731 lines
22 KiB
C
731 lines
22 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/************************************************************
|
||
|
* EFI GUID Partition Table handling
|
||
|
*
|
||
|
* http://www.uefi.org/specs/
|
||
|
* http://www.intel.com/technology/efi/
|
||
|
*
|
||
|
* efi.[ch] by Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* Copyright 2000,2001,2002,2004 Dell Inc.
|
||
|
*
|
||
|
* TODO:
|
||
|
*
|
||
|
* Changelog:
|
||
|
* Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com>
|
||
|
* - detect hybrid MBRs, tighter pMBR checking & cleanups.
|
||
|
*
|
||
|
* Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - test for valid PMBR and valid PGPT before ever reading
|
||
|
* AGPT, allow override with 'gpt' kernel command line option.
|
||
|
* - check for first/last_usable_lba outside of size of disk
|
||
|
*
|
||
|
* Tue Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Ported to 2.5.7-pre1 and 2.5.7-dj2
|
||
|
* - Applied patch to avoid fault in alternate header handling
|
||
|
* - cleaned up find_valid_gpt
|
||
|
* - On-disk structure and copy in memory is *always* LE now -
|
||
|
* swab fields as needed
|
||
|
* - remove print_gpt_header()
|
||
|
* - only use first max_p partition entries, to keep the kernel minor number
|
||
|
* and partition numbers tied.
|
||
|
*
|
||
|
* Mon Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Removed __PRIPTR_PREFIX - not being used
|
||
|
*
|
||
|
* Mon Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Ported to 2.5.2-pre11 + library crc32 patch Linus applied
|
||
|
*
|
||
|
* Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Added compare_gpts().
|
||
|
* - moved le_efi_guid_to_cpus() back into this file. GPT is the only
|
||
|
* thing that keeps EFI GUIDs on disk.
|
||
|
* - Changed gpt structure names and members to be simpler and more Linux-like.
|
||
|
*
|
||
|
* Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck
|
||
|
*
|
||
|
* Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Changed function comments to DocBook style per Andreas Dilger suggestion.
|
||
|
*
|
||
|
* Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Change read_lba() to use the page cache per Al Viro's work.
|
||
|
* - print u64s properly on all architectures
|
||
|
* - fixed debug_printk(), now Dprintk()
|
||
|
*
|
||
|
* Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Style cleanups
|
||
|
* - made most functions static
|
||
|
* - Endianness addition
|
||
|
* - remove test for second alternate header, as it's not per spec,
|
||
|
* and is unnecessary. There's now a method to read/write the last
|
||
|
* sector of an odd-sized disk from user space. No tools have ever
|
||
|
* been released which used this code, so it's effectively dead.
|
||
|
* - Per Asit Mallick of Intel, added a test for a valid PMBR.
|
||
|
* - Added kernel command line option 'gpt' to override valid PMBR test.
|
||
|
*
|
||
|
* Wed Jun 6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com>
|
||
|
* - added devfs volume UUID support (/dev/volumes/uuids) for
|
||
|
* mounting file systems by the partition GUID.
|
||
|
*
|
||
|
* Tue Dec 5 2000 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Moved crc32() to linux/lib, added efi_crc32().
|
||
|
*
|
||
|
* Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Replaced Intel's CRC32 function with an equivalent
|
||
|
* non-license-restricted version.
|
||
|
*
|
||
|
* Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Fixed the last_lba() call to return the proper last block
|
||
|
*
|
||
|
* Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* - Thanks to Andries Brouwer for his debugging assistance.
|
||
|
* - Code works, detects all the partitions.
|
||
|
*
|
||
|
************************************************************/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/ctype.h>
|
||
|
#include <linux/math64.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include "check.h"
|
||
|
#include "efi.h"
|
||
|
|
||
|
/* This allows a kernel command line option 'gpt' to override
|
||
|
* the test for invalid PMBR. Not __initdata because reloading
|
||
|
* the partition tables happens after init too.
