575 lines
14 KiB
C
575 lines
14 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* arch/arm64/kernel/probes/kprobes.c
|
||
|
*
|
||
|
* Kprobes support for ARM64
|
||
|
*
|
||
|
* Copyright (C) 2013 Linaro Limited.
|
||
|
* Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
|
||
|
*/
|
||
|
#include <linux/kasan.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/stop_machine.h>
|
||
|
#include <linux/sched/debug.h>
|
||
|
#include <linux/set_memory.h>
|
||
|
#include <linux/stringify.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <asm/traps.h>
|
||
|
#include <asm/ptrace.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/debug-monitors.h>
|
||
|
#include <asm/daifflags.h>
|
||
|
#include <asm/system_misc.h>
|
||
|
#include <asm/insn.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/sections.h>
|
||
|
|
||
|
#include "decode-insn.h"
|
||
|
|
||
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
||
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||
|
|
||
|
static void __kprobes
|
||
|
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
|
||
|
|
||
|
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
|
||
|
{
|
||
|
void *addrs[1];
|
||
|
u32 insns[1];
|
||
|
|
||
|
addrs[0] = addr;
|
||
|
insns[0] = opcode;
|
||
|
|
||
|
return aarch64_insn_patch_text(addrs, insns, 1);
|
||
|
}
|
||
|
|
||
|
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
|
||
|
{
|
||
|
/* prepare insn slot */
|
||
|
patch_text(p->ainsn.api.insn, p->opcode);
|
||
|
|
||
|
flush_icache_range((uintptr_t) (p->ainsn.api.insn),
|
||
|
(uintptr_t) (p->ainsn.api.insn) +
|
||
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
||
|
|
||
|
/*
|
||
|
* Needs restoring of return address after stepping xol.
|
||
|
*/
|
||
|
p->ainsn.api.restore = (unsigned long) p->addr +
|
||
|
sizeof(kprobe_opcode_t);
|
||
|
}
|
||
|
|
||
|
static void __kprobes arch_prepare_simulate(struct kprobe *p)
|
||
|
{
|
||
|
/* This instructions is not executed xol. No need to adjust the PC */
|
||
|
p->ainsn.api.restore = 0;
|
||
|
}
|
||
|
|
||
|
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
|
||
|
if (p->ainsn.api.handler)
|
||
|
p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
|
||
|
|
||
|
/* single step simulated, now go for post processing */
|
||
|
post_kprobe_handler(kcb, regs);
|
||
|
}
|
||
|
|
||
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
unsigned long probe_addr = (unsigned long)p->addr;
|
||
|
|
||
|
if (probe_addr & 0x3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* copy instruction */
|
||
|
p->opcode = le32_to_cpu(*p->addr);
|
||
|
|
||
|
if (search_exception_tables(probe_addr))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* decode instruction */
|
||
|
switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
|
||
|
case INSN_REJECTED: /* insn not supported */
|
||
|
return -EINVAL;
|
||
|
|
||
|
case INSN_GOOD_NO_SLOT: /* insn need simulation */
|
||
|
p->ainsn.api.insn = NULL;
|
||
|
break;
|
||
|
|
||
|
case INSN_GOOD: /* instruction uses slot */
|
||
|
p->ainsn.api.insn = get_insn_slot();
|
||
|
if (!p->ainsn.api.insn)
|
||
|
return -ENOMEM;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* prepare the instruction */
|
||
|
if (p->ainsn.api.insn)
|
||
|
arch_prepare_ss_slot(p);
|
||
|
else
|
||
|
arch_prepare_simulate(p);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void *alloc_insn_page(void)
|
||
|
{
|
||
|
void *page;
|
||
|
|
||
|
page = vmalloc_exec(PAGE_SIZE);
|
||
|
if (page) {
|
||
|
set_memory_ro((unsigned long)page, 1);
|
||
|
set_vm_flush_reset_perms(page);
|
||
|
}
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/* arm kprobe: install breakpoint in text */
|
||
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
patch_text(p->addr, BRK64_OPCODE_KPROBES);
|
||
|
}
|
||
|
|
||
|
/* disarm kprobe: remove breakpoint from text */
|
||
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
patch_text(p->addr, p->opcode);
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if (p->ainsn.api.insn) {
|
||
|
free_insn_slot(p->ainsn.api.insn, 0);
|
||
|
p->ainsn.api.insn = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
kcb->prev_kprobe.kp = kprobe_running();
|
||
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||
|
}
|
||
|
|
||
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
||
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||
|
}
|
||
|
|
||
|
static void __kprobes set_current_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, p);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interrupts need to be disabled before single-step mode is set, and not
|
||
|
* reenabled until after single-step mode ends.
