|
if (x1 == x2)
|
||
|
goto done;
|
||
|
|
||
|
y1 = NSEC_PER_SEC;
|
||
|
y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
|
||
|
|
||
|
/* Interpolated and host SOF timestamps can wrap around at slightly
|
||
|
* different times. Handle this by adding or removing 2048 to or from
|
||
|
* the computed SOF value to keep it close to the SOF samples mean
|
||
|
* value.
|
||
|
*/
|
||
|
mean = (x1 + x2) / 2;
|
||
|
if (mean - (1024 << 16) > sof)
|
||
|
sof += 2048 << 16;
|
||
|
else if (sof > mean + (1024 << 16))
|
||
|
sof -= 2048 << 16;
|
||
|
|
||
|
y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
|
||
|
- (u64)y2 * (u64)x1;
|
||
|
y = div_u64(y, x2 - x1);
|
||
|
|
||
|
timestamp = ktime_to_ns(first->host_time) + y - y1;
|
||
|
|
||
|
uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu "
|
||
|
"buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
|
||
|
stream->dev->name,
|
||
|
sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
|
||
|
y, timestamp, vbuf->vb2_buf.timestamp,
|
||
|
x1, first->host_sof, first->dev_sof,
|
||
|
x2, last->host_sof, last->dev_sof, y1, y2);
|
||
|
|
||
|
/* Update the V4L2 buffer. */
|
||
|
vbuf->vb2_buf.timestamp = timestamp;
|
||
|
|
||
|
done:
|
||
|
spin_unlock_irqrestore(&clock->lock, flags);
|
||
|
}
|
||
|
|
||
|
/* ------------------------------------------------------------------------
|
||
|
* Stream statistics
|
||
|
*/
|
||
|
|
||
|
static void uvc_video_stats_decode(struct uvc_streaming *stream,
|
||
|
const u8 *data, int len)
|
||
|
{
|
||
|
unsigned int header_size;
|
||
|
bool has_pts = false;
|
||
|
bool has_scr = false;
|
||
|
u16 uninitialized_var(scr_sof);
|
||
|
u32 uninitialized_var(scr_stc);
|
||
|
u32 uninitialized_var(pts);
|
||
|
|
||
|
if (stream->stats.stream.nb_frames == 0 &&
|
||
|
stream->stats.frame.nb_packets == 0)
|
||
|
stream->stats.stream.start_ts = ktime_get();
|
||
|
|
||
|
switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
|
||
|
case UVC_STREAM_PTS | UVC_STREAM_SCR:
|
||
|
header_size = 12;
|
||
|
has_pts = true;
|
||
|
has_scr = true;
|
||
|
break;
|
||
|
case UVC_STREAM_PTS:
|
||
|
header_size = 6;
|
||
|
has_pts = true;
|
||
|
break;
|
||
|
case UVC_STREAM_SCR:
|
||
|
header_size = 8;
|
||
|
has_scr = true;
|
||
|
break;
|
||
|
default:
|
||
|
header_size = 2;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Check for invalid headers. */
|
||
|
if (len < header_size || data[0] < header_size) {
|
||
|
stream->stats.frame.nb_invalid++;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Extract the timestamps. */
|
||
|
if (has_pts)
|
||
|
pts = get_unaligned_le32(&data[2]);
|
||
|
|
||
|
if (has_scr) {
|
||
|
scr_stc = get_unaligned_le32(&data[header_size - 6]);
|
||
|
scr_sof = get_unaligned_le16(&data[header_size - 2]);
|
||
|
}
|
||
|
|
||
|
/* Is PTS constant through the whole frame ? */
|
||
|
if (has_pts && stream->stats.frame.nb_pts) {
|
||
|
if (stream->stats.frame.pts != pts) {
|
||
|
stream->stats.frame.nb_pts_diffs++;
|
||
|
stream->stats.frame.last_pts_diff =
|
||
|
stream->stats.frame.nb_packets;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (has_pts) {
|
||
|
stream->stats.frame.nb_pts++;
|
||
|
stream->stats.frame.pts = pts;
|
||
|
}
|
||
|
|
||
|
/* Do all frames have a PTS in their first non-empty packet, or before
|
||
|
* their first empty packet ?
|
||
|
*/
|
||
|
if (stream->stats.frame.size == 0) {
|
||
|
if (len > header_size)
|
||
|
stream->stats.frame.has_initial_pts = has_pts;
|
||
|
if (len == header_size && has_pts)
|
||
|
stream->stats.frame.has_early_pts = true;
|
||
|
}
|
||
|
|
||
|
/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
|
||
|
if (has_scr && stream->stats.frame.nb_scr) {
|
||
|
if (stream->stats.frame.scr_stc != scr_stc)
|
||
|
stream->stats.frame.nb_scr_diffs++;
|
||
|
}
|
||
|
|
||
|
if (has_scr) {
|
||
|
/* Expand the SOF counter to 32 bits and store its value. */
|
||
|
if (stream->stats.stream.nb_frames > 0 ||
|
||
|
stream->stats.frame.nb_scr > 0)
|
||
|
stream->stats.stream.scr_sof_count +=
|
||
|
(scr_sof - stream->stats.stream.scr_sof) % 2048;
|
||
|
stream->stats.stream.scr_sof = scr_sof;
|
||
|
|
||
|
stream->stats.frame.nb_scr++;
|
||
|
stream->stats.frame.scr_stc = scr_stc;
|
||
|
stream->stats.frame.scr_sof = scr_sof;
|
||
|
|
||
|
if (scr_sof < stream->stats.stream.min_sof)
|
||
|
stream->stats.stream.min_sof = scr_sof;
|
||
|
if (scr_sof > stream->stats.stream.max_sof)
|
||
|
stream->stats.stream.max_sof = scr_sof;
|
||
|
}
|
||
|
|
||
|
/* Record the first non-empty packet number. */
|
||
|
if (stream->stats.frame.size == 0 && len > header_size)
|
||
|
stream->stats.frame.first_data = stream->stats.frame.nb_packets;
|
||
|
|
||
|
/* Update the frame size. */
|
||
|
stream->stats.frame.size += len - header_size;
|
||
|
|
||
|
/* Update the packets counters. */
|
||
|
stream->stats.frame.nb_packets++;
|
||
|
if (len <= header_size)
|
||
|
stream->stats.frame.nb_empty++;
|
||
|
|
||
|
if (data[1] & UVC_STREAM_ERR)
|
||
|
stream->stats.frame.nb_errors++;
|
||
|
}
|
||
|
|
||
|
static void uvc_video_stats_update(struct uvc_streaming *stream)
|
||
|
{
|
||
|
struct uvc_stats_frame *frame = &stream->stats.frame;
|
||
|
|
||
|
uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
|
||
|
"%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
|
||
|
"last pts/stc/sof %u/%u/%u\n",
|
||
|
stream->sequence, frame->first_data,
|
||
|
frame->nb_packets - frame->nb_empty, frame->nb_packets,
|
||
|
frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
|
||
|
frame->has_early_pts ? "" : "!",
|
||
|
frame->has_initial_pts ? "" : "!",
|
||
|
frame->nb_scr_diffs, frame->nb_scr,
|
||
|
frame->pts, frame->scr_stc, frame->scr_sof);
|
||
|
|
||
|
stream->stats.stream.nb_frames++;
|
||
|
stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
|
||
|
stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
|
||
|
stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
|
||
|
stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
|
||
|
|
||
|
if (frame->has_early_pts)
|
||
|
stream->stats.stream.nb_pts_early++;
|
||
|
if (frame->has_initial_pts)
|
||
|
stream->stats.stream.nb_pts_initial++;
|
||
|
if (frame->last_pts_diff <= frame->first_data)
|
||
|
stream->stats.stream.nb_pts_constant++;
|
||
|
if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
|
||
|
stream->stats.stream.nb_scr_count_ok++;
|
||
|
if (frame->nb_scr_diffs + 1 == frame->nb_scr)
|
||
|
stream->stats.stream.nb_scr_diffs_ok++;
|
||
|
|
||
|
memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
|
||
|
}
|
||
|
|
||
|
size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
|
||
|
size_t size)
|
||
|
{
|
||
|
unsigned int scr_sof_freq;
|
||
|
unsigned int duration;
|
||
|
size_t count = 0;
|
||
|
|
||
|
/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
|
||
|
* frequency this will not overflow before more than 1h.