|
||
|
*/
|
||
|
static int force_gpt;
|
||
|
static int __init
|
||
|
force_gpt_fn(char *str)
|
||
|
{
|
||
|
force_gpt = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
__setup("gpt", force_gpt_fn);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* efi_crc32() - EFI version of crc32 function
|
||
|
* @buf: buffer to calculate crc32 of
|
||
|
* @len: length of buf
|
||
|
*
|
||
|
* Description: Returns EFI-style CRC32 value for @buf
|
||
|
*
|
||
|
* This function uses the little endian Ethernet polynomial
|
||
|
* but seeds the function with ~0, and xor's with ~0 at the end.
|
||
|
* Note, the EFI Specification, v1.02, has a reference to
|
||
|
* Dr. Dobbs Journal, May 1994 (actually it's in May 1992).
|
||
|
*/
|
||
|
static inline u32
|
||
|
efi_crc32(const void *buf, unsigned long len)
|
||
|
{
|
||
|
return (crc32(~0L, buf, len) ^ ~0L);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* last_lba(): return number of last logical block of device
|
||
|
* @bdev: block device
|
||
|
*
|
||
|
* Description: Returns last LBA value on success, 0 on error.
|
||
|
* This is stored (by sd and ide-geometry) in
|
||
|
* the part[0] entry for this disk, and is the number of
|
||
|
* physical sectors available on the disk.
|
||
|
*/
|
||
|
static u64 last_lba(struct block_device *bdev)
|
||
|
{
|
||
|
if (!bdev || !bdev->bd_inode)
|
||
|
return 0;
|
||
|
return div_u64(bdev->bd_inode->i_size,
|
||
|
bdev_logical_block_size(bdev)) - 1ULL;
|
||
|
}
|
||
|
|
||
|
static inline int pmbr_part_valid(gpt_mbr_record *part)
|
||
|
{
|
||
|
if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
|
||
|
goto invalid;
|
||
|
|
||
|
/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
|
||
|
if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
|
||
|
goto invalid;
|
||
|
|
||
|
return GPT_MBR_PROTECTIVE;
|
||
|
invalid:
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* is_pmbr_valid(): test Protective MBR for validity
|
||
|
* @mbr: pointer to a legacy mbr structure
|
||
|
* @total_sectors: amount of sectors in the device
|
||
|
*
|
||
|
* Description: Checks for a valid protective or hybrid
|
||
|
* master boot record (MBR). The validity of a pMBR depends
|
||
|
* on all of the following properties:
|
||
|
* 1) MSDOS signature is in the last two bytes of the MBR
|
||
|
* 2) One partition of type 0xEE is found
|
||
|
*
|
||
|
* In addition, a hybrid MBR will have up to three additional
|
||
|
* primary partitions, which point to the same space that's
|
||
|
* marked out by up to three GPT partitions.
|
||
|
*
|
||
|
* Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or
|
||
|
* GPT_MBR_HYBRID depending on the device layout.
|
||
|
*/
|
||
|
static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
|
||
|
{
|
||
|
uint32_t sz = 0;
|
||
|
int i, part = 0, ret = 0; /* invalid by default */
|
||
|
|
||
|
if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
|
||
|
goto done;
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
ret = pmbr_part_valid(&mbr->partition_record[i]);
|
||
|
if (ret == GPT_MBR_PROTECTIVE) {
|
||
|
part = i;
|
||
|
/*
|
||
|
* Ok, we at least know that there's a protective MBR,
|
||
|
* now check if there are other partition types for
|
||
|
* hybrid MBR.
|
||
|
*/
|
||
|
goto check_hybrid;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ret != GPT_MBR_PROTECTIVE)
|
||
|
goto done;
|
||
|
check_hybrid:
|
||
|
for (i = 0; i < 4; i++)
|
||
|
if ((mbr->partition_record[i].os_type !=
|
||
|
EFI_PMBR_OSTYPE_EFI_GPT) &&
|
||
|
(mbr->partition_record[i].os_type != 0x00))
|
||
|
ret = GPT_MBR_HYBRID;
|
||
|
|
||
|
/*
|
||
|
* Protective MBRs take up the lesser of the whole disk
|
||
|
* or 2 TiB (32bit LBA), ignoring the rest of the disk.
|
||
|
* Some partitioning programs, nonetheless, choose to set
|
||
|
* the size to the maximum 32-bit limitation, disregarding
|
||
|
* the disk size.
