1557 lines
38 KiB
C
1557 lines
38 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* Copyright 2016,2017 IBM Corporation.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "xive: " fmt
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/threads.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/irq.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/msi.h>
|
||
|
|
||
|
#include <asm/prom.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/smp.h>
|
||
|
#include <asm/machdep.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/errno.h>
|
||
|
#include <asm/xive.h>
|
||
|
#include <asm/xive-regs.h>
|
||
|
#include <asm/xmon.h>
|
||
|
|
||
|
#include "xive-internal.h"
|
||
|
|
||
|
#undef DEBUG_FLUSH
|
||
|
#undef DEBUG_ALL
|
||
|
|
||
|
#ifdef DEBUG_ALL
|
||
|
#define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
|
||
|
smp_processor_id(), ## __VA_ARGS__)
|
||
|
#else
|
||
|
#define DBG_VERBOSE(fmt...) do { } while(0)
|
||
|
#endif
|
||
|
|
||
|
bool __xive_enabled;
|
||
|
EXPORT_SYMBOL_GPL(__xive_enabled);
|
||
|
bool xive_cmdline_disabled;
|
||
|
|
||
|
/* We use only one priority for now */
|
||
|
static u8 xive_irq_priority;
|
||
|
|
||
|
/* TIMA exported to KVM */
|
||
|
void __iomem *xive_tima;
|
||
|
EXPORT_SYMBOL_GPL(xive_tima);
|
||
|
u32 xive_tima_offset;
|
||
|
|
||
|
/* Backend ops */
|
||
|
static const struct xive_ops *xive_ops;
|
||
|
|
||
|
/* Our global interrupt domain */
|
||
|
static struct irq_domain *xive_irq_domain;
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/* The IPIs all use the same logical irq number */
|
||
|
static u32 xive_ipi_irq;
|
||
|
#endif
|
||
|
|
||
|
/* Xive state for each CPU */
|
||
|
static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
|
||
|
|
||
|
/*
|
||
|
* A "disabled" interrupt should never fire, to catch problems
|
||
|
* we set its logical number to this
|
||
|
*/
|
||
|
#define XIVE_BAD_IRQ 0x7fffffff
|
||
|
#define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
|
||
|
|
||
|
/* An invalid CPU target */
|
||
|
#define XIVE_INVALID_TARGET (-1)
|
||
|
|
||
|
/*
|
||
|
* Read the next entry in a queue, return its content if it's valid
|
||
|
* or 0 if there is no new entry.
|
||
|
*
|
||
|
* The queue pointer is moved forward unless "just_peek" is set
|
||
|
*/
|
||
|
static u32 xive_read_eq(struct xive_q *q, bool just_peek)
|
||
|
{
|
||
|
u32 cur;
|
||
|
|
||
|
if (!q->qpage)
|
||
|
return 0;
|
||
|
cur = be32_to_cpup(q->qpage + q->idx);
|
||
|
|
||
|
/* Check valid bit (31) vs current toggle polarity */
|
||
|
if ((cur >> 31) == q->toggle)
|
||
|
return 0;
|
||
|
|
||
|
/* If consuming from the queue ... */
|
||
|
if (!just_peek) {
|
||
|
/* Next entry */
|
||
|
q->idx = (q->idx + 1) & q->msk;
|
||
|
|
||
|
/* Wrap around: flip valid toggle */
|
||
|
if (q->idx == 0)
|
||
|
q->toggle ^= 1;
|
||
|
}
|
||
|
/* Mask out the valid bit (31) */
|
||
|
return cur & 0x7fffffff;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scans all the queue that may have interrupts in them
|
||
|
* (based on "pending_prio") in priority order until an
|
||
|
* interrupt is found or all the queues are empty.
|
||
|
*
|
||
|
* Then updates the CPPR (Current Processor Priority
|
||
|
* Register) based on the most favored interrupt found
|
||
|
* (0xff if none) and return what was found (0 if none).
|
||
|
*
|
||
|
* If just_peek is set, return the most favored pending
|
||
|
* interrupt if any but don't update the queue pointers.
|
||
|
*
|
||
|
* Note: This function can operate generically on any number
|
||
|
* of queues (up to 8). The current implementation of the XIVE
|
||
|
* driver only uses a single queue however.
|
||
|
*
|
||
|
* Note2: This will also "flush" "the pending_count" of a queue
|
||
|
* into the "count" when that queue is observed to be empty.
