linux/linux-5.4.31/arch/powerpc/kvm/book3s.c

1120 lines
28 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/page.h>
#include <asm/xive.h>
#include "book3s.h"
#include "trace.h"
#define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
#define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
/* #define EXIT_DEBUG */
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exits", VCPU_STAT(sum_exits) },
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "queue_intr", VCPU_STAT(queue_intr) },
{ "halt_poll_success_ns", VCPU_STAT(halt_poll_success_ns) },
{ "halt_poll_fail_ns", VCPU_STAT(halt_poll_fail_ns) },
{ "halt_wait_ns", VCPU_STAT(halt_wait_ns) },
{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), },
{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), },
{ "halt_successful_wait", VCPU_STAT(halt_successful_wait) },
{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "pf_storage", VCPU_STAT(pf_storage) },
{ "sp_storage", VCPU_STAT(sp_storage) },
{ "pf_instruc", VCPU_STAT(pf_instruc) },
{ "sp_instruc", VCPU_STAT(sp_instruc) },
{ "ld", VCPU_STAT(ld) },
{ "ld_slow", VCPU_STAT(ld_slow) },
{ "st", VCPU_STAT(st) },
{ "st_slow", VCPU_STAT(st_slow) },
{ "pthru_all", VCPU_STAT(pthru_all) },
{ "pthru_host", VCPU_STAT(pthru_host) },
{ "pthru_bad_aff", VCPU_STAT(pthru_bad_aff) },
{ "largepages_2M", VM_STAT(num_2M_pages, .mode = 0444) },
{ "largepages_1G", VM_STAT(num_1G_pages, .mode = 0444) },
{ NULL }
};
void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
ulong pc = kvmppc_get_pc(vcpu);
ulong lr = kvmppc_get_lr(vcpu);
if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
}
}
EXPORT_SYMBOL_GPL(kvmppc_unfixup_split_real);
static inline unsigned long kvmppc_interrupt_offset(struct kvm_vcpu *vcpu)
{
if (!is_kvmppc_hv_enabled(vcpu->kvm))
return to_book3s(vcpu)->hior;
return 0;
}
static inline void kvmppc_update_int_pending(struct kvm_vcpu *vcpu,
unsigned long pending_now, unsigned long old_pending)
{
if (is_kvmppc_hv_enabled(vcpu->kvm))
return;
if (pending_now)
kvmppc_set_int_pending(vcpu, 1);
else if (old_pending)
kvmppc_set_int_pending(vcpu, 0);
}
static inline bool kvmppc_critical_section(struct kvm_vcpu *vcpu)
{
ulong crit_raw;
ulong crit_r1;
bool crit;
if (is_kvmppc_hv_enabled(vcpu->kvm))
return false;
crit_raw = kvmppc_get_critical(vcpu);
crit_r1 = kvmppc_get_gpr(vcpu, 1);
/* Truncate crit indicators in 32 bit mode */
if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
crit_raw &= 0xffffffff;
crit_r1 &= 0xffffffff;
}
/* Critical section when crit == r1 */
crit = (crit_raw == crit_r1);
/* ... and we're in supervisor mode */
crit = crit && !(kvmppc_get_msr(vcpu) & MSR_PR);
return crit;
}
void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
{
kvmppc_unfixup_split_real(vcpu);
kvmppc_set_srr0(vcpu, kvmppc_get_pc(vcpu));
kvmppc_set_srr1(vcpu, (kvmppc_get_msr(vcpu) & ~0x783f0000ul) | flags);
kvmppc_set_pc(vcpu, kvmppc_interrupt_offset(vcpu) + vec);
vcpu->arch.mmu.reset_msr(vcpu);
}
static int kvmppc_book3s_vec2irqprio(unsigned int vec)
{
unsigned int prio;
switch (vec) {
case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
case 0xf60: prio = BOOK3S_IRQPRIO_FAC_UNAVAIL; break;
default: prio = BOOK3S_IRQPRIO_MAX; break;
}
return prio;
}
void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec)
{
unsigned long old_pending = vcpu->arch.pending_exceptions;
clear_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
kvmppc_update_int_pending(vcpu, vcpu->arch.pending_exceptions,
old_pending);
}
void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
{
vcpu->stat.queue_intr++;
set_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
#ifdef EXIT_DEBUG
printk(KERN_INFO "Queueing interrupt %x\n", vec);
#endif
}
EXPORT_SYMBOL_GPL(kvmppc_book3s_queue_irqprio);
void kvmppc_core_queue_machine_check(struct kvm_vcpu *vcpu, ulong flags)
{
/* might as well deliver this straight away */
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_MACHINE_CHECK, flags);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_machine_check);
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags)
{
/* might as well deliver this straight away */