|
||
|
*/
|
||
|
duration = ktime_ms_delta(stream->stats.stream.stop_ts,
|
||
|
stream->stats.stream.start_ts);
|
||
|
if (duration != 0)
|
||
|
scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
|
||
|
/ duration;
|
||
|
else
|
||
|
scr_sof_freq = 0;
|
||
|
|
||
|
count += scnprintf(buf + count, size - count,
|
||
|
"frames: %u\npackets: %u\nempty: %u\n"
|
||
|
"errors: %u\ninvalid: %u\n",
|
||
|
stream->stats.stream.nb_frames,
|
||
|
stream->stats.stream.nb_packets,
|
||
|
stream->stats.stream.nb_empty,
|
||
|
stream->stats.stream.nb_errors,
|
||
|
stream->stats.stream.nb_invalid);
|
||
|
count += scnprintf(buf + count, size - count,
|
||
|
"pts: %u early, %u initial, %u ok\n",
|
||
|
stream->stats.stream.nb_pts_early,
|
||
|
stream->stats.stream.nb_pts_initial,
|
||
|
stream->stats.stream.nb_pts_constant);
|
||
|
count += scnprintf(buf + count, size - count,
|
||
|
"scr: %u count ok, %u diff ok\n",
|
||
|
stream->stats.stream.nb_scr_count_ok,
|
||
|
stream->stats.stream.nb_scr_diffs_ok);
|
||
|
count += scnprintf(buf + count, size - count,
|
||
|
"sof: %u <= sof <= %u, freq %u.%03u kHz\n",
|
||
|
stream->stats.stream.min_sof,
|
||
|
stream->stats.stream.max_sof,
|
||
|
scr_sof_freq / 1000, scr_sof_freq % 1000);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static void uvc_video_stats_start(struct uvc_streaming *stream)
|
||
|
{
|
||
|
memset(&stream->stats, 0, sizeof(stream->stats));
|
||
|
stream->stats.stream.min_sof = 2048;
|
||
|
}
|
||
|
|
||
|
static void uvc_video_stats_stop(struct uvc_streaming *stream)
|
||
|
{
|
||
|
stream->stats.stream.stop_ts = ktime_get();
|
||
|
}
|
||
|
|
||
|
/* ------------------------------------------------------------------------
|
||
|
* Video codecs
|
||
|
*/
|
||
|
|
||
|
/* Video payload decoding is handled by uvc_video_decode_start(),
|
||
|
* uvc_video_decode_data() and uvc_video_decode_end().
|
||
|
*
|
||
|
* uvc_video_decode_start is called with URB data at the start of a bulk or
|
||
|
* isochronous payload. It processes header data and returns the header size
|
||
|
* in bytes if successful. If an error occurs, it returns a negative error
|
||
|
* code. The following error codes have special meanings.
|
||
|
*
|
||
|
* - EAGAIN informs the caller that the current video buffer should be marked
|
||
|
* as done, and that the function should be called again with the same data
|
||
|
* and a new video buffer. This is used when end of frame conditions can be
|
||
|
* reliably detected at the beginning of the next frame only.
|
||
|
*
|
||
|
* If an error other than -EAGAIN is returned, the caller will drop the current
|
||
|
* payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
|
||
|
* made until the next payload. -ENODATA can be used to drop the current
|
||
|
* payload if no other error code is appropriate.
|
||
|
*
|
||
|
* uvc_video_decode_data is called for every URB with URB data. It copies the
|
||
|
* data to the video buffer.
|
||
|
*
|
||
|
* uvc_video_decode_end is called with header data at the end of a bulk or
|
||
|
* isochronous payload. It performs any additional header data processing and
|
||
|
* returns 0 or a negative error code if an error occurred. As header data have
|
||
|
* already been processed by uvc_video_decode_start, this functions isn't
|
||
|
* required to perform sanity checks a second time.
|
||
|
*
|
||
|
* For isochronous transfers where a payload is always transferred in a single
|
||
|
* URB, the three functions will be called in a row.
|
||
|
*
|
||
|
* To let the decoder process header data and update its internal state even
|
||
|
* when no video buffer is available, uvc_video_decode_start must be prepared
|
||
|
* to be called with a NULL buf parameter. uvc_video_decode_data and
|
||
|
* uvc_video_decode_end will never be called with a NULL buffer.
|
||
|
*/
|
||
|
static int uvc_video_decode_start(struct uvc_streaming *stream,
|
||
|
struct uvc_buffer *buf, const u8 *data, int len)
|
||
|
{
|
||
|
u8 fid;
|
||
|
|
||
|
/* Sanity checks:
|
||
|
* - packet must be at least 2 bytes long
|
||
|
* - bHeaderLength value must be at least 2 bytes (see above)
|
||
|
* - bHeaderLength value can't be larger than the packet size.
|
||
|
*/
|
||
|
if (len < 2 || data[0] < 2 || data[0] > len) {
|
||
|
stream->stats.frame.nb_invalid++;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
fid = data[1] & UVC_STREAM_FID;
|
||
|
|
||
|
/* Increase the sequence number regardless of any buffer states, so
|
||
|
* that discontinuous sequence numbers always indicate lost frames.
|
||
|
*/
|
||
|
if (stream->last_fid != fid) {
|
||
|
stream->sequence++;
|
||
|
if (stream->sequence)
|
||
|
uvc_video_stats_update(stream);
|
||
|
}
|
||
|
|
||
|
uvc_video_clock_decode(stream, buf, data, len);
|
||
|
uvc_video_stats_decode(stream, data, len);
|
||
|
|
||
|
/* Store the payload FID bit and return immediately when the buffer is
|
||
|
* NULL.