|
||
|
*
|
||
|
* Hybrid MBRs do not necessarily comply with this.
|
||
|
*
|
||
|
* Consider a bad value here to be a warning to support dd'ing
|
||
|
* an image from a smaller disk to a larger disk.
|
||
|
*/
|
||
|
if (ret == GPT_MBR_PROTECTIVE) {
|
||
|
sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
|
||
|
if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
|
||
|
pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
|
||
|
sz, min_t(uint32_t,
|
||
|
total_sectors - 1, 0xFFFFFFFF));
|
||
|
}
|
||
|
done:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* read_lba(): Read bytes from disk, starting at given LBA
|
||
|
* @state: disk parsed partitions
|
||
|
* @lba: the Logical Block Address of the partition table
|
||
|
* @buffer: destination buffer
|
||
|
* @count: bytes to read
|
||
|
*
|
||
|
* Description: Reads @count bytes from @state->bdev into @buffer.
|
||
|
* Returns number of bytes read on success, 0 on error.
|
||
|
*/
|
||
|
static size_t read_lba(struct parsed_partitions *state,
|
||
|
u64 lba, u8 *buffer, size_t count)
|
||
|
{
|
||
|
size_t totalreadcount = 0;
|
||
|
struct block_device *bdev = state->bdev;
|
||
|
sector_t n = lba * (bdev_logical_block_size(bdev) / 512);
|
||
|
|
||
|
if (!buffer || lba > last_lba(bdev))
|
||
|
return 0;
|
||
|
|
||
|
while (count) {
|
||
|
int copied = 512;
|
||
|
Sector sect;
|
||
|
unsigned char *data = read_part_sector(state, n++, §);
|
||
|
if (!data)
|
||
|
break;
|
||
|
if (copied > count)
|
||
|
copied = count;
|
||
|
memcpy(buffer, data, copied);
|
||
|
put_dev_sector(sect);
|
||
|
buffer += copied;
|
||
|
totalreadcount +=copied;
|
||
|
count -= copied;
|
||
|
}
|
||
|
return totalreadcount;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* alloc_read_gpt_entries(): reads partition entries from disk
|
||
|
* @state: disk parsed partitions
|
||
|
* @gpt: GPT header
|
||
|
*
|
||
|
* Description: Returns ptes on success, NULL on error.
|
||
|
* Allocates space for PTEs based on information found in @gpt.
|
||
|
* Notes: remember to free pte when you're done!
|
||
|
*/
|
||
|
static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state,
|
||
|
gpt_header *gpt)
|
||
|
{
|
||
|
size_t count;
|
||
|
gpt_entry *pte;
|
||
|
|
||
|
if (!gpt)
|
||
|
return NULL;
|
||
|
|
||
|
count = (size_t)le32_to_cpu(gpt->num_partition_entries) *
|
||
|
le32_to_cpu(gpt->sizeof_partition_entry);
|
||
|
if (!count)
|
||
|
return NULL;
|
||
|
pte = kmalloc(count, GFP_KERNEL);
|
||
|
if (!pte)
|
||
|
return NULL;
|
||
|
|
||
|
if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba),
|
||
|
(u8 *) pte, count) < count) {
|
||
|
kfree(pte);
|
||
|
pte=NULL;
|
||
|
return NULL;
|
||
|
}
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
|
||
|
* @state: disk parsed partitions
|
||
|
* @lba: the Logical Block Address of the partition table
|
||
|
*
|
||
|
* Description: returns GPT header on success, NULL on error. Allocates
|
||
|
* and fills a GPT header starting at @ from @state->bdev.
|
||
|
* Note: remember to free gpt when finished with it.
|
||
|
*/
|
||
|
static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state,
|
||
|
u64 lba)
|
||
|
{
|
||
|
gpt_header *gpt;
|
||
|
unsigned ssz = bdev_logical_block_size(state->bdev);
|
||
|
|
||
|
gpt = kmalloc(ssz, GFP_KERNEL);
|
||
|
if (!gpt)
|
||
|
return NULL;
|
||
|
|
||
|
if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) {
|
||
|
kfree(gpt);
|
||
|
gpt=NULL;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return gpt;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* is_gpt_valid() - tests one GPT header and PTEs for validity
|
||
|
* @state: disk parsed partitions
|
||
|
* @lba: logical block address of the GPT header to test
|
||
|
* @gpt: GPT header ptr, filled on return.