|
||
|
* Without disabling interrupt on local CPU, there is a chance of
|
||
|
* interrupt occurrence in the period of exception return and start of
|
||
|
* out-of-line single-step, that result in wrongly single stepping
|
||
|
* into the interrupt handler.
|
||
|
*/
|
||
|
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
kcb->saved_irqflag = regs->pstate & DAIF_MASK;
|
||
|
regs->pstate |= PSR_I_BIT;
|
||
|
/* Unmask PSTATE.D for enabling software step exceptions. */
|
||
|
regs->pstate &= ~PSR_D_BIT;
|
||
|
}
|
||
|
|
||
|
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
regs->pstate &= ~DAIF_MASK;
|
||
|
regs->pstate |= kcb->saved_irqflag;
|
||
|
}
|
||
|
|
||
|
static void __kprobes
|
||
|
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
|
||
|
{
|
||
|
kcb->ss_ctx.ss_pending = true;
|
||
|
kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
|
||
|
}
|
||
|
|
||
|
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
kcb->ss_ctx.ss_pending = false;
|
||
|
kcb->ss_ctx.match_addr = 0;
|
||
|
}
|
||
|
|
||
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
||
|
struct pt_regs *regs,
|
||
|
struct kprobe_ctlblk *kcb, int reenter)
|
||
|
{
|
||
|
unsigned long slot;
|
||
|
|
||
|
if (reenter) {
|
||
|
save_previous_kprobe(kcb);
|
||
|
set_current_kprobe(p);
|
||
|
kcb->kprobe_status = KPROBE_REENTER;
|
||
|
} else {
|
||
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (p->ainsn.api.insn) {
|
||
|
/* prepare for single stepping */
|
||
|
slot = (unsigned long)p->ainsn.api.insn;
|
||
|
|
||
|
set_ss_context(kcb, slot); /* mark pending ss */
|
||
|
|
||
|
/* IRQs and single stepping do not mix well. */
|
||
|
kprobes_save_local_irqflag(kcb, regs);
|
||
|
kernel_enable_single_step(regs);
|
||
|
instruction_pointer_set(regs, slot);
|
||
|
} else {
|
||
|
/* insn simulation */
|
||
|
arch_simulate_insn(p, regs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int __kprobes reenter_kprobe(struct kprobe *p,
|
||
|
struct pt_regs *regs,
|
||
|
struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
switch (kcb->kprobe_status) {
|
||
|
case KPROBE_HIT_SSDONE:
|
||
|
case KPROBE_HIT_ACTIVE:
|
||
|
kprobes_inc_nmissed_count(p);
|
||
|
setup_singlestep(p, regs, kcb, 1);
|
||
|
break;
|
||
|
case KPROBE_HIT_SS:
|
||
|
case KPROBE_REENTER:
|
||
|
pr_warn("Unrecoverable kprobe detected.\n");
|
||
|
dump_kprobe(p);
|
||
|
BUG();
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON(1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void __kprobes
|
||
|
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *cur = kprobe_running();
|
||
|
|
||
|
if (!cur)
|
||
|
return;
|
||
|
|
||
|
/* return addr restore if non-branching insn */
|
||
|
if (cur->ainsn.api.restore != 0)
|
||
|
instruction_pointer_set(regs, cur->ainsn.api.restore);
|
||
|
|
||
|
/* restore back original saved kprobe variables and continue */
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
||
|
restore_previous_kprobe(kcb);
|
||
|
return;
|
||
|
}
|
||
|
/* call post handler */
|
||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||
|
if (cur->post_handler) {
|
||
|
/* post_handler can hit breakpoint and single step
|
||
|
* again, so we enable D-flag for recursive exception.
|
||
|
*/
|
||
|
cur->post_handler(cur, regs, 0);
|
||
|
}
|
||
|
|
||
|
reset_current_kprobe();
|
||
|
}
|
||
|
|
||
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
|
||
|
{
|
||
|
struct kprobe *cur = kprobe_running();
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
|
||
|
switch (kcb->kprobe_status) {
|
||
|
case KPROBE_HIT_SS:
|
||
|
case KPROBE_REENTER:
|
||
|
/*
|
||
|
* We are here because the instruction being single
|
||
|
* stepped caused a page fault. We reset the current
|
||
|
* kprobe and the ip points back to the probe address
|
||
|
* and allow the page fault handler to continue as a
|
||
|
* normal page fault.
