linux/linux-5.4.31/drivers/mmc/host/cavium.c

1088 lines
28 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
/*
* Shared part of driver for MMC/SDHC controller on Cavium OCTEON and
* ThunderX SOCs.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2012-2017 Cavium Inc.
* Authors:
* David Daney <david.daney@cavium.com>
* Peter Swain <pswain@cavium.com>
* Steven J. Hill <steven.hill@cavium.com>
* Jan Glauber <jglauber@cavium.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/scatterlist.h>
#include <linux/time.h>
#include "cavium.h"
const char *cvm_mmc_irq_names[] = {
"MMC Buffer",
"MMC Command",
"MMC DMA",
"MMC Command Error",
"MMC DMA Error",
"MMC Switch",
"MMC Switch Error",
"MMC DMA int Fifo",
"MMC DMA int",
};
/*
* The Cavium MMC host hardware assumes that all commands have fixed
* command and response types. These are correct if MMC devices are
* being used. However, non-MMC devices like SD use command and
* response types that are unexpected by the host hardware.
*
* The command and response types can be overridden by supplying an
* XOR value that is applied to the type. We calculate the XOR value
* from the values in this table and the flags passed from the MMC
* core.
*/
static struct cvm_mmc_cr_type cvm_mmc_cr_types[] = {
{0, 0}, /* CMD0 */
{0, 3}, /* CMD1 */
{0, 2}, /* CMD2 */
{0, 1}, /* CMD3 */
{0, 0}, /* CMD4 */
{0, 1}, /* CMD5 */
{0, 1}, /* CMD6 */
{0, 1}, /* CMD7 */
{1, 1}, /* CMD8 */
{0, 2}, /* CMD9 */
{0, 2}, /* CMD10 */
{1, 1}, /* CMD11 */
{0, 1}, /* CMD12 */
{0, 1}, /* CMD13 */
{1, 1}, /* CMD14 */
{0, 0}, /* CMD15 */
{0, 1}, /* CMD16 */
{1, 1}, /* CMD17 */
{1, 1}, /* CMD18 */
{3, 1}, /* CMD19 */
{2, 1}, /* CMD20 */
{0, 0}, /* CMD21 */
{0, 0}, /* CMD22 */
{0, 1}, /* CMD23 */
{2, 1}, /* CMD24 */
{2, 1}, /* CMD25 */
{2, 1}, /* CMD26 */
{2, 1}, /* CMD27 */
{0, 1}, /* CMD28 */
{0, 1}, /* CMD29 */
{1, 1}, /* CMD30 */
{1, 1}, /* CMD31 */
{0, 0}, /* CMD32 */
{0, 0}, /* CMD33 */
{0, 0}, /* CMD34 */
{0, 1}, /* CMD35 */
{0, 1}, /* CMD36 */
{0, 0}, /* CMD37 */
{0, 1}, /* CMD38 */
{0, 4}, /* CMD39 */
{0, 5}, /* CMD40 */
{0, 0}, /* CMD41 */
{2, 1}, /* CMD42 */
{0, 0}, /* CMD43 */
{0, 0}, /* CMD44 */
{0, 0}, /* CMD45 */
{0, 0}, /* CMD46 */
{0, 0}, /* CMD47 */
{0, 0}, /* CMD48 */
{0, 0}, /* CMD49 */
{0, 0}, /* CMD50 */
{0, 0}, /* CMD51 */
{0, 0}, /* CMD52 */
{0, 0}, /* CMD53 */
{0, 0}, /* CMD54 */
{0, 1}, /* CMD55 */
{0xff, 0xff}, /* CMD56 */
{0, 0}, /* CMD57 */
{0, 0}, /* CMD58 */
{0, 0}, /* CMD59 */
{0, 0}, /* CMD60 */
{0, 0}, /* CMD61 */
{0, 0}, /* CMD62 */
{0, 0} /* CMD63 */
};
static struct cvm_mmc_cr_mods cvm_mmc_get_cr_mods(struct mmc_command *cmd)
{
struct cvm_mmc_cr_type *cr;
u8 hardware_ctype, hardware_rtype;
u8 desired_ctype = 0, desired_rtype = 0;
struct cvm_mmc_cr_mods r;
cr = cvm_mmc_cr_types + (cmd->opcode & 0x3f);
hardware_ctype = cr->ctype;
hardware_rtype = cr->rtype;
if (cmd->opcode == MMC_GEN_CMD)
hardware_ctype = (cmd->arg & 1) ? 1 : 2;
switch (mmc_cmd_type(cmd)) {
case MMC_CMD_ADTC:
desired_ctype = (cmd->data->flags & MMC_DATA_WRITE) ? 2 : 1;
break;
case MMC_CMD_AC:
case MMC_CMD_BC:
case MMC_CMD_BCR:
desired_ctype = 0;
break;
}
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
desired_rtype = 0;
break;
case MMC_RSP_R1:/* MMC_RSP_R5, MMC_RSP_R6, MMC_RSP_R7 */
case MMC_RSP_R1B:
desired_rtype = 1;
break;
case MMC_RSP_R2:
desired_rtype = 2;
break;
case MMC_RSP_R3: /* MMC_RSP_R4 */
desired_rtype = 3;
break;
}
r.ctype_xor = desired_ctype ^ hardware_ctype;
r.rtype_xor = desired_rtype ^ hardware_rtype;
return r;
}
static void check_switch_errors(struct cvm_mmc_host *host)
{
u64 emm_switch;
emm_switch = readq(host->base + MIO_EMM_SWITCH(host));
if (emm_switch & MIO_EMM_SWITCH_ERR0)
dev_err(host->dev, "Switch power class error\n");
if (emm_switch & MIO_EMM_SWITCH_ERR1)
dev_err(host->dev, "Switch hs timing error\n");
if (emm_switch & MIO_EMM_SWITCH_ERR2)
dev_err(host->dev, "Switch bus width error\n");
}
static void clear_bus_id(u64 *reg)
{
u64 bus_id_mask = GENMASK_ULL(61, 60);
*reg &= ~bus_id_mask;
}
static void set_bus_id(u64 *reg, int bus_id)
{
clear_bus_id(reg);
*reg |= FIELD_PREP(GENMASK(61, 60), bus_id);
}
static int get_bus_id(u64 reg)
{
return FIELD_GET(GENMASK_ULL(61, 60), reg);
}
/*
* We never set the switch_exe bit since that would interfere
* with the commands send by the MMC core.
*/
static void do_switch(struct cvm_mmc_host *host, u64 emm_switch)
{
int retries = 100;
u64 rsp_sts;
int bus_id;
/*
* Modes setting only taken from slot 0. Work around that hardware
* issue by first switching to slot 0.
*/
bus_id = get_bus_id(emm_switch);
clear_bus_id(&emm_switch);
writeq(emm_switch, host->base + MIO_EMM_SWITCH(host));
set_bus_id(&emm_switch, bus_id);
writeq(emm_switch, host->base + MIO_EMM_SWITCH(host));
/* wait for the switch to finish */
do {
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
if (!(rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL))
break;
udelay(10);
} while (--retries);
check_switch_errors(host);
}
static bool switch_val_changed(struct cvm_mmc_slot *slot, u64 new_val)
{
/* Match BUS_ID, HS_TIMING, BUS_WIDTH, POWER_CLASS, CLK_HI, CLK_LO */
u64 match = 0x3001070fffffffffull;
return (slot->cached_switch & match) != (new_val & match);
}
static void set_wdog(struct cvm_mmc_slot *slot, unsigned int ns)
{
u64 timeout;
if (!slot->clock)
return;
if (ns)
timeout = (slot->clock * ns) / NSEC_PER_SEC;
else
timeout = (slot->clock * 850ull) / 1000ull;
writeq(timeout, slot->host->base + MIO_EMM_WDOG(slot->host));
}
static void cvm_mmc_reset_bus(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
u64 emm_switch, wdog;
emm_switch = readq(slot->host->base + MIO_EMM_SWITCH(host));
emm_switch &= ~(MIO_EMM_SWITCH_EXE | MIO_EMM_SWITCH_ERR0 |
MIO_EMM_SWITCH_ERR1 | MIO_EMM_SWITCH_ERR2);
set_bus_id(&emm_switch, slot->bus_id);
wdog = readq(slot->host->base + MIO_EMM_WDOG(host));
do_switch(slot->host, emm_switch);
slot->cached_switch = emm_switch;
msleep(20);
writeq(wdog, slot->host->base + MIO_EMM_WDOG(host));
}