|
||
|
*/
|
||
|
if (buf == NULL) {
|
||
|
stream->last_fid = fid;
|
||
|
return -ENODATA;
|
||
|
}
|
||
|
|
||
|
/* Mark the buffer as bad if the error bit is set. */
|
||
|
if (data[1] & UVC_STREAM_ERR) {
|
||
|
uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
|
||
|
"set).\n");
|
||
|
buf->error = 1;
|
||
|
}
|
||
|
|
||
|
/* Synchronize to the input stream by waiting for the FID bit to be
|
||
|
* toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
|
||
|
* stream->last_fid is initialized to -1, so the first isochronous
|
||
|
* frame will always be in sync.
|
||
|
*
|
||
|
* If the device doesn't toggle the FID bit, invert stream->last_fid
|
||
|
* when the EOF bit is set to force synchronisation on the next packet.
|
||
|
*/
|
||
|
if (buf->state != UVC_BUF_STATE_ACTIVE) {
|
||
|
if (fid == stream->last_fid) {
|
||
|
uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
|
||
|
"sync).\n");
|
||
|
if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
|
||
|
(data[1] & UVC_STREAM_EOF))
|
||
|
stream->last_fid ^= UVC_STREAM_FID;
|
||
|
return -ENODATA;
|
||
|
}
|
||
|
|
||
|
buf->buf.field = V4L2_FIELD_NONE;
|
||
|
buf->buf.sequence = stream->sequence;
|
||
|
buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
|
||
|
|
||
|
/* TODO: Handle PTS and SCR. */
|
||
|
buf->state = UVC_BUF_STATE_ACTIVE;
|
||
|
}
|
||
|
|
||
|
/* Mark the buffer as done if we're at the beginning of a new frame.
|
||
|
* End of frame detection is better implemented by checking the EOF
|
||
|
* bit (FID bit toggling is delayed by one frame compared to the EOF
|
||
|
* bit), but some devices don't set the bit at end of frame (and the
|
||
|
* last payload can be lost anyway). We thus must check if the FID has
|
||
|
* been toggled.
|
||
|
*
|
||
|
* stream->last_fid is initialized to -1, so the first isochronous
|
||
|
* frame will never trigger an end of frame detection.
|
||
|
*
|
||
|
* Empty buffers (bytesused == 0) don't trigger end of frame detection
|
||
|
* as it doesn't make sense to return an empty buffer. This also
|
||
|
* avoids detecting end of frame conditions at FID toggling if the
|
||
|
* previous payload had the EOF bit set.
|
||
|
*/
|
||
|
if (fid != stream->last_fid && buf->bytesused != 0) {
|
||
|
uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
|
||
|
"toggled).\n");
|
||
|
buf->state = UVC_BUF_STATE_READY;
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
stream->last_fid = fid;
|
||
|
|
||
|
return data[0];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* uvc_video_decode_data_work: Asynchronous memcpy processing
|
||
|
*
|
||
|
* Copy URB data to video buffers in process context, releasing buffer
|
||
|
* references and requeuing the URB when done.
|
||
|
*/
|
||
|
static void uvc_video_copy_data_work(struct work_struct *work)
|
||
|
{
|
||
|
struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
|
||
|
unsigned int i;
|
||
|
int ret;
|
||
|
|
||
|
for (i = 0; i < uvc_urb->async_operations; i++) {
|
||
|
struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
|
||
|
|
||
|
memcpy(op->dst, op->src, op->len);
|
||
|
|
||
|
/* Release reference taken on this buffer. */
|
||
|
uvc_queue_buffer_release(op->buf);
|
||
|
}
|
||
|
|
||
|
ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL);
|
||
|
if (ret < 0)
|
||
|
uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
|
||
|
ret);
|
||
|
}
|
||
|
|
||
|
static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
|
||
|
struct uvc_buffer *buf, const u8 *data, int len)
|
||
|
{
|
||
|
unsigned int active_op = uvc_urb->async_operations;
|
||
|
struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
|
||
|
unsigned int maxlen;
|
||
|
|
||
|
if (len <= 0)
|
||
|
return;
|
||
|
|
||
|
maxlen = buf->length - buf->bytesused;
|
||
|
|
||
|
/* Take a buffer reference for async work. */
|
||
|
kref_get(&buf->ref);
|
||
|
|
||
|
op->buf = buf;
|
||
|
op->src = data;
|
||
|
op->dst = buf->mem + buf->bytesused;
|
||
|
op->len = min_t(unsigned int, len, maxlen);
|
||
|
|
||
|
buf->bytesused += op->len;
|
||
|
|
||
|
/* Complete the current frame if the buffer size was exceeded. */
|
||
|
if (len > maxlen) {
|
||
|
uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
|
||
|
buf->error = 1;
|
||
|
buf->state = UVC_BUF_STATE_READY;
|
||
|
}
|
||
|
|
||
|
uvc_urb->async_operations++;
|
||
|
}
|
||
|
|
||
|
static void uvc_video_decode_end(struct uvc_streaming *stream,
|
||
|
struct uvc_buffer *buf, const u8 *data, int len)
|
||
|
{
|
||
|
/* Mark the buffer as done if the EOF marker is set. */
|
||
|
if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
|
||
|
uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
|
||
|
if (data[0] == len)
|
||
|
uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
|
||
|
buf->state = UVC_BUF_STATE_READY;
|
||
|
if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
|
||
|
stream->last_fid ^= UVC_STREAM_FID;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Video payload encoding is handled by uvc_video_encode_header() and
|
||
|
* uvc_video_encode_data(). Only bulk transfers are currently supported.
|
||
|
*
|
||
|
* uvc_video_encode_header is called at the start of a payload. It adds header
|
||
|
* data to the transfer buffer and returns the header size. As the only known
|
||
|
* UVC output device transfers a whole frame in a single payload, the EOF bit
|
||
|
* is always set in the header.
|
||
|
*
|
||
|
* uvc_video_encode_data is called for every URB and copies the data from the
|
||
|
* video buffer to the transfer buffer.
