259 lines
6.3 KiB
C
259 lines
6.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Using hardware provided CRC32 instruction to accelerate the CRC32 disposal.
|
||
|
* CRC32C polynomial:0x1EDC6F41(BE)/0x82F63B78(LE)
|
||
|
* CRC32 is a new instruction in Intel SSE4.2, the reference can be found at:
|
||
|
* http://www.intel.com/products/processor/manuals/
|
||
|
* Intel(R) 64 and IA-32 Architectures Software Developer's Manual
|
||
|
* Volume 2A: Instruction Set Reference, A-M
|
||
|
*
|
||
|
* Copyright (C) 2008 Intel Corporation
|
||
|
* Authors: Austin Zhang <austin_zhang@linux.intel.com>
|
||
|
* Kent Liu <kent.liu@intel.com>
|
||
|
*/
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <crypto/internal/hash.h>
|
||
|
#include <crypto/internal/simd.h>
|
||
|
|
||
|
#include <asm/cpufeatures.h>
|
||
|
#include <asm/cpu_device_id.h>
|
||
|
#include <asm/simd.h>
|
||
|
|
||
|
#define CHKSUM_BLOCK_SIZE 1
|
||
|
#define CHKSUM_DIGEST_SIZE 4
|
||
|
|
||
|
#define SCALE_F sizeof(unsigned long)
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
#define REX_PRE "0x48, "
|
||
|
#else
|
||
|
#define REX_PRE
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
/*
|
||
|
* use carryless multiply version of crc32c when buffer
|
||
|
* size is >= 512 to account
|
||
|
* for fpu state save/restore overhead.
|
||
|
*/
|
||
|
#define CRC32C_PCL_BREAKEVEN 512
|
||
|
|
||
|
asmlinkage unsigned int crc_pcl(const u8 *buffer, int len,
|
||
|
unsigned int crc_init);
|
||
|
#endif /* CONFIG_X86_64 */
|
||
|
|
||
|
static u32 crc32c_intel_le_hw_byte(u32 crc, unsigned char const *data, size_t length)
|
||
|
{
|
||
|
while (length--) {
|
||
|
__asm__ __volatile__(
|
||
|
".byte 0xf2, 0xf, 0x38, 0xf0, 0xf1"
|
||
|
:"=S"(crc)
|
||
|
:"0"(crc), "c"(*data)
|
||
|
);
|
||
|
data++;
|
||
|
}
|
||
|
|
||
|
return crc;
|
||
|
}
|
||
|
|
||
|
static u32 __pure crc32c_intel_le_hw(u32 crc, unsigned char const *p, size_t len)
|
||
|
{
|
||
|
unsigned int iquotient = len / SCALE_F;
|
||
|
unsigned int iremainder = len % SCALE_F;
|
||
|
unsigned long *ptmp = (unsigned long *)p;
|
||
|
|
||
|
while (iquotient--) {
|
||
|
__asm__ __volatile__(
|
||
|
".byte 0xf2, " REX_PRE "0xf, 0x38, 0xf1, 0xf1;"
|
||
|
:"=S"(crc)
|
||
|
:"0"(crc), "c"(*ptmp)
|
||
|
);
|
||
|
ptmp++;
|
||
|
}
|
||
|
|
||
|
if (iremainder)
|
||
|
crc = crc32c_intel_le_hw_byte(crc, (unsigned char *)ptmp,
|
||
|
iremainder);
|
||
|
|
||
|
return crc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Setting the seed allows arbitrary accumulators and flexible XOR policy
|
||
|
* If your algorithm starts with ~0, then XOR with ~0 before you set
|
||
|
* the seed.