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_PROGRAM, flags);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_program);
void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu)
{
/* might as well deliver this straight away */
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, 0);
}
void kvmppc_core_queue_vec_unavail(struct kvm_vcpu *vcpu)
{
/* might as well deliver this straight away */
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_ALTIVEC, 0);
}
void kvmppc_core_queue_vsx_unavail(struct kvm_vcpu *vcpu)
{
/* might as well deliver this straight away */
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_VSX, 0);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_dec);
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOK3S_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
EXPORT_SYMBOL_GPL(kvmppc_core_pending_dec);
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
EXPORT_SYMBOL_GPL(kvmppc_core_dequeue_dec);
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
/*
* This case (KVM_INTERRUPT_SET) should never actually arise for
* a pseries guest (because pseries guests expect their interrupt
* controllers to continue asserting an external interrupt request
* until it is acknowledged at the interrupt controller), but is
* included to avoid ABI breakage and potentially for other
* sorts of guest.
*
* There is a subtlety here: HV KVM does not test the
* external_oneshot flag in the code that synthesizes
* external interrupts for the guest just before entering
* the guest. That is OK even if userspace did do a
* KVM_INTERRUPT_SET on a pseries guest vcpu, because the
* caller (kvm_vcpu_ioctl_interrupt) does a kvm_vcpu_kick()
* which ends up doing a smp_send_reschedule(), which will
* pull the guest all the way out to the host, meaning that
* we will call kvmppc_core_prepare_to_enter() before entering
* the guest again, and that will handle the external_oneshot
* flag correctly.
*/
if (irq->irq == KVM_INTERRUPT_SET)
vcpu->arch.external_oneshot = 1;
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dar,
ulong flags)
{
kvmppc_set_dar(vcpu, dar);
kvmppc_set_dsisr(vcpu, flags);
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_data_storage);
void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong flags)
{
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE, flags);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_inst_storage);
static int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu,
unsigned int priority)
{
int deliver = 1;
int vec = 0;
bool crit = kvmppc_critical_section(vcpu);
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
case BOOK3S_IRQPRIO_SYSTEM_RESET:
vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
break;
case BOOK3S_IRQPRIO_MACHINE_CHECK:
vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
break;
case BOOK3S_IRQPRIO_DATA_STORAGE:
vec = BOOK3S_INTERRUPT_DATA_STORAGE;
break;
case BOOK3S_IRQPRIO_INST_STORAGE:
vec = BOOK3S_INTERRUPT_INST_STORAGE;
break;
case BOOK3S_IRQPRIO_DATA_SEGMENT:
vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
break;
case BOOK3S_IRQPRIO_INST_SEGMENT:
vec = BOOK3S_INTERRUPT_INST_SEGMENT;
break;
case BOOK3S_IRQPRIO_ALIGNMENT:
vec = BOOK3S_INTERRUPT_ALIGNMENT;
break;
case BOOK3S_IRQPRIO_PROGRAM:
vec = BOOK3S_INTERRUPT_PROGRAM;
break;
case BOOK3S_IRQPRIO_VSX:
vec = BOOK3S_INTERRUPT_VSX;
break;
case BOOK3S_IRQPRIO_ALTIVEC:
vec = BOOK3S_INTERRUPT_ALTIVEC;
break;
case BOOK3S_IRQPRIO_FP_UNAVAIL:
vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
break;
case BOOK3S_IRQPRIO_SYSCALL:
vec = BOOK3S_INTERRUPT_SYSCALL;
break;
case BOOK3S_IRQPRIO_DEBUG:
vec = BOOK3S_INTERRUPT_TRACE;
break;
case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
vec = BOOK3S_INTERRUPT_PERFMON;
break;
case BOOK3S_IRQPRIO_FAC_UNAVAIL:
vec = BOOK3S_INTERRUPT_FAC_UNAVAIL;
break;
default:
deliver = 0;
printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
break;
}
#if 0
printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
#endif
if (deliver)
kvmppc_inject_interrupt(vcpu, vec, 0);
return deliver;
}
/*
* This function determines if an irqprio should be cleared once issued.