|
||
|
*/
|
||
|
static int uvc_video_encode_header(struct uvc_streaming *stream,
|
||
|
struct uvc_buffer *buf, u8 *data, int len)
|
||
|
{
|
||
|
data[0] = 2; /* Header length */
|
||
|
data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
|
||
|
| (stream->last_fid & UVC_STREAM_FID);
|
||
|
return 2;
|
||
|
}
|
||
|
|
||
|
static int uvc_video_encode_data(struct uvc_streaming *stream,
|
||
|
struct uvc_buffer *buf, u8 *data, int len)
|
||
|
{
|
||
|
struct uvc_video_queue *queue = &stream->queue;
|
||
|
unsigned int nbytes;
|
||
|
void *mem;
|
||
|
|
||
|
/* Copy video data to the URB buffer. */
|
||
|
mem = buf->mem + queue->buf_used;
|
||
|
nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
|
||
|
nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
|
||
|
nbytes);
|
||
|
memcpy(data, mem, nbytes);
|
||
|
|
||
|
queue->buf_used += nbytes;
|
||
|
|
||
|
return nbytes;
|
||
|
}
|
||
|
|
||
|
/* ------------------------------------------------------------------------
|
||
|
* Metadata
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Additionally to the payload headers we also want to provide the user with USB
|
||
|
* Frame Numbers and system time values. The resulting buffer is thus composed
|
||
|
* of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame
|
||
|
* Number, and a copy of the payload header.
|
||
|
*
|
||
|
* Ideally we want to capture all payload headers for each frame. However, their
|
||
|
* number is unknown and unbound. We thus drop headers that contain no vendor
|
||
|
* data and that either contain no SCR value or an SCR value identical to the
|
||
|
* previous header.
|
||
|
*/
|
||
|
static void uvc_video_decode_meta(struct uvc_streaming *stream,
|
||
|
struct uvc_buffer *meta_buf,
|
||
|
const u8 *mem, unsigned int length)
|
||
|
{
|
||
|
struct uvc_meta_buf *meta;
|
||
|
size_t len_std = 2;
|
||
|
bool has_pts, has_scr;
|
||
|
unsigned long flags;
|
||
|
unsigned int sof;
|
||
|
ktime_t time;
|
||
|
const u8 *scr;
|
||
|
|
||
|
if (!meta_buf || length == 2)
|
||
|
return;
|
||
|
|
||
|
if (meta_buf->length - meta_buf->bytesused <
|
||
|
length + sizeof(meta->ns) + sizeof(meta->sof)) {
|
||
|
meta_buf->error = 1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
has_pts = mem[1] & UVC_STREAM_PTS;
|
||
|
has_scr = mem[1] & UVC_STREAM_SCR;
|
||
|
|
||
|
if (has_pts) {
|
||
|
len_std += 4;
|
||
|
scr = mem + 6;
|
||
|
} else {
|
||
|
scr = mem + 2;
|
||
|
}
|
||
|
|
||
|
if (has_scr)
|
||
|
len_std += 6;
|
||
|
|
||
|
if (stream->meta.format == V4L2_META_FMT_UVC)
|
||
|
length = len_std;
|
||
|
|
||
|
if (length == len_std && (!has_scr ||
|
||
|
!memcmp(scr, stream->clock.last_scr, 6)))
|
||
|
return;
|
||
|
|
||
|
meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
|
||
|
local_irq_save(flags);
|
||
|
time = uvc_video_get_time();
|
||
|
sof = usb_get_current_frame_number(stream->dev->udev);
|
||
|
local_irq_restore(flags);
|
||
|
put_unaligned(ktime_to_ns(time), &meta->ns);
|
||
|
put_unaligned(sof, &meta->sof);
|
||
|
|
||
|
if (has_scr)
|
||
|
memcpy(stream->clock.last_scr, scr, 6);
|
||
|
|
||
|
memcpy(&meta->length, mem, length);
|
||
|
meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
|
||
|
|
||
|
uvc_trace(UVC_TRACE_FRAME,
|
||
|
"%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
|
||
|
__func__, ktime_to_ns(time), meta->sof, meta->length,
|
||
|
meta->flags,
|
||
|
has_pts ? *(u32 *)meta->buf : 0,
|
||
|
has_scr ? *(u32 *)scr : 0,
|
||
|
has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
|
||
|
}
|
||
|
|
||
|
/* ------------------------------------------------------------------------
|
||
|
* URB handling
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Set error flag for incomplete buffer.
|
||
|
*/
|
||
|
static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
|
||
|
struct uvc_buffer *buf)
|
||
|
{
|
||
|
if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
|
||
|
!(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
|
||
|
buf->error = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Completion handler for video URBs.
|
||
|
*/
|
||
|
|
||
|
static void uvc_video_next_buffers(struct uvc_streaming *stream,
|
||
|
struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
|
||
|
{
|
||
|
uvc_video_validate_buffer(stream, *video_buf);
|
||
|
|
||
|
if (*meta_buf) {
|
||
|
struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
|
||
|
const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
|
||
|
|
||
|
vb2_meta->sequence = vb2_video->sequence;
|
||
|
vb2_meta->field = vb2_video->field;
|
||
|
vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
|
||
|
|
||
|
(*meta_buf)->state = UVC_BUF_STATE_READY;
|
||
|
if (!(*meta_buf)->error)
|
||
|
(*meta_buf)->error = (*video_buf)->error;
|
||
|
*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
|
||
|
*meta_buf);
|
||
|
}
|
||
|
*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
|
||
|
}
|
||
|
|
||
|
static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
|
||
|
struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
|
||
|
{
|
||
|
struct urb *urb = uvc_urb->urb;
|
||
|
struct uvc_streaming *stream = uvc_urb->stream;
|
||
|
u8 *mem;
|
||
|
int ret, i;
|
||
|
|
||
|
for (i = 0; i < urb->number_of_packets; ++i) {
|
||
|
if (urb->iso_frame_desc[i].status < 0) {
|
||
|
uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
|
||
|
"lost (%d).\n", urb->iso_frame_desc[i].status);
|
||
|
/* Mark the buffer as faulty. */
|
||
|
if (buf != NULL)
|
||
|
buf->error = 1;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Decode the payload header. */
|
||
|
mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
|
||
|
do {
|
||
|
ret = uvc_video_decode_start(stream, buf, mem,
|
||
|
urb->iso_frame_desc[i].actual_length);
|
||
|
if (ret == -EAGAIN)
|
||
|
uvc_video_next_buffers(stream, &buf, &meta_buf);
|
||
|
} while (ret == -EAGAIN);
|
||
|
|
||
|
if (ret < 0)
|
||
|
continue;
|
||
|
|
||
|
uvc_video_decode_meta(stream, meta_buf, mem, ret);
|
||
|
|
||
|
/* Decode the payload data. */
|
||
|
uvc_video_decode_data(uvc_urb, buf, mem + ret,
|
||
|
urb->iso_frame_desc[i].actual_length - ret);
|
||
|
|
||
|
/* Process the header again. */
|
||
|
uvc_video_decode_end(stream, buf, mem,
|
||
|
urb->iso_frame_desc[i].actual_length);
|
||
|
|
||
|
if (buf->state == UVC_BUF_STATE_READY)
|
||
|
uvc_video_next_buffers(stream, &buf, &meta_buf);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
|
||
|
struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
|
||
|
{
|
||
|
struct urb *urb = uvc_urb->urb;
|
||
|
struct uvc_streaming *stream = uvc_urb->stream;
|
||
|
u8 *mem;
|
||
|
int len, ret;
|
||
|
|
||
|
/*
|
||
|
* Ignore ZLPs if they're not part of a frame, otherwise process them
|
||
|
* to trigger the end of payload detection.