|
||
|
* @ptes: PTEs ptr, filled on return.
|
||
|
*
|
||
|
* Description: returns 1 if valid, 0 on error.
|
||
|
* If valid, returns pointers to newly allocated GPT header and PTEs.
|
||
|
*/
|
||
|
static int is_gpt_valid(struct parsed_partitions *state, u64 lba,
|
||
|
gpt_header **gpt, gpt_entry **ptes)
|
||
|
{
|
||
|
u32 crc, origcrc;
|
||
|
u64 lastlba, pt_size;
|
||
|
|
||
|
if (!ptes)
|
||
|
return 0;
|
||
|
if (!(*gpt = alloc_read_gpt_header(state, lba)))
|
||
|
return 0;
|
||
|
|
||
|
/* Check the GUID Partition Table signature */
|
||
|
if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) {
|
||
|
pr_debug("GUID Partition Table Header signature is wrong:"
|
||
|
"%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu((*gpt)->signature),
|
||
|
(unsigned long long)GPT_HEADER_SIGNATURE);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Check the GUID Partition Table header size is too big */
|
||
|
if (le32_to_cpu((*gpt)->header_size) >
|
||
|
bdev_logical_block_size(state->bdev)) {
|
||
|
pr_debug("GUID Partition Table Header size is too large: %u > %u\n",
|
||
|
le32_to_cpu((*gpt)->header_size),
|
||
|
bdev_logical_block_size(state->bdev));
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Check the GUID Partition Table header size is too small */
|
||
|
if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) {
|
||
|
pr_debug("GUID Partition Table Header size is too small: %u < %zu\n",
|
||
|
le32_to_cpu((*gpt)->header_size),
|
||
|
sizeof(gpt_header));
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Check the GUID Partition Table CRC */
|
||
|
origcrc = le32_to_cpu((*gpt)->header_crc32);
|
||
|
(*gpt)->header_crc32 = 0;
|
||
|
crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size));
|
||
|
|
||
|
if (crc != origcrc) {
|
||
|
pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n",
|
||
|
crc, origcrc);
|
||
|
goto fail;
|
||
|
}
|
||
|
(*gpt)->header_crc32 = cpu_to_le32(origcrc);
|
||
|
|
||
|
/* Check that the my_lba entry points to the LBA that contains
|
||
|
* the GUID Partition Table */
|
||
|
if (le64_to_cpu((*gpt)->my_lba) != lba) {
|
||
|
pr_debug("GPT my_lba incorrect: %lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu((*gpt)->my_lba),
|
||
|
(unsigned long long)lba);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Check the first_usable_lba and last_usable_lba are
|
||
|
* within the disk.
|
||
|
*/
|
||
|
lastlba = last_lba(state->bdev);
|
||
|
if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) {
|
||
|
pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n",
|
||
|
(unsigned long long)le64_to_cpu((*gpt)->first_usable_lba),
|
||
|
(unsigned long long)lastlba);
|
||
|
goto fail;
|
||
|
}
|
||
|
if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) {
|
||
|
pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
|
||
|
(unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
|
||
|
(unsigned long long)lastlba);
|
||
|
goto fail;
|
||
|
}
|
||
|
if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) {
|
||
|
pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
|
||
|
(unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
|
||
|
(unsigned long long)le64_to_cpu((*gpt)->first_usable_lba));
|
||
|
goto fail;
|
||
|
}
|
||
|
/* Check that sizeof_partition_entry has the correct value */
|
||
|
if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
|
||
|
pr_debug("GUID Partition Entry Size check failed.\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Sanity check partition table size */
|
||
|
pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) *
|
||
|
le32_to_cpu((*gpt)->sizeof_partition_entry);
|
||
|
if (pt_size > KMALLOC_MAX_SIZE) {
|
||
|
pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n",
|
||
|
(unsigned long long)pt_size, KMALLOC_MAX_SIZE);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (!(*ptes = alloc_read_gpt_entries(state, *gpt)))
|
||
|
goto fail;
|
||
|
|
||
|
/* Check the GUID Partition Entry Array CRC */
|
||
|
crc = efi_crc32((const unsigned char *) (*ptes), pt_size);
|
||
|
|
||
|
if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) {
|
||
|
pr_debug("GUID Partition Entry Array CRC check failed.\n");
|
||
|
goto fail_ptes;
|
||
|
}
|
||
|
|
||
|
/* We're done, all's well */
|
||
|
return 1;
|
||
|
|
||
|
fail_ptes:
|
||
|
kfree(*ptes);
|
||
|
*ptes = NULL;
|
||
|
fail:
|
||
|
kfree(*gpt);
|
||
|
*gpt = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* is_pte_valid() - tests one PTE for validity
|
||
|
* @pte:pte to check
|
||
|
* @lastlba: last lba of the disk
|
||
|
*
|
||
|
* Description: returns 1 if valid, 0 on error.