*/
static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
{
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
/* DEC interrupts get cleared by mtdec */
return false;
case BOOK3S_IRQPRIO_EXTERNAL:
/*
* External interrupts get cleared by userspace
* except when set by the KVM_INTERRUPT ioctl with
* KVM_INTERRUPT_SET (not KVM_INTERRUPT_SET_LEVEL).
*/
if (vcpu->arch.external_oneshot) {
vcpu->arch.external_oneshot = 0;
return true;
}
return false;
}
return true;
}
int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned long old_pending = vcpu->arch.pending_exceptions;
unsigned int priority;
#ifdef EXIT_DEBUG
if (vcpu->arch.pending_exceptions)
printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
#endif
priority = __ffs(*pending);
while (priority < BOOK3S_IRQPRIO_MAX) {
if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
clear_irqprio(vcpu, priority)) {
clear_bit(priority, &vcpu->arch.pending_exceptions);
break;
}
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
/* Tell the guest about our interrupt status */
kvmppc_update_int_pending(vcpu, *pending, old_pending);
return 0;
}
EXPORT_SYMBOL_GPL(kvmppc_core_prepare_to_enter);
kvm_pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing,
bool *writable)
{
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM;
gfn_t gfn = gpa >> PAGE_SHIFT;
if (!(kvmppc_get_msr(vcpu) & MSR_SF))
mp_pa = (uint32_t)mp_pa;
/* Magic page override */
gpa &= ~0xFFFULL;
if (unlikely(mp_pa) && unlikely((gpa & KVM_PAM) == mp_pa)) {
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
kvm_pfn_t pfn;
pfn = (kvm_pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
if (writable)
*writable = true;
return pfn;
}
return gfn_to_pfn_prot(vcpu->kvm, gfn, writing, writable);
}
EXPORT_SYMBOL_GPL(kvmppc_gpa_to_pfn);
int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid,
enum xlate_readwrite xlrw, struct kvmppc_pte *pte)
{
bool data = (xlid == XLATE_DATA);
bool iswrite = (xlrw == XLATE_WRITE);
int relocated = (kvmppc_get_msr(vcpu) & (data ? MSR_DR : MSR_IR));
int r;
if (relocated) {
r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data, iswrite);
} else {
pte->eaddr = eaddr;
pte->raddr = eaddr & KVM_PAM;
pte->vpage = VSID_REAL | eaddr >> 12;
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
r = 0;
if ((kvmppc_get_msr(vcpu) & (MSR_IR | MSR_DR)) == MSR_DR &&
!data) {
if ((vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
((eaddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
pte->raddr &= ~SPLIT_HACK_MASK;
}
}
return r;
}
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
enum instruction_fetch_type type, u32 *inst)
{
ulong pc = kvmppc_get_pc(vcpu);
int r;
if (type == INST_SC)
pc -= 4;
r = kvmppc_ld(vcpu, &pc, sizeof(u32), inst, false);
if (r == EMULATE_DONE)
return r;
else
return EMULATE_AGAIN;
}
EXPORT_SYMBOL_GPL(kvmppc_load_last_inst);
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
{
return 0;
}
void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
vcpu_load(vcpu);
ret = vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);
vcpu_put(vcpu);
return ret;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
vcpu_load(vcpu);
ret = vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);
vcpu_put(vcpu);
return ret;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = kvmppc_get_pc(vcpu);
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = kvmppc_get_ctr(vcpu);
regs->lr = kvmppc_get_lr(vcpu);
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = kvmppc_get_msr(vcpu);
regs->srr0 = kvmppc_get_srr0(vcpu);
regs->srr1 = kvmppc_get_srr1(vcpu);
regs->pid = vcpu->arch.pid;