|
||
|
*/
|
||
|
if (urb->actual_length == 0 && stream->bulk.header_size == 0)
|
||
|
return;
|
||
|
|
||
|
mem = urb->transfer_buffer;
|
||
|
len = urb->actual_length;
|
||
|
stream->bulk.payload_size += len;
|
||
|
|
||
|
/* If the URB is the first of its payload, decode and save the
|
||
|
* header.
|
||
|
*/
|
||
|
if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
|
||
|
do {
|
||
|
ret = uvc_video_decode_start(stream, buf, mem, len);
|
||
|
if (ret == -EAGAIN)
|
||
|
uvc_video_next_buffers(stream, &buf, &meta_buf);
|
||
|
} while (ret == -EAGAIN);
|
||
|
|
||
|
/* If an error occurred skip the rest of the payload. */
|
||
|
if (ret < 0 || buf == NULL) {
|
||
|
stream->bulk.skip_payload = 1;
|
||
|
} else {
|
||
|
memcpy(stream->bulk.header, mem, ret);
|
||
|
stream->bulk.header_size = ret;
|
||
|
|
||
|
uvc_video_decode_meta(stream, meta_buf, mem, ret);
|
||
|
|
||
|
mem += ret;
|
||
|
len -= ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The buffer queue might have been cancelled while a bulk transfer
|
||
|
* was in progress, so we can reach here with buf equal to NULL. Make
|
||
|
* sure buf is never dereferenced if NULL.
|
||
|
*/
|
||
|
|
||
|
/* Prepare video data for processing. */
|
||
|
if (!stream->bulk.skip_payload && buf != NULL)
|
||
|
uvc_video_decode_data(uvc_urb, buf, mem, len);
|
||
|
|
||
|
/* Detect the payload end by a URB smaller than the maximum size (or
|
||
|
* a payload size equal to the maximum) and process the header again.
|
||
|
*/
|
||
|
if (urb->actual_length < urb->transfer_buffer_length ||
|
||
|
stream->bulk.payload_size >= stream->bulk.max_payload_size) {
|
||
|
if (!stream->bulk.skip_payload && buf != NULL) {
|
||
|
uvc_video_decode_end(stream, buf, stream->bulk.header,
|
||
|
stream->bulk.payload_size);
|
||
|
if (buf->state == UVC_BUF_STATE_READY)
|
||
|
uvc_video_next_buffers(stream, &buf, &meta_buf);
|
||
|
}
|
||
|
|
||
|
stream->bulk.header_size = 0;
|
||
|
stream->bulk.skip_payload = 0;
|
||
|
stream->bulk.payload_size = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
|
||
|
struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
|
||
|
{
|
||
|
struct urb *urb = uvc_urb->urb;
|
||
|
struct uvc_streaming *stream = uvc_urb->stream;
|
||
|
|
||
|
u8 *mem = urb->transfer_buffer;
|
||
|
int len = stream->urb_size, ret;
|
||
|
|
||
|
if (buf == NULL) {
|
||
|
urb->transfer_buffer_length = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* If the URB is the first of its payload, add the header. */
|
||
|
if (stream->bulk.header_size == 0) {
|
||
|
ret = uvc_video_encode_header(stream, buf, mem, len);
|
||
|
stream->bulk.header_size = ret;
|
||
|
stream->bulk.payload_size += ret;
|
||
|
mem += ret;
|
||
|
len -= ret;
|
||
|
}
|
||
|
|
||
|
/* Process video data. */
|
||
|
ret = uvc_video_encode_data(stream, buf, mem, len);
|
||
|
|
||
|
stream->bulk.payload_size += ret;
|
||
|
len -= ret;
|
||
|
|
||
|
if (buf->bytesused == stream->queue.buf_used ||
|
||
|
stream->bulk.payload_size == stream->bulk.max_payload_size) {
|
||
|
if (buf->bytesused == stream->queue.buf_used) {
|
||
|
stream->queue.buf_used = 0;
|
||
|
buf->state = UVC_BUF_STATE_READY;
|
||
|
buf->buf.sequence = ++stream->sequence;
|
||
|
uvc_queue_next_buffer(&stream->queue, buf);
|
||
|
stream->last_fid ^= UVC_STREAM_FID;
|
||
|
}
|
||
|
|
||
|
stream->bulk.header_size = 0;
|
||
|
stream->bulk.payload_size = 0;
|
||
|
}
|
||
|
|
||
|
urb->transfer_buffer_length = stream->urb_size - len;
|
||
|
}
|
||
|
|
||
|
static void uvc_video_complete(struct urb *urb)
|
||
|
{
|
||
|
struct uvc_urb *uvc_urb = urb->context;
|
||
|
struct uvc_streaming *stream = uvc_urb->stream;
|
||
|
struct uvc_video_queue *queue = &stream->queue;
|
||
|
struct uvc_video_queue *qmeta = &stream->meta.queue;
|
||
|
struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
|
||
|
struct uvc_buffer *buf = NULL;
|
||
|
struct uvc_buffer *buf_meta = NULL;
|
||
|
unsigned long flags;
|
||
|
int ret;
|
||
|
|
||
|
switch (urb->status) {
|
||
|
case 0:
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
|
||
|
"completion handler.\n", urb->status);
|
||
|
/* fall through */
|
||
|
case -ENOENT: /* usb_poison_urb() called. */
|
||
|
if (stream->frozen)
|
||
|
return;
|
||
|
/* fall through */
|
||
|
case -ECONNRESET: /* usb_unlink_urb() called. */
|
||
|
case -ESHUTDOWN: /* The endpoint is being disabled. */
|
||
|
uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
|
||
|
if (vb2_qmeta)
|
||
|
uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
buf = uvc_queue_get_current_buffer(queue);
|
||
|
|
||
|
if (vb2_qmeta) {
|
||
|
spin_lock_irqsave(&qmeta->irqlock, flags);
|
||
|
if (!list_empty(&qmeta->irqqueue))
|
||
|
buf_meta = list_first_entry(&qmeta->irqqueue,
|
||
|
struct uvc_buffer, queue);
|
||
|
spin_unlock_irqrestore(&qmeta->irqlock, flags);
|
||
|
}
|
||
|
|
||
|
/* Re-initialise the URB async work. */
|
||
|
uvc_urb->async_operations = 0;
|
||
|
|
||
|
/*
|
||
|
* Process the URB headers, and optionally queue expensive memcpy tasks
|
||
|
* to be deferred to a work queue.
|
||
|
*/
|
||
|
stream->decode(uvc_urb, buf, buf_meta);
|
||
|
|
||
|
/* If no async work is needed, resubmit the URB immediately. */
|
||
|
if (!uvc_urb->async_operations) {
|
||
|
ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC);
|
||
|
if (ret < 0)
|
||
|
uvc_printk(KERN_ERR,
|
||
|
"Failed to resubmit video URB (%d).\n",
|
||
|
ret);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
queue_work(stream->async_wq, &uvc_urb->work);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free transfer buffers.