|
||
|
*/
|
||
|
static int crc32c_intel_setkey(struct crypto_shash *hash, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
u32 *mctx = crypto_shash_ctx(hash);
|
||
|
|
||
|
if (keylen != sizeof(u32)) {
|
||
|
crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
*mctx = le32_to_cpup((__le32 *)key);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int crc32c_intel_init(struct shash_desc *desc)
|
||
|
{
|
||
|
u32 *mctx = crypto_shash_ctx(desc->tfm);
|
||
|
u32 *crcp = shash_desc_ctx(desc);
|
||
|
|
||
|
*crcp = *mctx;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int crc32c_intel_update(struct shash_desc *desc, const u8 *data,
|
||
|
unsigned int len)
|
||
|
{
|
||
|
u32 *crcp = shash_desc_ctx(desc);
|
||
|
|
||
|
*crcp = crc32c_intel_le_hw(*crcp, data, len);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __crc32c_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
|
||
|
u8 *out)
|
||
|
{
|
||
|
*(__le32 *)out = ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int crc32c_intel_finup(struct shash_desc *desc, const u8 *data,
|
||
|
unsigned int len, u8 *out)
|
||
|
{
|
||
|
return __crc32c_intel_finup(shash_desc_ctx(desc), data, len, out);
|
||
|
}
|
||
|
|
||
|
static int crc32c_intel_final(struct shash_desc *desc, u8 *out)
|
||
|
{
|
||
|
u32 *crcp = shash_desc_ctx(desc);
|
||
|
|
||
|
*(__le32 *)out = ~cpu_to_le32p(crcp);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int crc32c_intel_digest(struct shash_desc *desc, const u8 *data,
|
||
|
unsigned int len, u8 *out)
|
||
|
{
|
||
|
return __crc32c_intel_finup(crypto_shash_ctx(desc->tfm), data, len,
|
||
|
out);
|
||
|
}
|
||
|
|
||
|
static int crc32c_intel_cra_init(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
u32 *key = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
*key = ~0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
static int crc32c_pcl_intel_update(struct shash_desc *desc, const u8 *data,
|
||
|
unsigned int len)
|
||
|
{
|
||
|
u32 *crcp = shash_desc_ctx(desc);
|
||
|
|
||
|
/*
|
||
|
* use faster PCL version if datasize is large enough to
|
||
|
* overcome kernel fpu state save/restore overhead
|
||
|
*/
|
||
|
if (len >= CRC32C_PCL_BREAKEVEN && crypto_simd_usable()) {
|
||
|
kernel_fpu_begin();
|
||
|
*crcp = crc_pcl(data, len, *crcp);
|
||
|
kernel_fpu_end();
|
||
|
} else
|
||
|
*crcp = crc32c_intel_le_hw(*crcp, data, len);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __crc32c_pcl_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
|
||
|
u8 *out)
|
||
|
{
|
||
|
if (len >= CRC32C_PCL_BREAKEVEN && crypto_simd_usable()) {
|
||
|
kernel_fpu_begin();
|
||
|
*(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp));
|
||
|
kernel_fpu_end();
|
||
|
} else
|
||
|
*(__le32 *)out =
|
||
|
~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int crc32c_pcl_intel_finup(struct shash_desc *desc, const u8 *data,
|
||
|
unsigned int len, u8 *out)
|
||
|
{
|
||
|
return __crc32c_pcl_intel_finup(shash_desc_ctx(desc), data, len, out);
|
||
|
}
|
||
|
|
||
|
static int crc32c_pcl_intel_digest(struct shash_desc *desc, const u8 *data,
|
||
|
unsigned int len, u8 *out)
|
||
|
{
|
||
|
return __crc32c_pcl_intel_finup(crypto_shash_ctx(desc->tfm), data, len,
|
||
|
out);
|
||
|
}
|
||
|
#endif /* CONFIG_X86_64 */
|
||
|
|
||
|
static struct shash_alg alg = {
|
||
|
.setkey = crc32c_intel_setkey,
|
||
|
.init = crc32c_intel_init,
|
||
|
.update = crc32c_intel_update,
|
||
|
.final = crc32c_intel_final,
|
||
|
.finup = crc32c_intel_finup,
|
||
|
.digest = crc32c_intel_digest,
|
||
|
.descsize = sizeof(u32),
|
||
|
.digestsize = CHKSUM_DIGEST_SIZE,
|
||
|
.base = {
|
||
|
.cra_name = "crc32c",
|
||
|
.cra_driver_name = "crc32c-intel",
|
||
|
.cra_priority = 200,
|
||
|
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
|
||
|
.cra_blocksize = CHKSUM_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(u32),
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_init = crc32c_intel_cra_init,
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct x86_cpu_id crc32c_cpu_id[] = {
|
||
|
X86_FEATURE_MATCH(X86_FEATURE_XMM4_2),
|
||
|
{}
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(x86cpu, crc32c_cpu_id);
|
||
|
|
||
|
static int __init crc32c_intel_mod_init(void)
|
||
|
{
|
||
|
if (!x86_match_cpu(crc32c_cpu_id))
|
||
|
return -ENODEV;
|
||
|
#ifdef CONFIG_X86_64
|
||
|
if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) {
|
||
|
alg.update = crc32c_pcl_intel_update;
|
||
|
alg.finup = crc32c_pcl_intel_finup;
|
||
|
alg.digest = crc32c_pcl_intel_digest;
|
||
|
}
|
||
|
#endif
|
||
|
return crypto_register_shash(&alg);
|
||
|
}
|
||
|
|
||
|
static void __exit crc32c_intel_mod_fini(void)
|
||
|
{
|
||
|
crypto_unregister_shash(&alg);
|
||
|
}
|
||
|
|
||
|
module_init(crc32c_intel_mod_init);
|
||
|
module_exit(crc32c_intel_mod_fini);
|
||
|
|
||
|
MODULE_AUTHOR("Austin Zhang <austin.zhang@intel.com>, Kent Liu <kent.liu@intel.com>");
|
||
|
MODULE_DESCRIPTION("CRC32c (Castagnoli) optimization using Intel Hardware.");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
MODULE_ALIAS_CRYPTO("crc32c");
|
||
|
MODULE_ALIAS_CRYPTO("crc32c-intel");
|