|
||
|
* This is used to keep track of the amount of interrupts
|
||
|
* targetting a queue. When an interrupt is moved away from
|
||
|
* a queue, we only decrement that queue count once the queue
|
||
|
* has been observed empty to avoid races.
|
||
|
*/
|
||
|
static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
|
||
|
{
|
||
|
u32 irq = 0;
|
||
|
u8 prio = 0;
|
||
|
|
||
|
/* Find highest pending priority */
|
||
|
while (xc->pending_prio != 0) {
|
||
|
struct xive_q *q;
|
||
|
|
||
|
prio = ffs(xc->pending_prio) - 1;
|
||
|
DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
|
||
|
|
||
|
/* Try to fetch */
|
||
|
irq = xive_read_eq(&xc->queue[prio], just_peek);
|
||
|
|
||
|
/* Found something ? That's it */
|
||
|
if (irq) {
|
||
|
if (just_peek || irq_to_desc(irq))
|
||
|
break;
|
||
|
/*
|
||
|
* We should never get here; if we do then we must
|
||
|
* have failed to synchronize the interrupt properly
|
||
|
* when shutting it down.
|
||
|
*/
|
||
|
pr_crit("xive: got interrupt %d without descriptor, dropping\n",
|
||
|
irq);
|
||
|
WARN_ON(1);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Clear pending bits */
|
||
|
xc->pending_prio &= ~(1 << prio);
|
||
|
|
||
|
/*
|
||
|
* Check if the queue count needs adjusting due to
|
||
|
* interrupts being moved away. See description of
|
||
|
* xive_dec_target_count()
|
||
|
*/
|
||
|
q = &xc->queue[prio];
|
||
|
if (atomic_read(&q->pending_count)) {
|
||
|
int p = atomic_xchg(&q->pending_count, 0);
|
||
|
if (p) {
|
||
|
WARN_ON(p > atomic_read(&q->count));
|
||
|
atomic_sub(p, &q->count);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If nothing was found, set CPPR to 0xff */
|
||
|
if (irq == 0)
|
||
|
prio = 0xff;
|
||
|
|
||
|
/* Update HW CPPR to match if necessary */
|
||
|
if (prio != xc->cppr) {
|
||
|
DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
|
||
|
xc->cppr = prio;
|
||
|
out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
|
||
|
}
|
||
|
|
||
|
return irq;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is used to perform the magic loads from an ESB
|
||
|
* described in xive-regs.h
|
||
|
*/
|
||
|
static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
/* Handle HW errata */
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
|
||
|
offset |= offset << 4;
|
||
|
|
||
|
if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
|
||
|
val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
|
||
|
else
|
||
|
val = in_be64(xd->eoi_mmio + offset);
|
||
|
|
||
|
return (u8)val;
|
||
|
}
|
||
|
|
||
|
static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
|
||
|
{
|
||
|
/* Handle HW errata */
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
|
||
|
offset |= offset << 4;
|
||
|
|
||
|
if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
|
||
|
xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
|
||
|
else
|
||
|
out_be64(xd->eoi_mmio + offset, data);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_XMON
|
||
|
static notrace void xive_dump_eq(const char *name, struct xive_q *q)
|
||
|
{
|
||
|
u32 i0, i1, idx;
|
||
|
|
||
|
if (!q->qpage)
|
||
|
return;
|
||
|
idx = q->idx;
|
||
|
i0 = be32_to_cpup(q->qpage + idx);
|
||
|
idx = (idx + 1) & q->msk;
|
||
|
i1 = be32_to_cpup(q->qpage + idx);
|
||
|
xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
|
||
|
q->idx, q->toggle, i0, i1);
|
||
|
}
|
||
|
|
||
|
notrace void xmon_xive_do_dump(int cpu)
|
||
|
{
|
||
|
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
|
||
|
|
||
|
xmon_printf("CPU %d:", cpu);
|
||
|
if (xc) {
|
||
|
xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
{
|
||
|
u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
|
||
|
|
||
|
xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
|
||
|
val & XIVE_ESB_VAL_P ? 'P' : '-',
|
||
|
val & XIVE_ESB_VAL_Q ? 'Q' : '-');
|
||
|
}
|
||
|
#endif
|
||
|
xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
|
||
|
}
|
||
|
xmon_printf("\n");
|
||
|
}
|
||
|
|
||
|
int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
|
||
|
{
|
||
|
int rc;
|
||
|
u32 target;
|
||
|
u8 prio;
|
||
|
u32 lirq;
|
||
|
|
||
|
rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
|
||
|
if (rc) {
|
||
|
xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
|
||
|
hw_irq, target, prio, lirq);
|
||
|
|
||
|
if (d) {
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
u64 val = xive_esb_read(xd, XIVE_ESB_GET);
|
||
|
|
||
|
xmon_printf("PQ=%c%c",
|
||
|
val & XIVE_ESB_VAL_P ? 'P' : '-',
|
||
|
val & XIVE_ESB_VAL_Q ? 'Q' : '-');
|
||
|
}
|
||
|
|
||
|
xmon_printf("\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_XMON */
|
||
|
|
||
|
static unsigned int xive_get_irq(void)
|
||
|
{
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
u32 irq;
|
||
|
|
||
|
/*
|
||
|
* This can be called either as a result of a HW interrupt or
|
||
|
* as a "replay" because EOI decided there was still something
|
||
|
* in one of the queues.