|
||
|
*/
|
||
|
static void uvc_free_urb_buffers(struct uvc_streaming *stream)
|
||
|
{
|
||
|
struct uvc_urb *uvc_urb;
|
||
|
|
||
|
for_each_uvc_urb(uvc_urb, stream) {
|
||
|
if (!uvc_urb->buffer)
|
||
|
continue;
|
||
|
|
||
|
#ifndef CONFIG_DMA_NONCOHERENT
|
||
|
usb_free_coherent(stream->dev->udev, stream->urb_size,
|
||
|
uvc_urb->buffer, uvc_urb->dma);
|
||
|
#else
|
||
|
kfree(uvc_urb->buffer);
|
||
|
#endif
|
||
|
uvc_urb->buffer = NULL;
|
||
|
}
|
||
|
|
||
|
stream->urb_size = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate transfer buffers. This function can be called with buffers
|
||
|
* already allocated when resuming from suspend, in which case it will
|
||
|
* return without touching the buffers.
|
||
|
*
|
||
|
* Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
|
||
|
* system is too low on memory try successively smaller numbers of packets
|
||
|
* until allocation succeeds.
|
||
|
*
|
||
|
* Return the number of allocated packets on success or 0 when out of memory.
|
||
|
*/
|
||
|
static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
|
||
|
unsigned int size, unsigned int psize, gfp_t gfp_flags)
|
||
|
{
|
||
|
unsigned int npackets;
|
||
|
unsigned int i;
|
||
|
|
||
|
/* Buffers are already allocated, bail out. */
|
||
|
if (stream->urb_size)
|
||
|
return stream->urb_size / psize;
|
||
|
|
||
|
/* Compute the number of packets. Bulk endpoints might transfer UVC
|
||
|
* payloads across multiple URBs.
|
||
|
*/
|
||
|
npackets = DIV_ROUND_UP(size, psize);
|
||
|
if (npackets > UVC_MAX_PACKETS)
|
||
|
npackets = UVC_MAX_PACKETS;
|
||
|
|
||
|
/* Retry allocations until one succeed. */
|
||
|
for (; npackets > 1; npackets /= 2) {
|
||
|
for (i = 0; i < UVC_URBS; ++i) {
|
||
|
struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
|
||
|
|
||
|
stream->urb_size = psize * npackets;
|
||
|
#ifndef CONFIG_DMA_NONCOHERENT
|
||
|
uvc_urb->buffer = usb_alloc_coherent(
|
||
|
stream->dev->udev, stream->urb_size,
|
||
|
gfp_flags | __GFP_NOWARN, &uvc_urb->dma);
|
||
|
#else
|
||
|
uvc_urb->buffer =
|
||
|
kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
|
||
|
#endif
|
||
|
if (!uvc_urb->buffer) {
|
||
|
uvc_free_urb_buffers(stream);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
uvc_urb->stream = stream;
|
||
|
}
|
||
|
|
||
|
if (i == UVC_URBS) {
|
||
|
uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
|
||
|
"of %ux%u bytes each.\n", UVC_URBS, npackets,
|
||
|
psize);
|
||
|
return npackets;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
|
||
|
"per packet).\n", psize);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Uninitialize isochronous/bulk URBs and free transfer buffers.
|
||
|
*/
|
||
|
static void uvc_video_stop_transfer(struct uvc_streaming *stream,
|
||
|
int free_buffers)
|
||
|
{
|
||
|
struct uvc_urb *uvc_urb;
|
||
|
|
||
|
uvc_video_stats_stop(stream);
|
||
|
|
||
|
/*
|
||
|
* We must poison the URBs rather than kill them to ensure that even
|
||
|
* after the completion handler returns, any asynchronous workqueues
|
||
|
* will be prevented from resubmitting the URBs.
|
||
|
*/
|
||
|
for_each_uvc_urb(uvc_urb, stream)
|
||
|
usb_poison_urb(uvc_urb->urb);
|
||
|
|
||
|
flush_workqueue(stream->async_wq);
|
||
|
|
||
|
for_each_uvc_urb(uvc_urb, stream) {
|
||
|
usb_free_urb(uvc_urb->urb);
|
||
|
uvc_urb->urb = NULL;
|
||
|
}
|
||
|
|
||
|
if (free_buffers)
|
||
|
uvc_free_urb_buffers(stream);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute the maximum number of bytes per interval for an endpoint.
|
||
|
*/
|
||
|
static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
u16 psize;
|
||
|
u16 mult;
|
||
|
|
||
|
switch (dev->speed) {
|
||
|
case USB_SPEED_SUPER:
|
||
|
case USB_SPEED_SUPER_PLUS:
|
||
|
return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
|
||
|
case USB_SPEED_HIGH:
|
||
|
psize = usb_endpoint_maxp(&ep->desc);
|
||
|
mult = usb_endpoint_maxp_mult(&ep->desc);
|
||
|
return psize * mult;
|
||
|
case USB_SPEED_WIRELESS:
|
||
|
psize = usb_endpoint_maxp(&ep->desc);
|
||
|
return psize;
|
||
|
default:
|
||
|
psize = usb_endpoint_maxp(&ep->desc);
|
||
|
return psize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize isochronous URBs and allocate transfer buffers. The packet size
|
||
|
* is given by the endpoint.
|
||
|
*/
|
||
|
static int uvc_init_video_isoc(struct uvc_streaming *stream,
|
||
|
struct usb_host_endpoint *ep, gfp_t gfp_flags)
|
||
|
{
|
||
|
struct urb *urb;
|
||
|
struct uvc_urb *uvc_urb;
|
||
|
unsigned int npackets, i;
|
||
|
u16 psize;
|
||
|
u32 size;
|
||
|
|
||
|
psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
|
||
|
size = stream->ctrl.dwMaxVideoFrameSize;
|
||
|
|
||
|
npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
|
||
|
if (npackets == 0)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
size = npackets * psize;
|
||
|
|
||
|
for_each_uvc_urb(uvc_urb, stream) {
|
||
|
urb = usb_alloc_urb(npackets, gfp_flags);
|
||
|
if (urb == NULL) {
|
||
|
uvc_video_stop_transfer(stream, 1);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
urb->dev = stream->dev->udev;
|
||
|
urb->context = uvc_urb;
|
||
|
urb->pipe = usb_rcvisocpipe(stream->dev->udev,
|
||
|
ep->desc.bEndpointAddress);
|
||
|
#ifndef CONFIG_DMA_NONCOHERENT
|
||
|
urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
|
||
|
urb->transfer_dma = uvc_urb->dma;
|
||
|
#else
|
||
|
urb->transfer_flags = URB_ISO_ASAP;
|
||
|
#endif
|
||
|
urb->interval = ep->desc.bInterval;
|
||
|
urb->transfer_buffer = uvc_urb->buffer;
|
||
|
urb->complete = uvc_video_complete;
|
||
|
urb->number_of_packets = npackets;
|
||
|
urb->transfer_buffer_length = size;
|
||
|
|
||
|
for (i = 0; i < npackets; ++i) {
|
||
|
urb->iso_frame_desc[i].offset = i * psize;
|
||
|
urb->iso_frame_desc[i].length = psize;
|
||
|
}
|
||
|
|
||
|
uvc_urb->urb = urb;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize bulk URBs and allocate transfer buffers. The packet size is
|
||
|
* given by the endpoint.
