linux/linux-5.4.31/drivers/media/i2c/st-mipid02.c

1081 lines
27 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for ST MIPID02 CSI-2 to PARALLEL bridge
*
* Copyright (C) STMicroelectronics SA 2019
* Authors: Mickael Guene <mickael.guene@st.com>
* for STMicroelectronics.
*
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define MIPID02_CLK_LANE_WR_REG1 0x01
#define MIPID02_CLK_LANE_REG1 0x02
#define MIPID02_CLK_LANE_REG3 0x04
#define MIPID02_DATA_LANE0_REG1 0x05
#define MIPID02_DATA_LANE0_REG2 0x06
#define MIPID02_DATA_LANE1_REG1 0x09
#define MIPID02_DATA_LANE1_REG2 0x0a
#define MIPID02_MODE_REG1 0x14
#define MIPID02_MODE_REG2 0x15
#define MIPID02_DATA_ID_RREG 0x17
#define MIPID02_DATA_SELECTION_CTRL 0x19
#define MIPID02_PIX_WIDTH_CTRL 0x1e
#define MIPID02_PIX_WIDTH_CTRL_EMB 0x1f
/* Bits definition for MIPID02_CLK_LANE_REG1 */
#define CLK_ENABLE BIT(0)
/* Bits definition for MIPID02_CLK_LANE_REG3 */
#define CLK_MIPI_CSI BIT(1)
/* Bits definition for MIPID02_DATA_LANE0_REG1 */
#define DATA_ENABLE BIT(0)
/* Bits definition for MIPID02_DATA_LANEx_REG2 */
#define DATA_MIPI_CSI BIT(0)
/* Bits definition for MIPID02_MODE_REG1 */
#define MODE_DATA_SWAP BIT(2)
#define MODE_NO_BYPASS BIT(6)
/* Bits definition for MIPID02_MODE_REG2 */
#define MODE_HSYNC_ACTIVE_HIGH BIT(1)
#define MODE_VSYNC_ACTIVE_HIGH BIT(2)
/* Bits definition for MIPID02_DATA_SELECTION_CTRL */
#define SELECTION_MANUAL_DATA BIT(2)
#define SELECTION_MANUAL_WIDTH BIT(3)
static const u32 mipid02_supported_fmt_codes[] = {
MEDIA_BUS_FMT_SBGGR8_1X8, MEDIA_BUS_FMT_SGBRG8_1X8,
MEDIA_BUS_FMT_SGRBG8_1X8, MEDIA_BUS_FMT_SRGGB8_1X8,
MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SGBRG10_1X10,
MEDIA_BUS_FMT_SGRBG10_1X10, MEDIA_BUS_FMT_SRGGB10_1X10,
MEDIA_BUS_FMT_SBGGR12_1X12, MEDIA_BUS_FMT_SGBRG12_1X12,
MEDIA_BUS_FMT_SGRBG12_1X12, MEDIA_BUS_FMT_SRGGB12_1X12,
MEDIA_BUS_FMT_UYVY8_1X16, MEDIA_BUS_FMT_BGR888_1X24,
MEDIA_BUS_FMT_RGB565_2X8_LE, MEDIA_BUS_FMT_RGB565_2X8_BE,
MEDIA_BUS_FMT_YUYV8_2X8, MEDIA_BUS_FMT_UYVY8_2X8,
MEDIA_BUS_FMT_JPEG_1X8
};
/* regulator supplies */
static const char * const mipid02_supply_name[] = {
"VDDE", /* 1.8V digital I/O supply */
"VDDIN", /* 1V8 voltage regulator supply */
};
#define MIPID02_NUM_SUPPLIES ARRAY_SIZE(mipid02_supply_name)
#define MIPID02_SINK_0 0
#define MIPID02_SINK_1 1
#define MIPID02_SOURCE 2
#define MIPID02_PAD_NB 3
struct mipid02_dev {
struct i2c_client *i2c_client;
struct regulator_bulk_data supplies[MIPID02_NUM_SUPPLIES];
struct v4l2_subdev sd;
struct media_pad pad[MIPID02_PAD_NB];
struct clk *xclk;
struct gpio_desc *reset_gpio;
/* endpoints info */
struct v4l2_fwnode_endpoint rx;
u64 link_frequency;
struct v4l2_fwnode_endpoint tx;
/* remote source */
struct v4l2_async_subdev asd;
struct v4l2_async_notifier notifier;
struct v4l2_subdev *s_subdev;
/* registers */
struct {
u8 clk_lane_reg1;
u8 data_lane0_reg1;
u8 data_lane1_reg1;
u8 mode_reg1;
u8 mode_reg2;
u8 data_selection_ctrl;