|
||
|
*
|
||
|
* First we perform an ACK cycle in order to update our mask
|
||
|
* of pending priorities. This will also have the effect of
|
||
|
* updating the CPPR to the most favored pending interrupts.
|
||
|
*
|
||
|
* In the future, if we have a way to differentiate a first
|
||
|
* entry (on HW interrupt) from a replay triggered by EOI,
|
||
|
* we could skip this on replays unless we soft-mask tells us
|
||
|
* that a new HW interrupt occurred.
|
||
|
*/
|
||
|
xive_ops->update_pending(xc);
|
||
|
|
||
|
DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
|
||
|
|
||
|
/* Scan our queue(s) for interrupts */
|
||
|
irq = xive_scan_interrupts(xc, false);
|
||
|
|
||
|
DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
|
||
|
irq, xc->pending_prio);
|
||
|
|
||
|
/* Return pending interrupt if any */
|
||
|
if (irq == XIVE_BAD_IRQ)
|
||
|
return 0;
|
||
|
return irq;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* After EOI'ing an interrupt, we need to re-check the queue
|
||
|
* to see if another interrupt is pending since multiple
|
||
|
* interrupts can coalesce into a single notification to the
|
||
|
* CPU.
|
||
|
*
|
||
|
* If we find that there is indeed more in there, we call
|
||
|
* force_external_irq_replay() to make Linux synthetize an
|
||
|
* external interrupt on the next call to local_irq_restore().
|
||
|
*/
|
||
|
static void xive_do_queue_eoi(struct xive_cpu *xc)
|
||
|
{
|
||
|
if (xive_scan_interrupts(xc, true) != 0) {
|
||
|
DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
|
||
|
force_external_irq_replay();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* EOI an interrupt at the source. There are several methods
|
||
|
* to do this depending on the HW version and source type
|
||
|
*/
|
||
|
static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
|
||
|
{
|
||
|
xd->stale_p = false;
|
||
|
/* If the XIVE supports the new "store EOI facility, use it */
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
|
||
|
xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
|
||
|
else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
|
||
|
/*
|
||
|
* The FW told us to call it. This happens for some
|
||
|
* interrupt sources that need additional HW whacking
|
||
|
* beyond the ESB manipulation. For example LPC interrupts
|
||
|
* on P9 DD1.0 needed a latch to be clared in the LPC bridge
|
||
|
* itself. The Firmware will take care of it.
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(!xive_ops->eoi))
|
||
|
return;
|
||
|
xive_ops->eoi(hw_irq);
|
||
|
} else {
|
||
|
u8 eoi_val;
|
||
|
|
||
|
/*
|
||
|
* Otherwise for EOI, we use the special MMIO that does
|
||
|
* a clear of both P and Q and returns the old Q,
|
||
|
* except for LSIs where we use the "EOI cycle" special
|
||
|
* load.
|
||
|
*
|
||
|
* This allows us to then do a re-trigger if Q was set
|
||
|
* rather than synthesizing an interrupt in software
|
||
|
*
|
||
|
* For LSIs the HW EOI cycle is used rather than PQ bits,
|
||
|
* as they are automatically re-triggred in HW when still
|
||
|
* pending.