regs->sprg0 = kvmppc_get_sprg0(vcpu);
regs->sprg1 = kvmppc_get_sprg1(vcpu);
regs->sprg2 = kvmppc_get_sprg2(vcpu);
regs->sprg3 = kvmppc_get_sprg3(vcpu);
regs->sprg4 = kvmppc_get_sprg4(vcpu);
regs->sprg5 = kvmppc_get_sprg5(vcpu);
regs->sprg6 = kvmppc_get_sprg6(vcpu);
regs->sprg7 = kvmppc_get_sprg7(vcpu);
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
kvmppc_set_pc(vcpu, regs->pc);
kvmppc_set_cr(vcpu, regs->cr);
kvmppc_set_ctr(vcpu, regs->ctr);
kvmppc_set_lr(vcpu, regs->lr);
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
kvmppc_set_srr0(vcpu, regs->srr0);
kvmppc_set_srr1(vcpu, regs->srr1);
kvmppc_set_sprg0(vcpu, regs->sprg0);
kvmppc_set_sprg1(vcpu, regs->sprg1);
kvmppc_set_sprg2(vcpu, regs->sprg2);
kvmppc_set_sprg3(vcpu, regs->sprg3);
kvmppc_set_sprg4(vcpu, regs->sprg4);
kvmppc_set_sprg5(vcpu, regs->sprg5);
kvmppc_set_sprg6(vcpu, regs->sprg6);
kvmppc_set_sprg7(vcpu, regs->sprg7);
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
long int i;
r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, id, val);
if (r == -EINVAL) {
r = 0;
switch (id) {
case KVM_REG_PPC_DAR:
*val = get_reg_val(id, kvmppc_get_dar(vcpu));
break;
case KVM_REG_PPC_DSISR:
*val = get_reg_val(id, kvmppc_get_dsisr(vcpu));
break;
case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
i = id - KVM_REG_PPC_FPR0;
*val = get_reg_val(id, VCPU_FPR(vcpu, i));
break;
case KVM_REG_PPC_FPSCR:
*val = get_reg_val(id, vcpu->arch.fp.fpscr);
break;
#ifdef CONFIG_VSX
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
i = id - KVM_REG_PPC_VSR0;
val->vsxval[0] = vcpu->arch.fp.fpr[i][0];
val->vsxval[1] = vcpu->arch.fp.fpr[i][1];
} else {
r = -ENXIO;
}
break;
#endif /* CONFIG_VSX */
case KVM_REG_PPC_DEBUG_INST:
*val = get_reg_val(id, INS_TW);
break;
#ifdef CONFIG_KVM_XICS
case KVM_REG_PPC_ICP_STATE:
if (!vcpu->arch.icp && !vcpu->arch.xive_vcpu) {
r = -ENXIO;
break;
}
if (xics_on_xive())
*val = get_reg_val(id, kvmppc_xive_get_icp(vcpu));
else
*val = get_reg_val(id, kvmppc_xics_get_icp(vcpu));
break;
#endif /* CONFIG_KVM_XICS */
#ifdef CONFIG_KVM_XIVE
case KVM_REG_PPC_VP_STATE:
if (!vcpu->arch.xive_vcpu) {
r = -ENXIO;
break;
}
if (xive_enabled())
r = kvmppc_xive_native_get_vp(vcpu, val);
else
r = -ENXIO;
break;
#endif /* CONFIG_KVM_XIVE */
case KVM_REG_PPC_FSCR:
*val = get_reg_val(id, vcpu->arch.fscr);
break;
case KVM_REG_PPC_TAR:
*val = get_reg_val(id, vcpu->arch.tar);
break;
case KVM_REG_PPC_EBBHR:
*val = get_reg_val(id, vcpu->arch.ebbhr);
break;
case KVM_REG_PPC_EBBRR:
*val = get_reg_val(id, vcpu->arch.ebbrr);
break;
case KVM_REG_PPC_BESCR:
*val = get_reg_val(id, vcpu->arch.bescr);
break;
case KVM_REG_PPC_IC:
*val = get_reg_val(id, vcpu->arch.ic);
break;
default:
r = -EINVAL;
break;
}
}
return r;
}
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
long int i;
r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, id, val);
if (r == -EINVAL) {
r = 0;
switch (id) {
case KVM_REG_PPC_DAR:
kvmppc_set_dar(vcpu, set_reg_val(id, *val));
break;
case KVM_REG_PPC_DSISR:
kvmppc_set_dsisr(vcpu, set_reg_val(id, *val));
break;
case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
i = id - KVM_REG_PPC_FPR0;
VCPU_FPR(vcpu, i) = set_reg_val(id, *val);
break;
case KVM_REG_PPC_FPSCR:
vcpu->arch.fp.fpscr = set_reg_val(id, *val);
break;
#ifdef CONFIG_VSX
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
i = id - KVM_REG_PPC_VSR0;
vcpu->arch.fp.fpr[i][0] = val->vsxval[0];
vcpu->arch.fp.fpr[i][1] = val->vsxval[1];
} else {
r = -ENXIO;
}
break;
#endif /* CONFIG_VSX */
#ifdef CONFIG_KVM_XICS
case KVM_REG_PPC_ICP_STATE:
if (!vcpu->arch.icp && !vcpu->arch.xive_vcpu) {
r = -ENXIO;
break;
}