|
||
|
*/
|
||
|
static inline int
|
||
|
is_pte_valid(const gpt_entry *pte, const u64 lastlba)
|
||
|
{
|
||
|
if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
|
||
|
le64_to_cpu(pte->starting_lba) > lastlba ||
|
||
|
le64_to_cpu(pte->ending_lba) > lastlba)
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* compare_gpts() - Search disk for valid GPT headers and PTEs
|
||
|
* @pgpt: primary GPT header
|
||
|
* @agpt: alternate GPT header
|
||
|
* @lastlba: last LBA number
|
||
|
*
|
||
|
* Description: Returns nothing. Sanity checks pgpt and agpt fields
|
||
|
* and prints warnings on discrepancies.
|
||
|
*
|
||
|
*/
|
||
|
static void
|
||
|
compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba)
|
||
|
{
|
||
|
int error_found = 0;
|
||
|
if (!pgpt || !agpt)
|
||
|
return;
|
||
|
if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) {
|
||
|
pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n");
|
||
|
pr_warn("GPT:%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu(pgpt->my_lba),
|
||
|
(unsigned long long)le64_to_cpu(agpt->alternate_lba));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) {
|
||
|
pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n");
|
||
|
pr_warn("GPT:%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu(pgpt->alternate_lba),
|
||
|
(unsigned long long)le64_to_cpu(agpt->my_lba));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le64_to_cpu(pgpt->first_usable_lba) !=
|
||
|
le64_to_cpu(agpt->first_usable_lba)) {
|
||
|
pr_warn("GPT:first_usable_lbas don't match.\n");
|
||
|
pr_warn("GPT:%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu(pgpt->first_usable_lba),
|
||
|
(unsigned long long)le64_to_cpu(agpt->first_usable_lba));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le64_to_cpu(pgpt->last_usable_lba) !=
|
||
|
le64_to_cpu(agpt->last_usable_lba)) {
|
||
|
pr_warn("GPT:last_usable_lbas don't match.\n");
|
||
|
pr_warn("GPT:%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu(pgpt->last_usable_lba),
|
||
|
(unsigned long long)le64_to_cpu(agpt->last_usable_lba));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) {
|
||
|
pr_warn("GPT:disk_guids don't match.\n");
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le32_to_cpu(pgpt->num_partition_entries) !=
|
||
|
le32_to_cpu(agpt->num_partition_entries)) {
|
||
|
pr_warn("GPT:num_partition_entries don't match: "
|
||
|
"0x%x != 0x%x\n",
|
||
|
le32_to_cpu(pgpt->num_partition_entries),
|
||
|
le32_to_cpu(agpt->num_partition_entries));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le32_to_cpu(pgpt->sizeof_partition_entry) !=
|
||
|
le32_to_cpu(agpt->sizeof_partition_entry)) {
|
||
|
pr_warn("GPT:sizeof_partition_entry values don't match: "
|
||
|
"0x%x != 0x%x\n",
|
||
|
le32_to_cpu(pgpt->sizeof_partition_entry),
|
||
|
le32_to_cpu(agpt->sizeof_partition_entry));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le32_to_cpu(pgpt->partition_entry_array_crc32) !=