/* Switch to another slot if needed */
static void cvm_mmc_switch_to(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
struct cvm_mmc_slot *old_slot;
u64 emm_sample, emm_switch;
if (slot->bus_id == host->last_slot)
return;
if (host->last_slot >= 0 && host->slot[host->last_slot]) {
old_slot = host->slot[host->last_slot];
old_slot->cached_switch = readq(host->base + MIO_EMM_SWITCH(host));
old_slot->cached_rca = readq(host->base + MIO_EMM_RCA(host));
}
writeq(slot->cached_rca, host->base + MIO_EMM_RCA(host));
emm_switch = slot->cached_switch;
set_bus_id(&emm_switch, slot->bus_id);
do_switch(host, emm_switch);
emm_sample = FIELD_PREP(MIO_EMM_SAMPLE_CMD_CNT, slot->cmd_cnt) |
FIELD_PREP(MIO_EMM_SAMPLE_DAT_CNT, slot->dat_cnt);
writeq(emm_sample, host->base + MIO_EMM_SAMPLE(host));
host->last_slot = slot->bus_id;
}
static void do_read(struct cvm_mmc_host *host, struct mmc_request *req,
u64 dbuf)
{
struct sg_mapping_iter *smi = &host->smi;
int data_len = req->data->blocks * req->data->blksz;
int bytes_xfered, shift = -1;
u64 dat = 0;
/* Auto inc from offset zero */
writeq((0x10000 | (dbuf << 6)), host->base + MIO_EMM_BUF_IDX(host));
for (bytes_xfered = 0; bytes_xfered < data_len;) {
if (smi->consumed >= smi->length) {
if (!sg_miter_next(smi))
break;
smi->consumed = 0;
}
if (shift < 0) {
dat = readq(host->base + MIO_EMM_BUF_DAT(host));
shift = 56;
}
while (smi->consumed < smi->length && shift >= 0) {
((u8 *)smi->addr)[smi->consumed] = (dat >> shift) & 0xff;
bytes_xfered++;
smi->consumed++;
shift -= 8;
}
}
sg_miter_stop(smi);
req->data->bytes_xfered = bytes_xfered;
req->data->error = 0;
}
static void do_write(struct mmc_request *req)
{
req->data->bytes_xfered = req->data->blocks * req->data->blksz;
req->data->error = 0;
}
static void set_cmd_response(struct cvm_mmc_host *host, struct mmc_request *req,
u64 rsp_sts)
{
u64 rsp_hi, rsp_lo;
if (!(rsp_sts & MIO_EMM_RSP_STS_RSP_VAL))
return;
rsp_lo = readq(host->base + MIO_EMM_RSP_LO(host));
switch (FIELD_GET(MIO_EMM_RSP_STS_RSP_TYPE, rsp_sts)) {
case 1:
case 3:
req->cmd->resp[0] = (rsp_lo >> 8) & 0xffffffff;
req->cmd->resp[1] = 0;
req->cmd->resp[2] = 0;
req->cmd->resp[3] = 0;
break;
case 2:
req->cmd->resp[3] = rsp_lo & 0xffffffff;
req->cmd->resp[2] = (rsp_lo >> 32) & 0xffffffff;
rsp_hi = readq(host->base + MIO_EMM_RSP_HI(host));
req->cmd->resp[1] = rsp_hi & 0xffffffff;
req->cmd->resp[0] = (rsp_hi >> 32) & 0xffffffff;
break;
}
}
static int get_dma_dir(struct mmc_data *data)
{
return (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
}
static int finish_dma_single(struct cvm_mmc_host *host, struct mmc_data *data)
{
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
return 1;
}
static int finish_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data)
{
u64 fifo_cfg;
int count;
/* Check if there are any pending requests left */
fifo_cfg = readq(host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
count = FIELD_GET(MIO_EMM_DMA_FIFO_CFG_COUNT, fifo_cfg);
if (count)