if (xics_on_xive())
r = kvmppc_xive_set_icp(vcpu, set_reg_val(id, *val));
else
r = kvmppc_xics_set_icp(vcpu, set_reg_val(id, *val));
break;
#endif /* CONFIG_KVM_XICS */
#ifdef CONFIG_KVM_XIVE
case KVM_REG_PPC_VP_STATE:
if (!vcpu->arch.xive_vcpu) {
r = -ENXIO;
break;
}
if (xive_enabled())
r = kvmppc_xive_native_set_vp(vcpu, val);
else
r = -ENXIO;
break;
#endif /* CONFIG_KVM_XIVE */
case KVM_REG_PPC_FSCR:
vcpu->arch.fscr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_TAR:
vcpu->arch.tar = set_reg_val(id, *val);
break;
case KVM_REG_PPC_EBBHR:
vcpu->arch.ebbhr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_EBBRR:
vcpu->arch.ebbrr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_BESCR:
vcpu->arch.bescr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_IC:
vcpu->arch.ic = set_reg_val(id, *val);
break;
default:
r = -EINVAL;
break;
}
}
return r;
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
vcpu->kvm->arch.kvm_ops->set_msr(vcpu, msr);
}
EXPORT_SYMBOL_GPL(kvmppc_set_msr);
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.kvm_ops->vcpu_run(kvm_run, vcpu);
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
vcpu_load(vcpu);
vcpu->guest_debug = dbg->control;
vcpu_put(vcpu);
return 0;
}
void kvmppc_decrementer_func(struct kvm_vcpu *vcpu)
{
kvmppc_core_queue_dec(vcpu);
kvm_vcpu_kick(vcpu);
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
return kvm->arch.kvm_ops->vcpu_create(kvm, id);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
}
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.kvm_ops->check_requests(vcpu);
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return kvm->arch.kvm_ops->get_dirty_log(kvm, log);
}
void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
kvm->arch.kvm_ops->free_memslot(free, dont);
}
int kvmppc_core_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return kvm->arch.kvm_ops->create_memslot(slot, npages);
}
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
kvm->arch.kvm_ops->flush_memslot(kvm, memslot);
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem)
{
return kvm->arch.kvm_ops->prepare_memory_region(kvm, memslot, mem);
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
kvm->arch.kvm_ops->commit_memory_region(kvm, mem, old, new, change);
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
return kvm->arch.kvm_ops->unmap_hva_range(kvm, start, end);
}
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
return kvm->arch.kvm_ops->age_hva(kvm, start, end);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
return kvm->arch.kvm_ops->test_age_hva(kvm, hva);
}
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
kvm->arch.kvm_ops->set_spte_hva(kvm, hva, pte);
return 0;
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->mmu_destroy(vcpu);
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
#ifdef CONFIG_PPC64
INIT_LIST_HEAD_RCU(&kvm->arch.spapr_tce_tables);
INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
mutex_init(&kvm->arch.rtas_token_lock);
#endif
return kvm->arch.kvm_ops->init_vm(kvm);
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
kvm->arch.kvm_ops->destroy_vm(kvm);
#ifdef CONFIG_PPC64
kvmppc_rtas_tokens_free(kvm);
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
#ifdef CONFIG_KVM_XICS
/*
* Free the XIVE devices which are not directly freed by the
* device 'release' method
*/
kfree(kvm->arch.xive_devices.native);
kvm->arch.xive_devices.native = NULL;
kfree(kvm->arch.xive_devices.xics_on_xive);
kvm->arch.xive_devices.xics_on_xive = NULL;
#endif /* CONFIG_KVM_XICS */
}
int kvmppc_h_logical_ci_load(struct kvm_vcpu *vcpu)
{