u8 data_id_rreg;
u8 pix_width_ctrl;
u8 pix_width_ctrl_emb;
} r;
/* lock to protect all members below */
struct mutex lock;
bool streaming;
struct v4l2_mbus_framefmt fmt;
};
static int bpp_from_code(__u32 code)
{
switch (code) {
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
return 8;
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
return 10;
case MEDIA_BUS_FMT_SBGGR12_1X12:
case MEDIA_BUS_FMT_SGBRG12_1X12:
case MEDIA_BUS_FMT_SGRBG12_1X12:
case MEDIA_BUS_FMT_SRGGB12_1X12:
return 12;
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_YUYV8_2X8:
case MEDIA_BUS_FMT_UYVY8_2X8:
case MEDIA_BUS_FMT_RGB565_2X8_LE:
case MEDIA_BUS_FMT_RGB565_2X8_BE:
return 16;
case MEDIA_BUS_FMT_BGR888_1X24:
return 24;
default:
return 0;
}
}
static u8 data_type_from_code(__u32 code)
{
switch (code) {
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
return 0x2a;
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
return 0x2b;
case MEDIA_BUS_FMT_SBGGR12_1X12:
case MEDIA_BUS_FMT_SGBRG12_1X12:
case MEDIA_BUS_FMT_SGRBG12_1X12:
case MEDIA_BUS_FMT_SRGGB12_1X12:
return 0x2c;
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_YUYV8_2X8:
case MEDIA_BUS_FMT_UYVY8_2X8:
return 0x1e;
case MEDIA_BUS_FMT_BGR888_1X24:
return 0x24;
case MEDIA_BUS_FMT_RGB565_2X8_LE:
case MEDIA_BUS_FMT_RGB565_2X8_BE:
return 0x22;
default:
return 0;
}
}
static void init_format(struct v4l2_mbus_framefmt *fmt)
{
fmt->code = MEDIA_BUS_FMT_SBGGR8_1X8;
fmt->field = V4L2_FIELD_NONE;
fmt->colorspace = V4L2_COLORSPACE_SRGB;
fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(V4L2_COLORSPACE_SRGB);
fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(V4L2_COLORSPACE_SRGB);
fmt->width = 640;
fmt->height = 480;
}
static __u32 get_fmt_code(__u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(mipid02_supported_fmt_codes); i++) {
if (code == mipid02_supported_fmt_codes[i])
return code;
}
return mipid02_supported_fmt_codes[0];
}
static __u32 serial_to_parallel_code(__u32 serial)
{
if (serial == MEDIA_BUS_FMT_UYVY8_1X16)
return MEDIA_BUS_FMT_UYVY8_2X8;
if (serial == MEDIA_BUS_FMT_BGR888_1X24)
return MEDIA_BUS_FMT_BGR888_3X8;
return serial;
}
static inline struct mipid02_dev *to_mipid02_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct mipid02_dev, sd);
}
static int mipid02_read_reg(struct mipid02_dev *bridge, u16 reg, u8 *val)
{
struct i2c_client *client = bridge->i2c_client;
struct i2c_msg msg[2];
u8 buf[2];
int ret;
buf[0] = reg >> 8;
buf[1] = reg & 0xff;
msg[0].addr = client->addr;
msg[0].flags = client->flags;
msg[0].buf = buf;
msg[0].len = sizeof(buf);
msg[1].addr = client->addr;
msg[1].flags = client->flags | I2C_M_RD;
msg[1].buf = val;
msg[1].len = 1;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret < 0) {
dev_dbg(&client->dev, "%s: %x i2c_transfer, reg: %x => %d\n",
__func__, client->addr, reg, ret);
return ret;
}
return 0;
}
static int mipid02_write_reg(struct mipid02_dev *bridge, u16 reg, u8 val)
{
struct i2c_client *client = bridge->i2c_client;