|
||
|
*/
|
||
|
static int uvc_init_video_bulk(struct uvc_streaming *stream,
|
||
|
struct usb_host_endpoint *ep, gfp_t gfp_flags)
|
||
|
{
|
||
|
struct urb *urb;
|
||
|
struct uvc_urb *uvc_urb;
|
||
|
unsigned int npackets, pipe;
|
||
|
u16 psize;
|
||
|
u32 size;
|
||
|
|
||
|
psize = usb_endpoint_maxp(&ep->desc);
|
||
|
size = stream->ctrl.dwMaxPayloadTransferSize;
|
||
|
stream->bulk.max_payload_size = size;
|
||
|
|
||
|
npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
|
||
|
if (npackets == 0)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
size = npackets * psize;
|
||
|
|
||
|
if (usb_endpoint_dir_in(&ep->desc))
|
||
|
pipe = usb_rcvbulkpipe(stream->dev->udev,
|
||
|
ep->desc.bEndpointAddress);
|
||
|
else
|
||
|
pipe = usb_sndbulkpipe(stream->dev->udev,
|
||
|
ep->desc.bEndpointAddress);
|
||
|
|
||
|
if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
|
||
|
size = 0;
|
||
|
|
||
|
for_each_uvc_urb(uvc_urb, stream) {
|
||
|
urb = usb_alloc_urb(0, gfp_flags);
|
||
|
if (urb == NULL) {
|
||
|
uvc_video_stop_transfer(stream, 1);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer,
|
||
|
size, uvc_video_complete, uvc_urb);
|
||
|
#ifndef CONFIG_DMA_NONCOHERENT
|
||
|
urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
|
||
|
urb->transfer_dma = uvc_urb->dma;
|
||
|
#endif
|
||
|
|
||
|
uvc_urb->urb = urb;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize isochronous/bulk URBs and allocate transfer buffers.
|
||
|
*/
|
||
|
static int uvc_video_start_transfer(struct uvc_streaming *stream,
|
||
|
gfp_t gfp_flags)
|
||
|
{
|
||
|
struct usb_interface *intf = stream->intf;
|
||
|
struct usb_host_endpoint *ep;
|
||
|
struct uvc_urb *uvc_urb;
|
||
|
unsigned int i;
|
||
|
int ret;
|
||
|
|
||
|
stream->sequence = -1;
|
||
|
stream->last_fid = -1;
|
||
|
stream->bulk.header_size = 0;
|
||
|
stream->bulk.skip_payload = 0;
|
||
|
stream->bulk.payload_size = 0;
|
||
|
|
||
|
uvc_video_stats_start(stream);
|
||
|
|
||
|
if (intf->num_altsetting > 1) {
|
||
|
struct usb_host_endpoint *best_ep = NULL;
|
||
|
unsigned int best_psize = UINT_MAX;
|
||
|
unsigned int bandwidth;
|
||
|
unsigned int uninitialized_var(altsetting);
|
||
|
int intfnum = stream->intfnum;
|
||
|
|
||
|
/* Isochronous endpoint, select the alternate setting. */
|
||
|
bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
|
||
|
|
||
|
if (bandwidth == 0) {
|
||
|
uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
|
||
|
"bandwidth, defaulting to lowest.\n");
|
||
|
bandwidth = 1;
|
||
|
} else {
|
||
|
uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
|
||
|
"B/frame bandwidth.\n", bandwidth);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < intf->num_altsetting; ++i) {
|
||
|
struct usb_host_interface *alts;
|
||
|
unsigned int psize;
|
||
|
|
||
|
alts = &intf->altsetting[i];
|
||
|
ep = uvc_find_endpoint(alts,
|
||
|
stream->header.bEndpointAddress);
|
||
|
if (ep == NULL)
|
||
|
continue;
|
||
|
|
||
|
/* Check if the bandwidth is high enough. */
|
||
|
psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
|
||
|
if (psize >= bandwidth && psize <= best_psize) {
|
||
|
altsetting = alts->desc.bAlternateSetting;
|
||
|
best_psize = psize;
|
||
|
best_ep = ep;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (best_ep == NULL) {
|
||
|
uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
|
||
|
"for requested bandwidth.\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
|
||
|
"(%u B/frame bandwidth).\n", altsetting, best_psize);
|
||
|
|
||
|
ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
|
||
|
} else {
|
||
|
/* Bulk endpoint, proceed to URB initialization. */
|
||
|
ep = uvc_find_endpoint(&intf->altsetting[0],
|
||
|
stream->header.bEndpointAddress);
|
||
|
if (ep == NULL)
|
||
|
return -EIO;
|
||
|
|
||
|
ret = uvc_init_video_bulk(stream, ep, gfp_flags);
|
||
|
}
|
||
|
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
/* Submit the URBs. */
|
||
|
for_each_uvc_urb(uvc_urb, stream) {
|
||
|
ret = usb_submit_urb(uvc_urb->urb, gfp_flags);
|
||
|
if (ret < 0) {
|
||
|
uvc_printk(KERN_ERR, "Failed to submit URB %u (%d).\n",
|
||
|
uvc_urb_index(uvc_urb), ret);
|
||
|
uvc_video_stop_transfer(stream, 1);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The Logitech C920 temporarily forgets that it should not be adjusting
|
||
|
* Exposure Absolute during init so restore controls to stored values.
|
||
|
*/
|
||
|
if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
|
||
|
uvc_ctrl_restore_values(stream->dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* --------------------------------------------------------------------------
|
||
|
* Suspend/resume
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Stop streaming without disabling the video queue.
|
||
|
*
|
||
|
* To let userspace applications resume without trouble, we must not touch the
|
||
|
* video buffers in any way. We mark the device as frozen to make sure the URB
|
||
|
* completion handler won't try to cancel the queue when we kill the URBs.
|
||
|
*/
|
||
|
int uvc_video_suspend(struct uvc_streaming *stream)
|
||
|
{
|
||
|
if (!uvc_queue_streaming(&stream->queue))
|
||
|
return 0;
|
||
|
|
||
|
stream->frozen = 1;
|
||
|
uvc_video_stop_transfer(stream, 0);
|
||
|
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reconfigure the video interface and restart streaming if it was enabled
|
||
|
* before suspend.