dev_err(host->dev, "%u requests still pending\n", count);
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
/* Clear and disable FIFO */
writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
return 1;
}
static int finish_dma(struct cvm_mmc_host *host, struct mmc_data *data)
{
if (host->use_sg && data->sg_len > 1)
return finish_dma_sg(host, data);
else
return finish_dma_single(host, data);
}
static int check_status(u64 rsp_sts)
{
if (rsp_sts & MIO_EMM_RSP_STS_RSP_BAD_STS ||
rsp_sts & MIO_EMM_RSP_STS_RSP_CRC_ERR ||
rsp_sts & MIO_EMM_RSP_STS_BLK_CRC_ERR)
return -EILSEQ;
if (rsp_sts & MIO_EMM_RSP_STS_RSP_TIMEOUT ||
rsp_sts & MIO_EMM_RSP_STS_BLK_TIMEOUT)
return -ETIMEDOUT;
if (rsp_sts & MIO_EMM_RSP_STS_DBUF_ERR)
return -EIO;
return 0;
}
/* Try to clean up failed DMA. */
static void cleanup_dma(struct cvm_mmc_host *host, u64 rsp_sts)
{
u64 emm_dma;
emm_dma = readq(host->base + MIO_EMM_DMA(host));
emm_dma |= FIELD_PREP(MIO_EMM_DMA_VAL, 1) |
FIELD_PREP(MIO_EMM_DMA_DAT_NULL, 1);
set_bus_id(&emm_dma, get_bus_id(rsp_sts));
writeq(emm_dma, host->base + MIO_EMM_DMA(host));
}
irqreturn_t cvm_mmc_interrupt(int irq, void *dev_id)
{
struct cvm_mmc_host *host = dev_id;
struct mmc_request *req;
unsigned long flags = 0;
u64 emm_int, rsp_sts;
bool host_done;
if (host->need_irq_handler_lock)
spin_lock_irqsave(&host->irq_handler_lock, flags);
else
__acquire(&host->irq_handler_lock);
/* Clear interrupt bits (write 1 clears ). */
emm_int = readq(host->base + MIO_EMM_INT(host));
writeq(emm_int, host->base + MIO_EMM_INT(host));
if (emm_int & MIO_EMM_INT_SWITCH_ERR)
check_switch_errors(host);
req = host->current_req;
if (!req)
goto out;
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
/*
* dma_val set means DMA is still in progress. Don't touch
* the request and wait for the interrupt indicating that
* the DMA is finished.
*/
if ((rsp_sts & MIO_EMM_RSP_STS_DMA_VAL) && host->dma_active)
goto out;
if (!host->dma_active && req->data &&
(emm_int & MIO_EMM_INT_BUF_DONE)) {
unsigned int type = (rsp_sts >> 7) & 3;
if (type == 1)
do_read(host, req, rsp_sts & MIO_EMM_RSP_STS_DBUF);
else if (type == 2)
do_write(req);
}
host_done = emm_int & MIO_EMM_INT_CMD_DONE ||
emm_int & MIO_EMM_INT_DMA_DONE ||
emm_int & MIO_EMM_INT_CMD_ERR ||
emm_int & MIO_EMM_INT_DMA_ERR;
if (!(host_done && req->done))
goto no_req_done;
req->cmd->error = check_status(rsp_sts);
if (host->dma_active && req->data)
if (!finish_dma(host, req->data))
goto no_req_done;
set_cmd_response(host, req, rsp_sts);
if ((emm_int & MIO_EMM_INT_DMA_ERR) &&
(rsp_sts & MIO_EMM_RSP_STS_DMA_PEND))
cleanup_dma(host, rsp_sts);
host->current_req = NULL;
req->done(req);
no_req_done:
if (host->dmar_fixup_done)
host->dmar_fixup_done(host);
if (host_done)
host->release_bus(host);
out:
if (host->need_irq_handler_lock)
spin_unlock_irqrestore(&host->irq_handler_lock, flags);
else
__release(&host->irq_handler_lock);
return IRQ_RETVAL(emm_int != 0);
}
/*
* Program DMA_CFG and if needed DMA_ADR.
* Returns 0 on error, DMA address otherwise.