|
||
|
*/
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_LSI)
|
||
|
xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
|
||
|
else {
|
||
|
eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
|
||
|
DBG_VERBOSE("eoi_val=%x\n", eoi_val);
|
||
|
|
||
|
/* Re-trigger if needed */
|
||
|
if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
|
||
|
out_be64(xd->trig_mmio, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* irq_chip eoi callback, called with irq descriptor lock held */
|
||
|
static void xive_irq_eoi(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
|
||
|
DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
|
||
|
d->irq, irqd_to_hwirq(d), xc->pending_prio);
|
||
|
|
||
|
/*
|
||
|
* EOI the source if it hasn't been disabled and hasn't
|
||
|
* been passed-through to a KVM guest
|
||
|
*/
|
||
|
if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
|
||
|
!(xd->flags & XIVE_IRQ_NO_EOI))
|
||
|
xive_do_source_eoi(irqd_to_hwirq(d), xd);
|
||
|
else
|
||
|
xd->stale_p = true;
|
||
|
|
||
|
/*
|
||
|
* Clear saved_p to indicate that it's no longer occupying
|
||
|
* a queue slot on the target queue
|
||
|
*/
|
||
|
xd->saved_p = false;
|
||
|
|
||
|
/* Check for more work in the queue */
|
||
|
xive_do_queue_eoi(xc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Helper used to mask and unmask an interrupt source. This
|
||
|
* is only called for normal interrupts that do not require
|
||
|
* masking/unmasking via firmware.
|
||
|
*/
|
||
|
static void xive_do_source_set_mask(struct xive_irq_data *xd,
|
||
|
bool mask)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
/*
|
||
|
* If the interrupt had P set, it may be in a queue.
|
||
|
*
|
||
|
* We need to make sure we don't re-enable it until it
|
||
|
* has been fetched from that queue and EOId. We keep
|
||
|
* a copy of that P state and use it to restore the
|
||
|
* ESB accordingly on unmask.
|
||
|
*/
|
||
|
if (mask) {
|
||
|
val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
|
||
|
if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
|
||
|
xd->saved_p = true;
|
||
|
xd->stale_p = false;
|
||
|
} else if (xd->saved_p) {
|
||
|
xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
|
||
|
xd->saved_p = false;
|
||
|
} else {
|
||
|
xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
|
||
|
xd->stale_p = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to chose "cpu" as a new interrupt target. Increments
|
||
|
* the queue accounting for that target if it's not already
|
||
|
* full.
|
||
|
*/
|
||
|
static bool xive_try_pick_target(int cpu)
|
||
|
{
|
||
|
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
|
||
|
struct xive_q *q = &xc->queue[xive_irq_priority];
|
||
|
int max;
|
||
|
|
||
|
/*
|
||
|
* Calculate max number of interrupts in that queue.
|
||
|
*
|
||
|
* We leave a gap of 1 just in case...
|
||
|
*/
|
||
|
max = (q->msk + 1) - 1;
|
||
|
return !!atomic_add_unless(&q->count, 1, max);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Un-account an interrupt for a target CPU. We don't directly
|
||
|
* decrement q->count since the interrupt might still be present
|
||
|
* in the queue.
|
||
|
*
|
||
|
* Instead increment a separate counter "pending_count" which
|
||
|
* will be substracted from "count" later when that CPU observes
|
||
|
* the queue to be empty.
|
||
|
*/
|
||
|
static void xive_dec_target_count(int cpu)
|
||
|
{
|
||
|
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
|
||
|
struct xive_q *q = &xc->queue[xive_irq_priority];
|
||
|
|
||
|
if (WARN_ON(cpu < 0 || !xc)) {
|
||
|
pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We increment the "pending count" which will be used
|
||
|
* to decrement the target queue count whenever it's next
|
||
|
* processed and found empty. This ensure that we don't
|
||
|
* decrement while we still have the interrupt there
|
||
|
* occupying a slot.
|
||
|
*/
|
||
|
atomic_inc(&q->pending_count);
|
||
|
}
|
||
|
|
||
|
/* Find a tentative CPU target in a CPU mask */
|
||
|
static int xive_find_target_in_mask(const struct cpumask *mask,
|
||
|
unsigned int fuzz)
|
||
|
{
|
||
|
int cpu, first, num, i;
|
||
|
|
||
|
/* Pick up a starting point CPU in the mask based on fuzz */
|
||
|
num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
|
||
|
first = fuzz % num;
|
||
|
|
||
|
/* Locate it */
|
||
|
cpu = cpumask_first(mask);
|
||
|
for (i = 0; i < first && cpu < nr_cpu_ids; i++)
|
||
|
cpu = cpumask_next(cpu, mask);
|
||
|
|
||
|
/* Sanity check */
|
||
|
if (WARN_ON(cpu >= nr_cpu_ids))
|
||
|
cpu = cpumask_first(cpu_online_mask);
|
||
|
|
||
|
/* Remember first one to handle wrap-around */
|
||
|
first = cpu;
|
||
|
|
||
|
/*
|
||
|
* Now go through the entire mask until we find a valid
|
||
|
* target.