|
||
|
*
|
||
|
* If an error occurs, disable the video queue. This will wake all pending
|
||
|
* buffers, making sure userspace applications are notified of the problem
|
||
|
* instead of waiting forever.
|
||
|
*/
|
||
|
int uvc_video_resume(struct uvc_streaming *stream, int reset)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
/* If the bus has been reset on resume, set the alternate setting to 0.
|
||
|
* This should be the default value, but some devices crash or otherwise
|
||
|
* misbehave if they don't receive a SET_INTERFACE request before any
|
||
|
* other video control request.
|
||
|
*/
|
||
|
if (reset)
|
||
|
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
|
||
|
|
||
|
stream->frozen = 0;
|
||
|
|
||
|
uvc_video_clock_reset(stream);
|
||
|
|
||
|
if (!uvc_queue_streaming(&stream->queue))
|
||
|
return 0;
|
||
|
|
||
|
ret = uvc_commit_video(stream, &stream->ctrl);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
return uvc_video_start_transfer(stream, GFP_NOIO);
|
||
|
}
|
||
|
|
||
|
/* ------------------------------------------------------------------------
|
||
|
* Video device
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Initialize the UVC video device by switching to alternate setting 0 and
|
||
|
* retrieve the default format.
|
||
|
*
|
||
|
* Some cameras (namely the Fuji Finepix) set the format and frame
|
||
|
* indexes to zero. The UVC standard doesn't clearly make this a spec
|
||
|
* violation, so try to silently fix the values if possible.
|
||
|
*
|
||
|
* This function is called before registering the device with V4L.
|
||
|
*/
|
||
|
int uvc_video_init(struct uvc_streaming *stream)
|
||
|
{
|
||
|
struct uvc_streaming_control *probe = &stream->ctrl;
|
||
|
struct uvc_format *format = NULL;
|
||
|
struct uvc_frame *frame = NULL;
|
||
|
struct uvc_urb *uvc_urb;
|
||
|
unsigned int i;
|
||
|
int ret;
|
||
|
|
||
|
if (stream->nformats == 0) {
|
||
|
uvc_printk(KERN_INFO, "No supported video formats found.\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
atomic_set(&stream->active, 0);
|
||
|
|
||
|
/* Alternate setting 0 should be the default, yet the XBox Live Vision
|
||
|
* Cam (and possibly other devices) crash or otherwise misbehave if
|
||
|
* they don't receive a SET_INTERFACE request before any other video
|
||
|
* control request.
|
||
|
*/
|
||
|
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
|
||
|
|
||
|
/* Set the streaming probe control with default streaming parameters
|
||
|
* retrieved from the device. Webcams that don't support GET_DEF
|
||
|
* requests on the probe control will just keep their current streaming
|
||
|
* parameters.
|
||
|
*/
|
||
|
if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
|
||
|
uvc_set_video_ctrl(stream, probe, 1);
|
||
|
|
||
|
/* Initialize the streaming parameters with the probe control current
|
||
|
* value. This makes sure SET_CUR requests on the streaming commit
|
||
|
* control will always use values retrieved from a successful GET_CUR
|
||
|
* request on the probe control, as required by the UVC specification.
|
||
|
*/
|
||
|
ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
/* Check if the default format descriptor exists. Use the first
|
||
|
* available format otherwise.
|
||
|
*/
|
||
|
for (i = stream->nformats; i > 0; --i) {
|
||
|
format = &stream->format[i-1];
|
||
|
if (format->index == probe->bFormatIndex)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (format->nframes == 0) {
|
||
|
uvc_printk(KERN_INFO, "No frame descriptor found for the "
|
||
|
"default format.\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Zero bFrameIndex might be correct. Stream-based formats (including
|
||
|
* MPEG-2 TS and DV) do not support frames but have a dummy frame
|
||
|
* descriptor with bFrameIndex set to zero. If the default frame
|
||
|
* descriptor is not found, use the first available frame.
|
||
|
*/
|
||
|
for (i = format->nframes; i > 0; --i) {
|
||
|
frame = &format->frame[i-1];
|
||
|
if (frame->bFrameIndex == probe->bFrameIndex)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
probe->bFormatIndex = format->index;
|
||
|
probe->bFrameIndex = frame->bFrameIndex;
|
||
|
|
||
|
stream->def_format = format;
|
||
|
stream->cur_format = format;
|
||
|
stream->cur_frame = frame;
|
||
|
|
||
|
/* Select the video decoding function */
|
||
|
if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
|
||
|
if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
|
||
|
stream->decode = uvc_video_decode_isight;
|
||
|
else if (stream->intf->num_altsetting > 1)
|
||
|
stream->decode = uvc_video_decode_isoc;
|
||
|
else
|
||
|
stream->decode = uvc_video_decode_bulk;
|
||
|
} else {
|
||
|
if (stream->intf->num_altsetting == 1)
|
||
|
stream->decode = uvc_video_encode_bulk;
|
||
|
else {
|
||
|
uvc_printk(KERN_INFO, "Isochronous endpoints are not "
|
||
|
"supported for video output devices.\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Prepare asynchronous work items. */
|
||
|
for_each_uvc_urb(uvc_urb, stream)
|
||
|
INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int uvc_video_start_streaming(struct uvc_streaming *stream)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = uvc_video_clock_init(stream);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
/* Commit the streaming parameters. */
|
||
|
ret = uvc_commit_video(stream, &stream->ctrl);
|
||
|
if (ret < 0)
|
||
|
goto error_commit;
|
||
|
|
||
|
ret = uvc_video_start_transfer(stream, GFP_KERNEL);
|
||
|
if (ret < 0)
|
||
|
goto error_video;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
error_video:
|
||
|
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
|
||
|
error_commit:
|
||
|
uvc_video_clock_cleanup(stream);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void uvc_video_stop_streaming(struct uvc_streaming *stream)
|
||
|
{
|
||
|
uvc_video_stop_transfer(stream, 1);
|
||
|
|
||
|
if (stream->intf->num_altsetting > 1) {
|
||
|
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
|
||
|
} else {
|
||
|
/* UVC doesn't specify how to inform a bulk-based device
|
||
|
* when the video stream is stopped. Windows sends a
|
||
|
* CLEAR_FEATURE(HALT) request to the video streaming
|
||
|
* bulk endpoint, mimic the same behaviour.
|
||
|
*/
|
||
|
unsigned int epnum = stream->header.bEndpointAddress
|
||
|
& USB_ENDPOINT_NUMBER_MASK;
|
||
|
unsigned int dir = stream->header.bEndpointAddress
|
||
|
& USB_ENDPOINT_DIR_MASK;
|
||
|
unsigned int pipe;
|
||
|
|
||
|
pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
|
||
|
usb_clear_halt(stream->dev->udev, pipe);
|
||
|
}
|
||
|
|
||
|
uvc_video_clock_cleanup(stream);
|
||
|
}
|