*/
static u64 prepare_dma_single(struct cvm_mmc_host *host, struct mmc_data *data)
{
u64 dma_cfg, addr;
int count, rw;
count = dma_map_sg(host->dev, data->sg, data->sg_len,
get_dma_dir(data));
if (!count)
return 0;
rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0;
dma_cfg = FIELD_PREP(MIO_EMM_DMA_CFG_EN, 1) |
FIELD_PREP(MIO_EMM_DMA_CFG_RW, rw);
#ifdef __LITTLE_ENDIAN
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ENDIAN, 1);
#endif
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_SIZE,
(sg_dma_len(&data->sg[0]) / 8) - 1);
addr = sg_dma_address(&data->sg[0]);
if (!host->big_dma_addr)
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ADR, addr);
writeq(dma_cfg, host->dma_base + MIO_EMM_DMA_CFG(host));
pr_debug("[%s] sg_dma_len: %u total sg_elem: %d\n",
(rw) ? "W" : "R", sg_dma_len(&data->sg[0]), count);
if (host->big_dma_addr)
writeq(addr, host->dma_base + MIO_EMM_DMA_ADR(host));
return addr;
}
/*
* Queue complete sg list into the FIFO.
* Returns 0 on error, 1 otherwise.
*/
static u64 prepare_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data)
{
struct scatterlist *sg;
u64 fifo_cmd, addr;
int count, i, rw;
count = dma_map_sg(host->dev, data->sg, data->sg_len,
get_dma_dir(data));
if (!count)
return 0;
if (count > 16)
goto error;
/* Enable FIFO by removing CLR bit */
writeq(0, host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
for_each_sg(data->sg, sg, count, i) {
/* Program DMA address */
addr = sg_dma_address(sg);
if (addr & 7)
goto error;
writeq(addr, host->dma_base + MIO_EMM_DMA_FIFO_ADR(host));
/*
* If we have scatter-gather support we also have an extra
* register for the DMA addr, so no need to check
* host->big_dma_addr here.
*/
rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0;
fifo_cmd = FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_RW, rw);
/* enable interrupts on the last element */
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_INTDIS,
(i + 1 == count) ? 0 : 1);
#ifdef __LITTLE_ENDIAN
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_ENDIAN, 1);
#endif
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_SIZE,
sg_dma_len(sg) / 8 - 1);
/*
* The write copies the address and the command to the FIFO
* and increments the FIFO's COUNT field.
*/
writeq(fifo_cmd, host->dma_base + MIO_EMM_DMA_FIFO_CMD(host));
pr_debug("[%s] sg_dma_len: %u sg_elem: %d/%d\n",
(rw) ? "W" : "R", sg_dma_len(sg), i, count);
}
/*
* In difference to prepare_dma_single we don't return the
* address here, as it would not make sense for scatter-gather.
* The dma fixup is only required on models that don't support
* scatter-gather, so that is not a problem.
*/
return 1;
error:
WARN_ON_ONCE(1);
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
/* Disable FIFO */
writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
return 0;
}
static u64 prepare_dma(struct cvm_mmc_host *host, struct mmc_data *data)
{
if (host->use_sg && data->sg_len > 1)
return prepare_dma_sg(host, data);
else
return prepare_dma_single(host, data);
}
static u64 prepare_ext_dma(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
u64 emm_dma;
emm_dma = FIELD_PREP(MIO_EMM_DMA_VAL, 1) |
FIELD_PREP(MIO_EMM_DMA_SECTOR,
mmc_card_is_blockaddr(mmc->card) ? 1 : 0) |
FIELD_PREP(MIO_EMM_DMA_RW,
(mrq->data->flags & MMC_DATA_WRITE) ? 1 : 0) |
FIELD_PREP(MIO_EMM_DMA_BLOCK_CNT, mrq->data->blocks) |
FIELD_PREP(MIO_EMM_DMA_CARD_ADDR, mrq->cmd->arg);
set_bus_id(&emm_dma, slot->bus_id);
if (mmc_card_mmc(mmc->card) || (mmc_card_sd(mmc->card) &&
(mmc->card->scr.cmds & SD_SCR_CMD23_SUPPORT)))
emm_dma |= FIELD_PREP(MIO_EMM_DMA_MULTI, 1);
pr_debug("[%s] blocks: %u multi: %d\n",
(emm_dma & MIO_EMM_DMA_RW) ? "W" : "R",
mrq->data->blocks, (emm_dma & MIO_EMM_DMA_MULTI) ? 1 : 0);
return emm_dma;
}
static void cvm_mmc_dma_request(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
struct mmc_data *data;
u64 emm_dma, addr;
if (!mrq->data || !mrq->data->sg || !mrq->data->sg_len ||
!mrq->stop || mrq->stop->opcode != MMC_STOP_TRANSMISSION) {
dev_err(&mmc->card->dev,
"Error: cmv_mmc_dma_request no data\n");
goto error;
}
cvm_mmc_switch_to(slot);
data = mrq->data;
pr_debug("DMA request blocks: %d block_size: %d total_size: %d\n",
data->blocks, data->blksz, data->blocks * data->blksz);
if (data->timeout_ns)
set_wdog(slot, data->timeout_ns);
WARN_ON(host->current_req);
host->current_req = mrq;
emm_dma = prepare_ext_dma(mmc, mrq);
addr = prepare_dma(host, data);
if (!addr) {
dev_err(host->dev, "prepare_dma failed\n");
goto error;
}
host->dma_active = true;
host->int_enable(host, MIO_EMM_INT_CMD_ERR | MIO_EMM_INT_DMA_DONE |
MIO_EMM_INT_DMA_ERR);
if (host->dmar_fixup)
host->dmar_fixup(host, mrq->cmd, data, addr);
/*
* If we have a valid SD card in the slot, we set the response
* bit mask to check for CRC errors and timeouts only.