|
||
|
le32_to_cpu(agpt->partition_entry_array_crc32)) {
|
||
|
pr_warn("GPT:partition_entry_array_crc32 values don't match: "
|
||
|
"0x%x != 0x%x\n",
|
||
|
le32_to_cpu(pgpt->partition_entry_array_crc32),
|
||
|
le32_to_cpu(agpt->partition_entry_array_crc32));
|
||
|
error_found++;
|
||
|
}
|
||
|
if (le64_to_cpu(pgpt->alternate_lba) != lastlba) {
|
||
|
pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n");
|
||
|
pr_warn("GPT:%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu(pgpt->alternate_lba),
|
||
|
(unsigned long long)lastlba);
|
||
|
error_found++;
|
||
|
}
|
||
|
|
||
|
if (le64_to_cpu(agpt->my_lba) != lastlba) {
|
||
|
pr_warn("GPT:Alternate GPT header not at the end of the disk.\n");
|
||
|
pr_warn("GPT:%lld != %lld\n",
|
||
|
(unsigned long long)le64_to_cpu(agpt->my_lba),
|
||
|
(unsigned long long)lastlba);
|
||
|
error_found++;
|
||
|
}
|
||
|
|
||
|
if (error_found)
|
||
|
pr_warn("GPT: Use GNU Parted to correct GPT errors.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* find_valid_gpt() - Search disk for valid GPT headers and PTEs
|
||
|
* @state: disk parsed partitions
|
||
|
* @gpt: GPT header ptr, filled on return.
|
||
|
* @ptes: PTEs ptr, filled on return.
|
||
|
*
|
||
|
* Description: Returns 1 if valid, 0 on error.
|
||
|
* If valid, returns pointers to newly allocated GPT header and PTEs.
|
||
|
* Validity depends on PMBR being valid (or being overridden by the
|
||
|
* 'gpt' kernel command line option) and finding either the Primary
|
||
|
* GPT header and PTEs valid, or the Alternate GPT header and PTEs
|
||
|
* valid. If the Primary GPT header is not valid, the Alternate GPT header
|
||
|
* is not checked unless the 'gpt' kernel command line option is passed.
|
||
|
* This protects against devices which misreport their size, and forces
|
||
|
* the user to decide to use the Alternate GPT.
|
||
|
*/
|
||
|
static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt,
|
||
|
gpt_entry **ptes)
|
||
|
{
|
||
|
int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
|
||
|
gpt_header *pgpt = NULL, *agpt = NULL;
|
||
|
gpt_entry *pptes = NULL, *aptes = NULL;
|
||
|
legacy_mbr *legacymbr;
|
||
|
sector_t total_sectors = i_size_read(state->bdev->bd_inode) >> 9;
|
||
|
u64 lastlba;
|
||
|
|
||
|
if (!ptes)
|
||
|
return 0;
|
||
|
|
||
|
lastlba = last_lba(state->bdev);
|
||
|
if (!force_gpt) {
|
||
|
/* This will be added to the EFI Spec. per Intel after v1.02. */
|
||
|
legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL);
|
||
|
if (!legacymbr)
|
||
|
goto fail;
|
||
|
|
||
|
read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr));
|
||
|
good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
|
||
|
kfree(legacymbr);
|
||
|
|
||
|
if (!good_pmbr)
|
||
|
goto fail;
|
||
|
|
||
|
pr_debug("Device has a %s MBR\n",
|
||
|
good_pmbr == GPT_MBR_PROTECTIVE ?