|
||
|
*/
|
||
|
instruction_pointer_set(regs, (unsigned long) cur->addr);
|
||
|
if (!instruction_pointer(regs))
|
||
|
BUG();
|
||
|
|
||
|
kernel_disable_single_step();
|
||
|
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
||
|
restore_previous_kprobe(kcb);
|
||
|
else
|
||
|
reset_current_kprobe();
|
||
|
|
||
|
break;
|
||
|
case KPROBE_HIT_ACTIVE:
|
||
|
case KPROBE_HIT_SSDONE:
|
||
|
/*
|
||
|
* We increment the nmissed count for accounting,
|
||
|
* we can also use npre/npostfault count for accounting
|
||
|
* these specific fault cases.
|
||
|
*/
|
||
|
kprobes_inc_nmissed_count(cur);
|
||
|
|
||
|
/*
|
||
|
* We come here because instructions in the pre/post
|
||
|
* handler caused the page_fault, this could happen
|
||
|
* if handler tries to access user space by
|
||
|
* copy_from_user(), get_user() etc. Let the
|
||
|
* user-specified handler try to fix it first.
|
||
|
*/
|
||
|
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
|
||
|
return 1;
|
||
|
|
||
|
/*
|
||
|
* In case the user-specified fault handler returned
|
||
|
* zero, try to fix up.
|
||
|
*/
|
||
|
if (fixup_exception(regs))
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void __kprobes kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *p, *cur_kprobe;
|
||
|
struct kprobe_ctlblk *kcb;
|
||
|
unsigned long addr = instruction_pointer(regs);
|
||
|
|
||
|
kcb = get_kprobe_ctlblk();
|
||
|
cur_kprobe = kprobe_running();
|
||
|
|
||
|
p = get_kprobe((kprobe_opcode_t *) addr);
|
||
|
|
||
|
if (p) {
|
||
|
if (cur_kprobe) {
|
||
|
if (reenter_kprobe(p, regs, kcb))
|
||
|
return;
|
||
|
} else {
|
||
|
/* Probe hit */
|
||
|
set_current_kprobe(p);
|
||
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
|
||
|
/*
|
||
|
* If we have no pre-handler or it returned 0, we
|
||
|
* continue with normal processing. If we have a
|
||
|
* pre-handler and it returned non-zero, it will
|
||
|
* modify the execution path and no need to single
|
||
|
* stepping. Let's just reset current kprobe and exit.
|
||
|
*
|
||
|
* pre_handler can hit a breakpoint and can step thru
|
||
|
* before return, keep PSTATE D-flag enabled until
|
||
|
* pre_handler return back.
|
||
|
*/
|
||
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
||
|
setup_singlestep(p, regs, kcb, 0);
|
||
|
} else
|
||
|
reset_current_kprobe();
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* The breakpoint instruction was removed right
|
||
|
* after we hit it. Another cpu has removed
|
||
|
* either a probepoint or a debugger breakpoint
|
||
|
* at this address. In either case, no further
|
||
|
* handling of this interrupt is appropriate.
|
||
|
* Return back to original instruction, and continue.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
static int __kprobes
|
||
|
kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
|
||
|
{
|
||
|
if ((kcb->ss_ctx.ss_pending)
|
||
|
&& (kcb->ss_ctx.match_addr == addr)) {
|
||
|
clear_ss_context(kcb); /* clear pending ss */
|
||
|
return DBG_HOOK_HANDLED;
|
||
|
}
|
||
|
/* not ours, kprobes should ignore it */
|
||
|
return DBG_HOOK_ERROR;
|
||
|
}
|
||
|
|
||
|
static int __kprobes
|
||
|
kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
int retval;
|
||
|
|
||
|
/* return error if this is not our step */
|
||
|
retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
|
||
|
|
||
|
if (retval == DBG_HOOK_HANDLED) {
|
||
|
kprobes_restore_local_irqflag(kcb, regs);
|
||
|
kernel_disable_single_step();
|
||
|
|
||
|
post_kprobe_handler(kcb, regs);
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static struct step_hook kprobes_step_hook = {
|
||
|
.fn = kprobe_single_step_handler,
|
||
|
};
|
||
|
|
||
|
static int __kprobes
|
||
|
kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
|
||
|
{
|
||
|
kprobe_handler(regs);
|
||
|
return DBG_HOOK_HANDLED;
|
||
|
}
|
||
|
|
||
|
static struct break_hook kprobes_break_hook = {
|
||
|
.imm = KPROBES_BRK_IMM,
|
||
|
.fn = kprobe_breakpoint_handler,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Provide a blacklist of symbols identifying ranges which cannot be kprobed.