* Otherwise, use the default power reset value.
*/
if (mmc_card_sd(mmc->card))
writeq(0x00b00000ull, host->base + MIO_EMM_STS_MASK(host));
else
writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host));
writeq(emm_dma, host->base + MIO_EMM_DMA(host));
return;
error:
mrq->cmd->error = -EINVAL;
if (mrq->done)
mrq->done(mrq);
host->release_bus(host);
}
static void do_read_request(struct cvm_mmc_host *host, struct mmc_request *mrq)
{
sg_miter_start(&host->smi, mrq->data->sg, mrq->data->sg_len,
SG_MITER_ATOMIC | SG_MITER_TO_SG);
}
static void do_write_request(struct cvm_mmc_host *host, struct mmc_request *mrq)
{
unsigned int data_len = mrq->data->blocks * mrq->data->blksz;
struct sg_mapping_iter *smi = &host->smi;
unsigned int bytes_xfered;
int shift = 56;
u64 dat = 0;
/* Copy data to the xmit buffer before issuing the command. */
sg_miter_start(smi, mrq->data->sg, mrq->data->sg_len, SG_MITER_FROM_SG);
/* Auto inc from offset zero, dbuf zero */
writeq(0x10000ull, host->base + MIO_EMM_BUF_IDX(host));
for (bytes_xfered = 0; bytes_xfered < data_len;) {
if (smi->consumed >= smi->length) {
if (!sg_miter_next(smi))
break;
smi->consumed = 0;
}
while (smi->consumed < smi->length && shift >= 0) {
dat |= (u64)((u8 *)smi->addr)[smi->consumed] << shift;
bytes_xfered++;
smi->consumed++;
shift -= 8;
}
if (shift < 0) {
writeq(dat, host->base + MIO_EMM_BUF_DAT(host));
shift = 56;
dat = 0;
}
}
sg_miter_stop(smi);
}
static void cvm_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
struct mmc_command *cmd = mrq->cmd;
struct cvm_mmc_cr_mods mods;
u64 emm_cmd, rsp_sts;
int retries = 100;
/*
* Note about locking:
* All MMC devices share the same bus and controller. Allow only a
* single user of the bootbus/MMC bus at a time. The lock is acquired
* on all entry points from the MMC layer.
*
* For requests the lock is only released after the completion
* interrupt!