|
||
|
"protective" : "hybrid");
|
||
|
}
|
||
|
|
||
|
good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA,
|
||
|
&pgpt, &pptes);
|
||
|
if (good_pgpt)
|
||
|
good_agpt = is_gpt_valid(state,
|
||
|
le64_to_cpu(pgpt->alternate_lba),
|
||
|
&agpt, &aptes);
|
||
|
if (!good_agpt && force_gpt)
|
||
|
good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes);
|
||
|
|
||
|
/* The obviously unsuccessful case */
|
||
|
if (!good_pgpt && !good_agpt)
|
||
|
goto fail;
|
||
|
|
||
|
compare_gpts(pgpt, agpt, lastlba);
|
||
|
|
||
|
/* The good cases */
|
||
|
if (good_pgpt) {
|
||
|
*gpt = pgpt;
|
||
|
*ptes = pptes;
|
||
|
kfree(agpt);
|
||
|
kfree(aptes);
|
||
|
if (!good_agpt)
|
||
|
pr_warn("Alternate GPT is invalid, using primary GPT.\n");
|
||
|
return 1;
|
||
|
}
|
||
|
else if (good_agpt) {
|
||
|
*gpt = agpt;
|
||
|
*ptes = aptes;
|
||
|
kfree(pgpt);
|
||
|
kfree(pptes);
|
||
|
pr_warn("Primary GPT is invalid, using alternate GPT.\n");
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
fail:
|
||
|
kfree(pgpt);
|
||
|
kfree(agpt);
|
||
|
kfree(pptes);
|
||
|
kfree(aptes);
|
||
|
*gpt = NULL;
|
||
|
*ptes = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efi_partition(struct parsed_partitions *state)
|
||
|
* @state: disk parsed partitions
|
||
|
*
|
||
|
* Description: called from check.c, if the disk contains GPT
|
||
|
* partitions, sets up partition entries in the kernel.
|
||
|
*
|
||
|
* If the first block on the disk is a legacy MBR,
|
||
|
* it will get handled by msdos_partition().
|
||
|
* If it's a Protective MBR, we'll handle it here.
|
||
|
*
|
||
|
* We do not create a Linux partition for GPT, but
|
||
|
* only for the actual data partitions.
|
||
|
* Returns:
|
||
|
* -1 if unable to read the partition table
|
||
|
* 0 if this isn't our partition table
|
||
|
* 1 if successful
|
||
|
*
|
||
|
*/
|
||
|
int efi_partition(struct parsed_partitions *state)
|
||
|
{
|
||
|
gpt_header *gpt = NULL;
|
||
|
gpt_entry *ptes = NULL;
|
||
|
u32 i;
|
||
|
unsigned ssz = bdev_logical_block_size(state->bdev) / 512;
|
||
|
|
||
|
if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) {
|
||
|
kfree(gpt);
|
||
|
kfree(ptes);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
pr_debug("GUID Partition Table is valid! Yea!\n");
|
||
|
|
||
|
for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
|
||
|
struct partition_meta_info *info;
|
||
|
unsigned label_count = 0;
|
||
|
unsigned label_max;
|
||
|
u64 start = le64_to_cpu(ptes[i].starting_lba);
|
||
|
u64 size = le64_to_cpu(ptes[i].ending_lba) -
|
||
|
le64_to_cpu(ptes[i].starting_lba) + 1ULL;
|
||
|
|
||
|
if (!is_pte_valid(&ptes[i], last_lba(state->bdev)))
|
||
|
continue;
|
||
|
|
||
|
put_partition(state, i+1, start * ssz, size * ssz);
|
||
|
|
||
|
/* If this is a RAID volume, tell md */
|
||
|
if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID))
|
||
|
state->parts[i + 1].flags = ADDPART_FLAG_RAID;
|
||
|
|
||
|
info = &state->parts[i + 1].info;
|
||
|
efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid);
|
||
|
|
||
|
/* Naively convert UTF16-LE to 7 bits. */
|
||
|
label_max = min(ARRAY_SIZE(info->volname) - 1,
|
||
|
ARRAY_SIZE(ptes[i].partition_name));
|
||
|
info->volname[label_max] = 0;
|
||
|
while (label_count < label_max) {
|
||
|
u8 c = ptes[i].partition_name[label_count] & 0xff;
|
||
|
if (c && !isprint(c))
|
||
|
c = '!';
|
||
|
info->volname[label_count] = c;
|
||
|
label_count++;
|
||
|
}
|
||
|
state->parts[i + 1].has_info = true;
|
||
|
}
|
||
|
kfree(ptes);
|
||
|
kfree(gpt);
|
||
|
strlcat(state->pp_buf, "\n", PAGE_SIZE);
|
||
|
return 1;
|
||
|
}
|