struct i2c_msg msg;
u8 buf[3];
int ret;
buf[0] = reg >> 8;
buf[1] = reg & 0xff;
buf[2] = val;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0) {
dev_dbg(&client->dev, "%s: i2c_transfer, reg: %x => %d\n",
__func__, reg, ret);
return ret;
}
return 0;
}
static int mipid02_get_regulators(struct mipid02_dev *bridge)
{
unsigned int i;
for (i = 0; i < MIPID02_NUM_SUPPLIES; i++)
bridge->supplies[i].supply = mipid02_supply_name[i];
return devm_regulator_bulk_get(&bridge->i2c_client->dev,
MIPID02_NUM_SUPPLIES,
bridge->supplies);
}
static void mipid02_apply_reset(struct mipid02_dev *bridge)
{
gpiod_set_value_cansleep(bridge->reset_gpio, 0);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(bridge->reset_gpio, 1);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(bridge->reset_gpio, 0);
usleep_range(5000, 10000);
}
static int mipid02_set_power_on(struct mipid02_dev *bridge)
{
struct i2c_client *client = bridge->i2c_client;
int ret;
ret = clk_prepare_enable(bridge->xclk);
if (ret) {
dev_err(&client->dev, "%s: failed to enable clock\n", __func__);
return ret;
}
ret = regulator_bulk_enable(MIPID02_NUM_SUPPLIES,
bridge->supplies);
if (ret) {
dev_err(&client->dev, "%s: failed to enable regulators\n",
__func__);
goto xclk_off;
}
if (bridge->reset_gpio) {
dev_dbg(&client->dev, "apply reset");
mipid02_apply_reset(bridge);
} else {
dev_dbg(&client->dev, "don't apply reset");
usleep_range(5000, 10000);
}
return 0;
xclk_off:
clk_disable_unprepare(bridge->xclk);
return ret;
}
static void mipid02_set_power_off(struct mipid02_dev *bridge)
{
regulator_bulk_disable(MIPID02_NUM_SUPPLIES, bridge->supplies);
clk_disable_unprepare(bridge->xclk);
}
static int mipid02_detect(struct mipid02_dev *bridge)
{
u8 reg;
/*
* There is no version registers. Just try to read register
* MIPID02_CLK_LANE_WR_REG1.
*/
return mipid02_read_reg(bridge, MIPID02_CLK_LANE_WR_REG1, &reg);
}
static u32 mipid02_get_link_freq_from_cid_link_freq(struct mipid02_dev *bridge,
struct v4l2_subdev *subdev)
{
struct v4l2_querymenu qm = {.id = V4L2_CID_LINK_FREQ, };
struct v4l2_ctrl *ctrl;
int ret;
ctrl = v4l2_ctrl_find(subdev->ctrl_handler, V4L2_CID_LINK_FREQ);
if (!ctrl)
return 0;
qm.index = v4l2_ctrl_g_ctrl(ctrl);
ret = v4l2_querymenu(subdev->ctrl_handler, &qm);
if (ret)
return 0;
return qm.value;
}
static u32 mipid02_get_link_freq_from_cid_pixel_rate(struct mipid02_dev *bridge,
struct v4l2_subdev *subdev)
{
struct v4l2_fwnode_endpoint *ep = &bridge->rx;
struct v4l2_ctrl *ctrl;
u32 pixel_clock;
u32 bpp = bpp_from_code(bridge->fmt.code);
ctrl = v4l2_ctrl_find(subdev->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl)
return 0;
pixel_clock = v4l2_ctrl_g_ctrl_int64(ctrl);
return pixel_clock * bpp / (2 * ep->bus.mipi_csi2.num_data_lanes);
}
/*
* We need to know link frequency to setup clk_lane_reg1 timings. Link frequency
* will be computed using connected device V4L2_CID_PIXEL_RATE, bit per pixel
* and number of lanes.