*/
host->acquire_bus(host);
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
return cvm_mmc_dma_request(mmc, mrq);
cvm_mmc_switch_to(slot);
mods = cvm_mmc_get_cr_mods(cmd);
WARN_ON(host->current_req);
host->current_req = mrq;
if (cmd->data) {
if (cmd->data->flags & MMC_DATA_READ)
do_read_request(host, mrq);
else
do_write_request(host, mrq);
if (cmd->data->timeout_ns)
set_wdog(slot, cmd->data->timeout_ns);
} else
set_wdog(slot, 0);
host->dma_active = false;
host->int_enable(host, MIO_EMM_INT_CMD_DONE | MIO_EMM_INT_CMD_ERR);
emm_cmd = FIELD_PREP(MIO_EMM_CMD_VAL, 1) |
FIELD_PREP(MIO_EMM_CMD_CTYPE_XOR, mods.ctype_xor) |
FIELD_PREP(MIO_EMM_CMD_RTYPE_XOR, mods.rtype_xor) |
FIELD_PREP(MIO_EMM_CMD_IDX, cmd->opcode) |
FIELD_PREP(MIO_EMM_CMD_ARG, cmd->arg);
set_bus_id(&emm_cmd, slot->bus_id);
if (cmd->data && mmc_cmd_type(cmd) == MMC_CMD_ADTC)
emm_cmd |= FIELD_PREP(MIO_EMM_CMD_OFFSET,
64 - ((cmd->data->blocks * cmd->data->blksz) / 8));
writeq(0, host->base + MIO_EMM_STS_MASK(host));
retry:
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
if (rsp_sts & MIO_EMM_RSP_STS_DMA_VAL ||
rsp_sts & MIO_EMM_RSP_STS_CMD_VAL ||
rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL ||
rsp_sts & MIO_EMM_RSP_STS_DMA_PEND) {
udelay(10);
if (--retries)
goto retry;
}
if (!retries)
dev_err(host->dev, "Bad status: %llx before command write\n", rsp_sts);
writeq(emm_cmd, host->base + MIO_EMM_CMD(host));
}
static void cvm_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
int clk_period = 0, power_class = 10, bus_width = 0;
u64 clock, emm_switch;
host->acquire_bus(host);
cvm_mmc_switch_to(slot);
/* Set the power state */
switch (ios->power_mode) {
case MMC_POWER_ON:
break;
case MMC_POWER_OFF:
cvm_mmc_reset_bus(slot);
if (host->global_pwr_gpiod)
host->set_shared_power(host, 0);
else if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
break;
case MMC_POWER_UP:
if (host->global_pwr_gpiod)
host->set_shared_power(host, 1);
else if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
}
/* Convert bus width to HW definition */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
bus_width = 2;
break;
case MMC_BUS_WIDTH_4:
bus_width = 1;
break;
case MMC_BUS_WIDTH_1:
bus_width = 0;
break;
}
/* DDR is available for 4/8 bit bus width */
if (ios->bus_width && ios->timing == MMC_TIMING_MMC_DDR52)
bus_width |= 4;
/* Change the clock frequency. */
clock = ios->clock;
if (clock > 52000000)
clock = 52000000;
slot->clock = clock;
if (clock)
clk_period = (host->sys_freq + clock - 1) / (2 * clock);
emm_switch = FIELD_PREP(MIO_EMM_SWITCH_HS_TIMING,
(ios->timing == MMC_TIMING_MMC_HS)) |
FIELD_PREP(MIO_EMM_SWITCH_BUS_WIDTH, bus_width) |
FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, power_class) |
FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, clk_period) |
FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, clk_period);
set_bus_id(&emm_switch, slot->bus_id);
if (!switch_val_changed(slot, emm_switch))
goto out;
set_wdog(slot, 0);
do_switch(host, emm_switch);
slot->cached_switch = emm_switch;
out:
host->release_bus(host);
}
static const struct mmc_host_ops cvm_mmc_ops = {
.request = cvm_mmc_request,
.set_ios = cvm_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
};
static void cvm_mmc_set_clock(struct cvm_mmc_slot *slot, unsigned int clock)
{
struct mmc_host *mmc = slot->mmc;
clock = min(clock, mmc->f_max);
clock = max(clock, mmc->f_min);
slot->clock = clock;
}
static int cvm_mmc_init_lowlevel(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
u64 emm_switch;
/* Enable this bus slot. */
host->emm_cfg |= (1ull << slot->bus_id);
writeq(host->emm_cfg, slot->host->base + MIO_EMM_CFG(host));
udelay(10);
/* Program initial clock speed and power. */
cvm_mmc_set_clock(slot, slot->mmc->f_min);
emm_switch = FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, 10);
emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_HI,
(host->sys_freq / slot->clock) / 2);
emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_LO,
(host->sys_freq / slot->clock) / 2);
/* Make the changes take effect on this bus slot. */
set_bus_id(&emm_switch, slot->bus_id);
do_switch(host, emm_switch);
slot->cached_switch = emm_switch;
/*
* Set watchdog timeout value and default reset value
* for the mask register. Finally, set the CARD_RCA
* bit so that we can get the card address relative
* to the CMD register for CMD7 transactions.