unsigned long size = kvmppc_get_gpr(vcpu, 4);
unsigned long addr = kvmppc_get_gpr(vcpu, 5);
u64 buf;
int srcu_idx;
int ret;
if (!is_power_of_2(size) || (size > sizeof(buf)))
return H_TOO_HARD;
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, size, &buf);
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
if (ret != 0)
return H_TOO_HARD;
switch (size) {
case 1:
kvmppc_set_gpr(vcpu, 4, *(u8 *)&buf);
break;
case 2:
kvmppc_set_gpr(vcpu, 4, be16_to_cpu(*(__be16 *)&buf));
break;
case 4:
kvmppc_set_gpr(vcpu, 4, be32_to_cpu(*(__be32 *)&buf));
break;
case 8:
kvmppc_set_gpr(vcpu, 4, be64_to_cpu(*(__be64 *)&buf));
break;
default:
BUG();
}
return H_SUCCESS;
}
EXPORT_SYMBOL_GPL(kvmppc_h_logical_ci_load);
int kvmppc_h_logical_ci_store(struct kvm_vcpu *vcpu)
{
unsigned long size = kvmppc_get_gpr(vcpu, 4);
unsigned long addr = kvmppc_get_gpr(vcpu, 5);
unsigned long val = kvmppc_get_gpr(vcpu, 6);
u64 buf;
int srcu_idx;
int ret;
switch (size) {
case 1:
*(u8 *)&buf = val;
break;
case 2:
*(__be16 *)&buf = cpu_to_be16(val);
break;
case 4:
*(__be32 *)&buf = cpu_to_be32(val);
break;
case 8:
*(__be64 *)&buf = cpu_to_be64(val);
break;
default:
return H_TOO_HARD;
}
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, size, &buf);
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
if (ret != 0)
return H_TOO_HARD;
return H_SUCCESS;
}
EXPORT_SYMBOL_GPL(kvmppc_h_logical_ci_store);
int kvmppc_core_check_processor_compat(void)
{
/*
* We always return 0 for book3s. We check
* for compatibility while loading the HV
* or PR module
*/
return 0;
}
int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hcall)
{
return kvm->arch.kvm_ops->hcall_implemented(hcall);
}
#ifdef CONFIG_KVM_XICS
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
bool line_status)
{
if (xics_on_xive())
return kvmppc_xive_set_irq(kvm, irq_source_id, irq, level,
line_status);
else
return kvmppc_xics_set_irq(kvm, irq_source_id, irq, level,
line_status);
}
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *irq_entry,
struct kvm *kvm, int irq_source_id,
int level, bool line_status)
{
return kvm_set_irq(kvm, irq_source_id, irq_entry->gsi,
level, line_status);
}
static int kvmppc_book3s_set_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
return kvm_set_irq(kvm, irq_source_id, e->gsi, level, line_status);
}
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries, int gsi)
{
entries->gsi = gsi;
entries->type = KVM_IRQ_ROUTING_IRQCHIP;
entries->set = kvmppc_book3s_set_irq;
entries->irqchip.irqchip = 0;
entries->irqchip.pin = gsi;
return 1;
}
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
{
return pin;
}
#endif /* CONFIG_KVM_XICS */
static int kvmppc_book3s_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (r)
return r;
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
r = kvmppc_book3s_init_pr();
#endif
#ifdef CONFIG_KVM_XICS
#ifdef CONFIG_KVM_XIVE
if (xics_on_xive()) {
kvmppc_xive_init_module();
kvm_register_device_ops(&kvm_xive_ops, KVM_DEV_TYPE_XICS);
if (kvmppc_xive_native_supported()) {
kvmppc_xive_native_init_module();
kvm_register_device_ops(&kvm_xive_native_ops,
KVM_DEV_TYPE_XIVE);
}
} else
#endif
kvm_register_device_ops(&kvm_xics_ops, KVM_DEV_TYPE_XICS);
#endif
return r;
}
static void kvmppc_book3s_exit(void)
{
#ifdef CONFIG_KVM_XICS
if (xics_on_xive()) {
kvmppc_xive_exit_module();
kvmppc_xive_native_exit_module();
}
#endif
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
kvmppc_book3s_exit_pr();
#endif
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);
/* On 32bit this is our one and only kernel module */
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
#endif