*/
static int mipid02_configure_from_rx_speed(struct mipid02_dev *bridge)
{
struct i2c_client *client = bridge->i2c_client;
struct v4l2_subdev *subdev = bridge->s_subdev;
u32 link_freq;
link_freq = mipid02_get_link_freq_from_cid_link_freq(bridge, subdev);
if (!link_freq) {
link_freq = mipid02_get_link_freq_from_cid_pixel_rate(bridge,
subdev);
if (!link_freq) {
dev_err(&client->dev, "Failed to get link frequency");
return -EINVAL;
}
}
dev_dbg(&client->dev, "detect link_freq = %d Hz", link_freq);
bridge->r.clk_lane_reg1 |= (2000000000 / link_freq) << 2;
return 0;
}
static int mipid02_configure_clk_lane(struct mipid02_dev *bridge)
{
struct i2c_client *client = bridge->i2c_client;
struct v4l2_fwnode_endpoint *ep = &bridge->rx;
bool *polarities = ep->bus.mipi_csi2.lane_polarities;
/* midid02 doesn't support clock lane remapping */
if (ep->bus.mipi_csi2.clock_lane != 0) {
dev_err(&client->dev, "clk lane must be map to lane 0\n");
return -EINVAL;
}
bridge->r.clk_lane_reg1 |= (polarities[0] << 1) | CLK_ENABLE;
return 0;
}
static int mipid02_configure_data0_lane(struct mipid02_dev *bridge, int nb,
bool are_lanes_swap, bool *polarities)
{
bool are_pin_swap = are_lanes_swap ? polarities[2] : polarities[1];
if (nb == 1 && are_lanes_swap)
return 0;
/*
* data lane 0 as pin swap polarity reversed compared to clock and
* data lane 1
*/
if (!are_pin_swap)
bridge->r.data_lane0_reg1 = 1 << 1;
bridge->r.data_lane0_reg1 |= DATA_ENABLE;
return 0;
}
static int mipid02_configure_data1_lane(struct mipid02_dev *bridge, int nb,
bool are_lanes_swap, bool *polarities)
{
bool are_pin_swap = are_lanes_swap ? polarities[1] : polarities[2];
if (nb == 1 && !are_lanes_swap)
return 0;
if (are_pin_swap)
bridge->r.data_lane1_reg1 = 1 << 1;
bridge->r.data_lane1_reg1 |= DATA_ENABLE;
return 0;
}
static int mipid02_configure_from_rx(struct mipid02_dev *bridge)
{
struct v4l2_fwnode_endpoint *ep = &bridge->rx;
bool are_lanes_swap = ep->bus.mipi_csi2.data_lanes[0] == 2;
bool *polarities = ep->bus.mipi_csi2.lane_polarities;
int nb = ep->bus.mipi_csi2.num_data_lanes;
int ret;
ret = mipid02_configure_clk_lane(bridge);
if (ret)
return ret;
ret = mipid02_configure_data0_lane(bridge, nb, are_lanes_swap,
polarities);
if (ret)
return ret;
ret = mipid02_configure_data1_lane(bridge, nb, are_lanes_swap,
polarities);
if (ret)
return ret;
bridge->r.mode_reg1 |= are_lanes_swap ? MODE_DATA_SWAP : 0;
bridge->r.mode_reg1 |= (nb - 1) << 1;
return mipid02_configure_from_rx_speed(bridge);
}
static int mipid02_configure_from_tx(struct mipid02_dev *bridge)
{
struct v4l2_fwnode_endpoint *ep = &bridge->tx;
bridge->r.data_selection_ctrl = SELECTION_MANUAL_WIDTH;
bridge->r.pix_width_ctrl = ep->bus.parallel.bus_width;
bridge->r.pix_width_ctrl_emb = ep->bus.parallel.bus_width;
if (ep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
bridge->r.mode_reg2 |= MODE_HSYNC_ACTIVE_HIGH;
if (ep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
bridge->r.mode_reg2 |= MODE_VSYNC_ACTIVE_HIGH;
return 0;
}
static int mipid02_configure_from_code(struct mipid02_dev *bridge)
{
u8 data_type;
bridge->r.data_id_rreg = 0;
if (bridge->fmt.code != MEDIA_BUS_FMT_JPEG_1X8) {
bridge->r.data_selection_ctrl |= SELECTION_MANUAL_DATA;
data_type = data_type_from_code(bridge->fmt.code);
if (!data_type)
return -EINVAL;
bridge->r.data_id_rreg = data_type;
}
return 0;
}
static int mipid02_stream_disable(struct mipid02_dev *bridge)
{
struct i2c_client *client = bridge->i2c_client;
int ret;
/* Disable all lanes */
ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG1, 0);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG1, 0);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG1, 0);
if (ret)
goto error;
error:
if (ret)
dev_err(&client->dev, "failed to stream off %d", ret);
return ret;
}
static int mipid02_stream_enable(struct mipid02_dev *bridge)
{
struct i2c_client *client = bridge->i2c_client;
int ret = -EINVAL;
if (!bridge->s_subdev)
goto error;
memset(&bridge->r, 0, sizeof(bridge->r));