*/
set_wdog(slot, 0);
writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host));
writeq(1, host->base + MIO_EMM_RCA(host));
return 0;
}
static int cvm_mmc_of_parse(struct device *dev, struct cvm_mmc_slot *slot)
{
u32 id, cmd_skew = 0, dat_skew = 0, bus_width = 0;
struct device_node *node = dev->of_node;
struct mmc_host *mmc = slot->mmc;
u64 clock_period;
int ret;
ret = of_property_read_u32(node, "reg", &id);
if (ret) {
dev_err(dev, "Missing or invalid reg property on %pOF\n", node);
return ret;
}
if (id >= CAVIUM_MAX_MMC || slot->host->slot[id]) {
dev_err(dev, "Invalid reg property on %pOF\n", node);
return -EINVAL;
}
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
/*
* Legacy Octeon firmware has no regulator entry, fall-back to
* a hard-coded voltage to get a sane OCR.
*/
if (IS_ERR(mmc->supply.vmmc))
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
/* Common MMC bindings */
ret = mmc_of_parse(mmc);
if (ret)
return ret;
/* Set bus width */
if (!(mmc->caps & (MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA))) {
of_property_read_u32(node, "cavium,bus-max-width", &bus_width);
if (bus_width == 8)
mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA;
else if (bus_width == 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
}
/* Set maximum and minimum frequency */
if (!mmc->f_max)
of_property_read_u32(node, "spi-max-frequency", &mmc->f_max);
if (!mmc->f_max || mmc->f_max > 52000000)
mmc->f_max = 52000000;
mmc->f_min = 400000;
/* Sampling register settings, period in picoseconds */
clock_period = 1000000000000ull / slot->host->sys_freq;
of_property_read_u32(node, "cavium,cmd-clk-skew", &cmd_skew);
of_property_read_u32(node, "cavium,dat-clk-skew", &dat_skew);
slot->cmd_cnt = (cmd_skew + clock_period / 2) / clock_period;
slot->dat_cnt = (dat_skew + clock_period / 2) / clock_period;
return id;
}
int cvm_mmc_of_slot_probe(struct device *dev, struct cvm_mmc_host *host)
{
struct cvm_mmc_slot *slot;
struct mmc_host *mmc;
int ret, id;
mmc = mmc_alloc_host(sizeof(struct cvm_mmc_slot), dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->mmc = mmc;
slot->host = host;
ret = cvm_mmc_of_parse(dev, slot);
if (ret < 0)
goto error;
id = ret;
/* Set up host parameters */
mmc->ops = &cvm_mmc_ops;
/*
* We only have a 3.3v supply, we cannot support any
* of the UHS modes. We do support the high speed DDR
* modes up to 52MHz.
*
* Disable bounce buffers for max_segs = 1
*/
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_ERASE | MMC_CAP_CMD23 | MMC_CAP_POWER_OFF_CARD |
MMC_CAP_3_3V_DDR;
if (host->use_sg)
mmc->max_segs = 16;
else
mmc->max_segs = 1;
/* DMA size field can address up to 8 MB */
mmc->max_seg_size = min_t(unsigned int, 8 * 1024 * 1024,
dma_get_max_seg_size(host->dev));
mmc->max_req_size = mmc->max_seg_size;
/* External DMA is in 512 byte blocks */
mmc->max_blk_size = 512;
/* DMA block count field is 15 bits */
mmc->max_blk_count = 32767;
slot->clock = mmc->f_min;
slot->bus_id = id;
slot->cached_rca = 1;
host->acquire_bus(host);
host->slot[id] = slot;
cvm_mmc_switch_to(slot);
cvm_mmc_init_lowlevel(slot);
host->release_bus(host);
ret = mmc_add_host(mmc);
if (ret) {
dev_err(dev, "mmc_add_host() returned %d\n", ret);
slot->host->slot[id] = NULL;
goto error;
}
return 0;
error:
mmc_free_host(slot->mmc);
return ret;
}
int cvm_mmc_of_slot_remove(struct cvm_mmc_slot *slot)
{
mmc_remove_host(slot->mmc);
slot->host->slot[slot->bus_id] = NULL;
mmc_free_host(slot->mmc);
return 0;
}