166 lines
4.8 KiB
C
166 lines
4.8 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* arch/arm64/kernel/probes/decode-insn.c
|
||
|
*
|
||
|
* Copyright (C) 2013 Linaro Limited.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kallsyms.h>
|
||
|
#include <asm/insn.h>
|
||
|
#include <asm/sections.h>
|
||
|
|
||
|
#include "decode-insn.h"
|
||
|
#include "simulate-insn.h"
|
||
|
|
||
|
static bool __kprobes aarch64_insn_is_steppable(u32 insn)
|
||
|
{
|
||
|
/*
|
||
|
* Branch instructions will write a new value into the PC which is
|
||
|
* likely to be relative to the XOL address and therefore invalid.
|
||
|
* Deliberate generation of an exception during stepping is also not
|
||
|
* currently safe. Lastly, MSR instructions can do any number of nasty
|
||
|
* things we can't handle during single-stepping.
|
||
|
*/
|
||
|
if (aarch64_get_insn_class(insn) == AARCH64_INSN_CLS_BR_SYS) {
|
||
|
if (aarch64_insn_is_branch(insn) ||
|
||
|
aarch64_insn_is_msr_imm(insn) ||
|
||
|
aarch64_insn_is_msr_reg(insn) ||
|
||
|
aarch64_insn_is_exception(insn) ||
|
||
|
aarch64_insn_is_eret(insn))
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* The MRS instruction may not return a correct value when
|
||
|
* executing in the single-stepping environment. We do make one
|
||
|
* exception, for reading the DAIF bits.
|
||
|
*/
|
||
|
if (aarch64_insn_is_mrs(insn))
|
||
|
return aarch64_insn_extract_system_reg(insn)
|
||
|
!= AARCH64_INSN_SPCLREG_DAIF;
|
||
|
|
||
|
/*
|
||
|
* The HINT instruction is is problematic when single-stepping,
|
||
|
* except for the NOP case.
|
||
|
*/
|
||
|
if (aarch64_insn_is_hint(insn))
|
||
|
return aarch64_insn_is_nop(insn);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Instructions which load PC relative literals are not going to work
|
||
|
* when executed from an XOL slot. Instructions doing an exclusive
|
||
|
* load/store are not going to complete successfully when single-step
|
||
|
* exception handling happens in the middle of the sequence.
|
||
|
*/
|
||
|
if (aarch64_insn_uses_literal(insn) ||
|
||
|
aarch64_insn_is_exclusive(insn))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Return:
|
||
|
* INSN_REJECTED If instruction is one not allowed to kprobe,
|
||
|
* INSN_GOOD If instruction is supported and uses instruction slot,
|
||
|
* INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
|
||
|
*/
|
||
|
enum probe_insn __kprobes
|
||
|
arm_probe_decode_insn(probe_opcode_t insn, struct arch_probe_insn *api)
|
||
|
{
|
||
|
/*
|
||
|
* Instructions reading or modifying the PC won't work from the XOL
|
||
|
* slot.
|
||
|
*/
|
||
|
if (aarch64_insn_is_steppable(insn))
|
||
|
return INSN_GOOD;
|
||
|
|
||
|
if (aarch64_insn_is_bcond(insn)) {
|
||
|
api->handler = simulate_b_cond;
|
||
|
} else if (aarch64_insn_is_cbz(insn) ||
|
||
|
aarch64_insn_is_cbnz(insn)) {
|
||
|
api->handler = simulate_cbz_cbnz;
|
||
|
} else if (aarch64_insn_is_tbz(insn) ||
|
||
|
aarch64_insn_is_tbnz(insn)) {
|
||
|
api->handler = simulate_tbz_tbnz;
|
||
|
} else if (aarch64_insn_is_adr_adrp(insn)) {
|
||
|
api->handler = simulate_adr_adrp;
|
||
|
} else if (aarch64_insn_is_b(insn) ||
|
||
|
aarch64_insn_is_bl(insn)) {
|
||
|
api->handler = simulate_b_bl;
|
||
|
} else if (aarch64_insn_is_br(insn) ||
|
||
|
aarch64_insn_is_blr(insn) ||
|
||
|
aarch64_insn_is_ret(insn)) {
|
||
|
api->handler = simulate_br_blr_ret;
|
||
|
} else if (aarch64_insn_is_ldr_lit(insn)) {
|
||
|
api->handler = simulate_ldr_literal;
|
||
|
} else if (aarch64_insn_is_ldrsw_lit(insn)) {
|
||
|
api->handler = simulate_ldrsw_literal;
|
||
|
} else {
|
||
|
/*
|
||
|
* Instruction cannot be stepped out-of-line and we don't
|
||
|
* (yet) simulate it.
|
||
|
*/
|
||
|
return INSN_REJECTED;
|
||
|
}
|
||
|
|
||
|
return INSN_GOOD_NO_SLOT;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_KPROBES
|
||
|
static bool __kprobes
|
||
|
is_probed_address_atomic(kprobe_opcode_t *scan_start, kprobe_opcode_t *scan_end)
|
||
|
{
|
||
|
while (scan_start >= scan_end) {
|
||
|
/*
|
||
|
* atomic region starts from exclusive load and ends with
|
||
|
* exclusive store.
|
||
|
*/
|
||
|
if (aarch64_insn_is_store_ex(le32_to_cpu(*scan_start)))
|
||
|
return false;
|
||
|
else if (aarch64_insn_is_load_ex(le32_to_cpu(*scan_start)))
|
||
|
return true;
|
||
|
scan_start--;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
enum probe_insn __kprobes
|
||
|
arm_kprobe_decode_insn(kprobe_opcode_t *addr, struct arch_specific_insn *asi)
|
||
|
{
|
||
|
enum probe_insn decoded;
|
||
|
probe_opcode_t insn = le32_to_cpu(*addr);
|
||
|
probe_opcode_t *scan_end = NULL;
|
||
|
unsigned long size = 0, offset = 0;
|
||
|
|
||
|
/*
|
||
|
* If there's a symbol defined in front of and near enough to
|
||
|
* the probe address assume it is the entry point to this
|
||
|
* code and use it to further limit how far back we search
|
||
|
* when determining if we're in an atomic sequence. If we could
|
||
|
* not find any symbol skip the atomic test altogether as we
|
||
|
* could otherwise end up searching irrelevant text/literals.
|
||
|
* KPROBES depends on KALLSYMS so this last case should never
|
||
|
* happen.
|
||
|
*/
|
||
|
if (kallsyms_lookup_size_offset((unsigned long) addr, &size, &offset)) {
|
||
|
if (offset < (MAX_ATOMIC_CONTEXT_SIZE*sizeof(kprobe_opcode_t)))
|
||
|
scan_end = addr - (offset / sizeof(kprobe_opcode_t));
|
||
|
else
|
||
|
scan_end = addr - MAX_ATOMIC_CONTEXT_SIZE;
|
||
|
}
|
||
|
decoded = arm_probe_decode_insn(insn, &asi->api);
|
||
|
|
||
|
if (decoded != INSN_REJECTED && scan_end)
|
||
|
if (is_probed_address_atomic(addr - 1, scan_end))
|
||
|
return INSN_REJECTED;
|
||
|
|
||
|
return decoded;
|
||
|
}
|
||
|
#endif
|