/* build registers content */
ret = mipid02_configure_from_rx(bridge);
if (ret)
goto error;
ret = mipid02_configure_from_tx(bridge);
if (ret)
goto error;
ret = mipid02_configure_from_code(bridge);
if (ret)
goto error;
/* write mipi registers */
ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG1,
bridge->r.clk_lane_reg1);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG3, CLK_MIPI_CSI);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG1,
bridge->r.data_lane0_reg1);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG2,
DATA_MIPI_CSI);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG1,
bridge->r.data_lane1_reg1);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG2,
DATA_MIPI_CSI);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_MODE_REG1,
MODE_NO_BYPASS | bridge->r.mode_reg1);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_MODE_REG2,
bridge->r.mode_reg2);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_ID_RREG,
bridge->r.data_id_rreg);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_DATA_SELECTION_CTRL,
bridge->r.data_selection_ctrl);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_PIX_WIDTH_CTRL,
bridge->r.pix_width_ctrl);
if (ret)
goto error;
ret = mipid02_write_reg(bridge, MIPID02_PIX_WIDTH_CTRL_EMB,
bridge->r.pix_width_ctrl_emb);
if (ret)
goto error;
return 0;
error:
dev_err(&client->dev, "failed to stream on %d", ret);
mipid02_stream_disable(bridge);
return ret;
}
static int mipid02_s_stream(struct v4l2_subdev *sd, int enable)
{
struct mipid02_dev *bridge = to_mipid02_dev(sd);
struct i2c_client *client = bridge->i2c_client;
int ret = 0;
dev_dbg(&client->dev, "%s : requested %d / current = %d", __func__,
enable, bridge->streaming);
mutex_lock(&bridge->lock);
if (bridge->streaming == enable)
goto out;
ret = enable ? mipid02_stream_enable(bridge) :
mipid02_stream_disable(bridge);
if (!ret)
bridge->streaming = enable;
out:
dev_dbg(&client->dev, "%s current now = %d / %d", __func__,
bridge->streaming, ret);
mutex_unlock(&bridge->lock);
return ret;
}
static int mipid02_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct mipid02_dev *bridge = to_mipid02_dev(sd);
int ret = 0;
switch (code->pad) {
case MIPID02_SINK_0:
if (code->index >= ARRAY_SIZE(mipid02_supported_fmt_codes))
ret = -EINVAL;
else
code->code = mipid02_supported_fmt_codes[code->index];
break;
case MIPID02_SOURCE:
if (code->index == 0)
code->code = serial_to_parallel_code(bridge->fmt.code);
else
ret = -EINVAL;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int mipid02_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
struct mipid02_dev *bridge = to_mipid02_dev(sd);
struct i2c_client *client = bridge->i2c_client;
struct v4l2_mbus_framefmt *fmt;
dev_dbg(&client->dev, "%s probe %d", __func__, format->pad);
if (format->pad >= MIPID02_PAD_NB)
return -EINVAL;
/* second CSI-2 pad not yet supported */
if (format->pad == MIPID02_SINK_1)
return -EINVAL;
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
fmt = v4l2_subdev_get_try_format(&bridge->sd, cfg, format->pad);
else
fmt = &bridge->fmt;
mutex_lock(&bridge->lock);
*mbus_fmt = *fmt;
/* code may need to be converted for source */
if (format->pad == MIPID02_SOURCE)
mbus_fmt->code = serial_to_parallel_code(mbus_fmt->code);
mutex_unlock(&bridge->lock);
return 0;
}
static void mipid02_set_fmt_source(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct mipid02_dev *bridge = to_mipid02_dev(sd);
/* source pad mirror active sink pad */
format->format = bridge->fmt;
/* but code may need to be converted */
format->format.code = serial_to_parallel_code(format->format.code);
/* only apply format for V4L2_SUBDEV_FORMAT_TRY case */
if (format->which != V4L2_SUBDEV_FORMAT_TRY)
return;
*v4l2_subdev_get_try_format(sd, cfg, format->pad) = format->format;
}
static void mipid02_set_fmt_sink(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct mipid02_dev *bridge = to_mipid02_dev(sd);
struct v4l2_mbus_framefmt *fmt;