|
||
|
* This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
|
||
|
*/
|
||
|
int __init arch_populate_kprobe_blacklist(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
|
||
|
(unsigned long)__entry_text_end);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
|
||
|
(unsigned long)__irqentry_text_end);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
|
||
|
(unsigned long)__exception_text_end);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
|
||
|
(unsigned long)__idmap_text_end);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
|
||
|
(unsigned long)__hyp_text_end);
|
||
|
if (ret || is_kernel_in_hyp_mode())
|
||
|
return ret;
|
||
|
ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
|
||
|
(unsigned long)__hyp_idmap_text_end);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kretprobe_instance *ri = NULL;
|
||
|
struct hlist_head *head, empty_rp;
|
||
|
struct hlist_node *tmp;
|
||
|
unsigned long flags, orig_ret_address = 0;
|
||
|
unsigned long trampoline_address =
|
||
|
(unsigned long)&kretprobe_trampoline;
|
||
|
kprobe_opcode_t *correct_ret_addr = NULL;
|
||
|
|
||
|
INIT_HLIST_HEAD(&empty_rp);
|
||
|
kretprobe_hash_lock(current, &head, &flags);
|
||
|
|
||
|
/*
|
||
|
* It is possible to have multiple instances associated with a given
|
||
|
* task either because multiple functions in the call path have
|
||
|
* return probes installed on them, and/or more than one
|
||
|
* return probe was registered for a target function.
|
||
|
*
|
||
|
* We can handle this because:
|
||
|
* - instances are always pushed into the head of the list
|
||
|
* - when multiple return probes are registered for the same
|
||
|
* function, the (chronologically) first instance's ret_addr
|
||
|
* will be the real return address, and all the rest will
|
||
|
* point to kretprobe_trampoline.
|
||
|
*/
|
||
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
||
|
if (ri->task != current)
|
||
|
/* another task is sharing our hash bucket */
|
||
|
continue;
|
||
|
|
||
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
||
|
|
||
|
if (orig_ret_address != trampoline_address)
|
||
|
/*
|
||
|
* This is the real return address. Any other
|
||
|
* instances associated with this task are for
|
||
|
* other calls deeper on the call stack
|
||
|
*/
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
||
|
|
||
|
correct_ret_addr = ri->ret_addr;
|
||
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
||
|
if (ri->task != current)
|
||
|
/* another task is sharing our hash bucket */
|
||
|
continue;
|
||
|
|
||
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
||
|
if (ri->rp && ri->rp->handler) {
|
||
|
__this_cpu_write(current_kprobe, &ri->rp->kp);
|
||
|
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
ri->ret_addr = correct_ret_addr;
|
||
|
ri->rp->handler(ri, regs);
|
||
|
__this_cpu_write(current_kprobe, NULL);
|
||
|
}
|
||
|
|
||
|
recycle_rp_inst(ri, &empty_rp);
|
||
|
|
||
|
if (orig_ret_address != trampoline_address)
|
||
|
/*
|
||
|
* This is the real return address. Any other
|
||
|
* instances associated with this task are for
|
||
|
* other calls deeper on the call stack
|
||
|
*/
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
kretprobe_hash_unlock(current, &flags);
|
||
|
|
||
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
||
|
hlist_del(&ri->hlist);
|
||
|
kfree(ri);
|
||
|
}
|
||
|
return (void *)orig_ret_address;
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
|
||
|
|
||
|
/* replace return addr (x30) with trampoline */
|
||
|
regs->regs[30] = (long)&kretprobe_trampoline;
|
||
|
}
|
||
|
|
||
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int __init arch_init_kprobes(void)
|
||
|
{
|
||
|
register_kernel_break_hook(&kprobes_break_hook);
|
||
|
register_kernel_step_hook(&kprobes_step_hook);
|
||
|
|
||
|
return 0;
|
||
|
}
|