|
||
|
*/
|
||
|
do {
|
||
|
/*
|
||
|
* We re-check online as the fallback case passes us
|
||
|
* an untested affinity mask
|
||
|
*/
|
||
|
if (cpu_online(cpu) && xive_try_pick_target(cpu))
|
||
|
return cpu;
|
||
|
cpu = cpumask_next(cpu, mask);
|
||
|
/* Wrap around */
|
||
|
if (cpu >= nr_cpu_ids)
|
||
|
cpu = cpumask_first(mask);
|
||
|
} while (cpu != first);
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pick a target CPU for an interrupt. This is done at
|
||
|
* startup or if the affinity is changed in a way that
|
||
|
* invalidates the current target.
|
||
|
*/
|
||
|
static int xive_pick_irq_target(struct irq_data *d,
|
||
|
const struct cpumask *affinity)
|
||
|
{
|
||
|
static unsigned int fuzz;
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
cpumask_var_t mask;
|
||
|
int cpu = -1;
|
||
|
|
||
|
/*
|
||
|
* If we have chip IDs, first we try to build a mask of
|
||
|
* CPUs matching the CPU and find a target in there
|
||
|
*/
|
||
|
if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
|
||
|
zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
|
||
|
/* Build a mask of matching chip IDs */
|
||
|
for_each_cpu_and(cpu, affinity, cpu_online_mask) {
|
||
|
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
|
||
|
if (xc->chip_id == xd->src_chip)
|
||
|
cpumask_set_cpu(cpu, mask);
|
||
|
}
|
||
|
/* Try to find a target */
|
||
|
if (cpumask_empty(mask))
|
||
|
cpu = -1;
|
||
|
else
|
||
|
cpu = xive_find_target_in_mask(mask, fuzz++);
|
||
|
free_cpumask_var(mask);
|
||
|
if (cpu >= 0)
|
||
|
return cpu;
|
||
|
fuzz--;
|
||
|
}
|
||
|
|
||
|
/* No chip IDs, fallback to using the affinity mask */
|
||
|
return xive_find_target_in_mask(affinity, fuzz++);
|
||
|
}
|
||
|
|
||
|
static unsigned int xive_irq_startup(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
int target, rc;
|
||
|
|
||
|
xd->saved_p = false;
|
||
|
xd->stale_p = false;
|
||
|
pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
|
||
|
d->irq, hw_irq, d);
|
||
|
|
||
|
#ifdef CONFIG_PCI_MSI
|
||
|
/*
|
||
|
* The generic MSI code returns with the interrupt disabled on the
|
||
|
* card, using the MSI mask bits. Firmware doesn't appear to unmask
|
||
|
* at that level, so we do it here by hand.
|
||
|
*/
|
||
|
if (irq_data_get_msi_desc(d))
|
||
|
pci_msi_unmask_irq(d);
|
||
|
#endif
|
||
|
|
||
|
/* Pick a target */
|
||
|
target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
|
||
|
if (target == XIVE_INVALID_TARGET) {
|
||
|
/* Try again breaking affinity */
|
||
|
target = xive_pick_irq_target(d, cpu_online_mask);
|
||
|
if (target == XIVE_INVALID_TARGET)
|
||
|
return -ENXIO;
|
||
|
pr_warn("irq %d started with broken affinity\n", d->irq);
|
||
|
}
|
||
|
|
||
|
/* Sanity check */
|
||
|
if (WARN_ON(target == XIVE_INVALID_TARGET ||
|
||
|
target >= nr_cpu_ids))
|
||
|
target = smp_processor_id();
|
||
|
|
||
|
xd->target = target;
|
||
|
|
||
|
/*
|
||
|
* Configure the logical number to be the Linux IRQ number
|
||
|
* and set the target queue
|
||
|
*/
|
||
|
rc = xive_ops->configure_irq(hw_irq,
|
||
|
get_hard_smp_processor_id(target),
|
||
|
xive_irq_priority, d->irq);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
/* Unmask the ESB */
|
||
|
xive_do_source_set_mask(xd, false);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* called with irq descriptor lock held */
|
||
|
static void xive_irq_shutdown(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
|
||
|
pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
|
||
|
d->irq, hw_irq, d);
|
||
|
|
||
|
if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
|
||
|
return;
|
||
|
|
||
|
/* Mask the interrupt at the source */
|
||
|
xive_do_source_set_mask(xd, true);
|
||
|
|
||
|
/*
|
||
|
* Mask the interrupt in HW in the IVT/EAS and set the number
|
||
|
* to be the "bad" IRQ number
|
||
|
*/
|
||
|
xive_ops->configure_irq(hw_irq,
|
||
|
get_hard_smp_processor_id(xd->target),
|
||
|
0xff, XIVE_BAD_IRQ);
|
||
|
|
||
|
xive_dec_target_count(xd->target);
|
||
|
xd->target = XIVE_INVALID_TARGET;
|
||
|
}
|
||
|
|
||
|
static void xive_irq_unmask(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
|
||
|
pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
|
||
|
|
||
|
/*
|
||
|
* This is a workaround for PCI LSI problems on P9, for
|
||
|
* these, we call FW to set the mask. The problems might
|
||
|
* be fixed by P9 DD2.0, if that is the case, firmware
|
||
|
* will no longer set that flag.