format->format.code = get_fmt_code(format->format.code);
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
else
fmt = &bridge->fmt;
*fmt = format->format;
}
static int mipid02_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct mipid02_dev *bridge = to_mipid02_dev(sd);
struct i2c_client *client = bridge->i2c_client;
int ret = 0;
dev_dbg(&client->dev, "%s for %d", __func__, format->pad);
if (format->pad >= MIPID02_PAD_NB)
return -EINVAL;
/* second CSI-2 pad not yet supported */
if (format->pad == MIPID02_SINK_1)
return -EINVAL;
mutex_lock(&bridge->lock);
if (bridge->streaming) {
ret = -EBUSY;
goto error;
}
if (format->pad == MIPID02_SOURCE)
mipid02_set_fmt_source(sd, cfg, format);
else
mipid02_set_fmt_sink(sd, cfg, format);
error:
mutex_unlock(&bridge->lock);
return ret;
}
static const struct v4l2_subdev_video_ops mipid02_video_ops = {
.s_stream = mipid02_s_stream,
};
static const struct v4l2_subdev_pad_ops mipid02_pad_ops = {
.enum_mbus_code = mipid02_enum_mbus_code,
.get_fmt = mipid02_get_fmt,
.set_fmt = mipid02_set_fmt,
};
static const struct v4l2_subdev_ops mipid02_subdev_ops = {
.video = &mipid02_video_ops,
.pad = &mipid02_pad_ops,
};
static const struct media_entity_operations mipid02_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static int mipid02_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *s_subdev,
struct v4l2_async_subdev *asd)
{
struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd);
struct i2c_client *client = bridge->i2c_client;
int source_pad;
int ret;
dev_dbg(&client->dev, "sensor_async_bound call %p", s_subdev);
source_pad = media_entity_get_fwnode_pad(&s_subdev->entity,
s_subdev->fwnode,
MEDIA_PAD_FL_SOURCE);
if (source_pad < 0) {
dev_err(&client->dev, "Couldn't find output pad for subdev %s\n",
s_subdev->name);
return source_pad;
}
ret = media_create_pad_link(&s_subdev->entity, source_pad,
&bridge->sd.entity, 0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (ret) {
dev_err(&client->dev, "Couldn't create media link %d", ret);
return ret;
}
bridge->s_subdev = s_subdev;
return 0;
}
static void mipid02_async_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *s_subdev,
struct v4l2_async_subdev *asd)
{
struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd);
bridge->s_subdev = NULL;
}
static const struct v4l2_async_notifier_operations mipid02_notifier_ops = {
.bound = mipid02_async_bound,
.unbind = mipid02_async_unbind,
};
static int mipid02_parse_rx_ep(struct mipid02_dev *bridge)
{
struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
struct i2c_client *client = bridge->i2c_client;
struct device_node *ep_node;
int ret;
/* parse rx (endpoint 0) */
ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node,
0, 0);
if (!ep_node) {
dev_err(&client->dev, "unable to find port0 ep");
ret = -EINVAL;
goto error;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep);
if (ret) {
dev_err(&client->dev, "Could not parse v4l2 endpoint %d\n",
ret);
goto error_of_node_put;
}
/* do some sanity checks */
if (ep.bus.mipi_csi2.num_data_lanes > 2) {
dev_err(&client->dev, "max supported data lanes is 2 / got %d",
ep.bus.mipi_csi2.num_data_lanes);
ret = -EINVAL;
goto error_of_node_put;
}
/* register it for later use */
bridge->rx = ep;
/* register async notifier so we get noticed when sensor is connected */
bridge->asd.match.fwnode =
fwnode_graph_get_remote_port_parent(of_fwnode_handle(ep_node));
bridge->asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
of_node_put(ep_node);
v4l2_async_notifier_init(&bridge->notifier);
ret = v4l2_async_notifier_add_subdev(&bridge->notifier, &bridge->asd);
if (ret) {
dev_err(&client->dev, "fail to register asd to notifier %d",
ret);
fwnode_handle_put(bridge->asd.match.fwnode);
return ret;
}
bridge->notifier.ops = &mipid02_notifier_ops;
ret = v4l2_async_subdev_notifier_register(&bridge->sd,
&bridge->notifier);
if (ret)
v4l2_async_notifier_cleanup(&bridge->notifier);
return ret;
error_of_node_put:
of_node_put(ep_node);
error:
return ret;
}
static int mipid02_parse_tx_ep(struct mipid02_dev *bridge)
{
struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_PARALLEL };
struct i2c_client *client = bridge->i2c_client;
struct device_node *ep_node;
int ret;
/* parse tx (endpoint 2) */
ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node,
2, 0);
if (!ep_node) {
dev_err(&client->dev, "unable to find port1 ep");
ret = -EINVAL;
goto error;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep);
if (ret) {
dev_err(&client->dev, "Could not parse v4l2 endpoint\n");
goto error_of_node_put;
}
of_node_put(ep_node);
bridge->tx = ep;
return 0;
error_of_node_put:
of_node_put(ep_node);
error:
return -EINVAL;
}
static int mipid02_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct mipid02_dev *bridge;
u32 clk_freq;
int ret;
bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
init_format(&bridge->fmt);
bridge->i2c_client = client;
v4l2_i2c_subdev_init(&bridge->sd, client, &mipid02_subdev_ops);
/* got and check clock */
bridge->xclk = devm_clk_get(dev, "xclk");
if (IS_ERR(bridge->xclk)) {
dev_err(dev, "failed to get xclk\n");
return PTR_ERR(bridge->xclk);
}
clk_freq = clk_get_rate(bridge->xclk);
if (clk_freq < 6000000 || clk_freq > 27000000) {
dev_err(dev, "xclk freq must be in 6-27 Mhz range. got %d Hz\n",
clk_freq);
return -EINVAL;
}
bridge->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(bridge->reset_gpio)) {
dev_err(dev, "failed to get reset GPIO\n");
return PTR_ERR(bridge->reset_gpio);
}
ret = mipid02_get_regulators(bridge);
if (ret) {
dev_err(dev, "failed to get regulators %d", ret);
return ret;
}
mutex_init(&bridge->lock);
bridge->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
bridge->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
bridge->sd.entity.ops = &mipid02_subdev_entity_ops;
bridge->pad[0].flags = MEDIA_PAD_FL_SINK;
bridge->pad[1].flags = MEDIA_PAD_FL_SINK;
bridge->pad[2].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&bridge->sd.entity, MIPID02_PAD_NB,
bridge->pad);
if (ret) {
dev_err(&client->dev, "pads init failed %d", ret);
goto mutex_cleanup;
}
/* enable clock, power and reset device if available */
ret = mipid02_set_power_on(bridge);
if (ret)
goto entity_cleanup;
ret = mipid02_detect(bridge);
if (ret) {
dev_err(&client->dev, "failed to detect mipid02 %d", ret);
goto power_off;
}
ret = mipid02_parse_tx_ep(bridge);
if (ret) {
dev_err(&client->dev, "failed to parse tx %d", ret);
goto power_off;
}
ret = mipid02_parse_rx_ep(bridge);
if (ret) {
dev_err(&client->dev, "failed to parse rx %d", ret);
goto power_off;
}
ret = v4l2_async_register_subdev(&bridge->sd);
if (ret < 0) {
dev_err(&client->dev, "v4l2_async_register_subdev failed %d",
ret);
goto unregister_notifier;
}
dev_info(&client->dev, "mipid02 device probe successfully");
return 0;
unregister_notifier:
v4l2_async_notifier_unregister(&bridge->notifier);
v4l2_async_notifier_cleanup(&bridge->notifier);
power_off:
mipid02_set_power_off(bridge);
entity_cleanup:
media_entity_cleanup(&bridge->sd.entity);
mutex_cleanup:
mutex_destroy(&bridge->lock);
return ret;
}
static int mipid02_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct mipid02_dev *bridge = to_mipid02_dev(sd);
v4l2_async_notifier_unregister(&bridge->notifier);
v4l2_async_notifier_cleanup(&bridge->notifier);
v4l2_async_unregister_subdev(&bridge->sd);
mipid02_set_power_off(bridge);
media_entity_cleanup(&bridge->sd.entity);
mutex_destroy(&bridge->lock);
return 0;
}
static const struct of_device_id mipid02_dt_ids[] = {
{ .compatible = "st,st-mipid02" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mipid02_dt_ids);
static struct i2c_driver mipid02_i2c_driver = {
.driver = {
.name = "st-mipid02",
.of_match_table = mipid02_dt_ids,
},
.probe_new = mipid02_probe,
.remove = mipid02_remove,
};
module_i2c_driver(mipid02_i2c_driver);
MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>");
MODULE_DESCRIPTION("STMicroelectronics MIPID02 CSI-2 bridge driver");
MODULE_LICENSE("GPL v2");