|
||
|
*/
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
xive_ops->configure_irq(hw_irq,
|
||
|
get_hard_smp_processor_id(xd->target),
|
||
|
xive_irq_priority, d->irq);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
xive_do_source_set_mask(xd, false);
|
||
|
}
|
||
|
|
||
|
static void xive_irq_mask(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
|
||
|
pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
|
||
|
|
||
|
/*
|
||
|
* This is a workaround for PCI LSI problems on P9, for
|
||
|
* these, we call OPAL to set the mask. The problems might
|
||
|
* be fixed by P9 DD2.0, if that is the case, firmware
|
||
|
* will no longer set that flag.
|
||
|
*/
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
xive_ops->configure_irq(hw_irq,
|
||
|
get_hard_smp_processor_id(xd->target),
|
||
|
0xff, d->irq);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
xive_do_source_set_mask(xd, true);
|
||
|
}
|
||
|
|
||
|
static int xive_irq_set_affinity(struct irq_data *d,
|
||
|
const struct cpumask *cpumask,
|
||
|
bool force)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
u32 target, old_target;
|
||
|
int rc = 0;
|
||
|
|
||
|
pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
|
||
|
|
||
|
/* Is this valid ? */
|
||
|
if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Don't do anything if the interrupt isn't started */
|
||
|
if (!irqd_is_started(d))
|
||
|
return IRQ_SET_MASK_OK;
|
||
|
|
||
|
/*
|
||
|
* If existing target is already in the new mask, and is
|
||
|
* online then do nothing.
|
||
|
*/
|
||
|
if (xd->target != XIVE_INVALID_TARGET &&
|
||
|
cpu_online(xd->target) &&
|
||
|
cpumask_test_cpu(xd->target, cpumask))
|
||
|
return IRQ_SET_MASK_OK;
|
||
|
|
||
|
/* Pick a new target */
|
||
|
target = xive_pick_irq_target(d, cpumask);
|
||
|
|
||
|
/* No target found */
|
||
|
if (target == XIVE_INVALID_TARGET)
|
||
|
return -ENXIO;
|
||
|
|
||
|
/* Sanity check */
|
||
|
if (WARN_ON(target >= nr_cpu_ids))
|
||
|
target = smp_processor_id();
|
||
|
|
||
|
old_target = xd->target;
|
||
|
|
||
|
/*
|
||
|
* Only configure the irq if it's not currently passed-through to
|
||
|
* a KVM guest
|
||
|
*/
|
||
|
if (!irqd_is_forwarded_to_vcpu(d))
|
||
|
rc = xive_ops->configure_irq(hw_irq,
|
||
|
get_hard_smp_processor_id(target),
|
||
|
xive_irq_priority, d->irq);
|
||
|
if (rc < 0) {
|
||
|
pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
pr_devel(" target: 0x%x\n", target);
|
||
|
xd->target = target;
|
||
|
|
||
|
/* Give up previous target */
|
||
|
if (old_target != XIVE_INVALID_TARGET)
|
||
|
xive_dec_target_count(old_target);
|
||
|
|
||
|
return IRQ_SET_MASK_OK;
|
||
|
}
|
||
|
|
||
|
static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
|
||
|
/*
|
||
|
* We only support these. This has really no effect other than setting
|
||
|
* the corresponding descriptor bits mind you but those will in turn
|
||
|
* affect the resend function when re-enabling an edge interrupt.
|
||
|
*
|
||
|
* Set set the default to edge as explained in map().
|
||
|
*/
|
||
|
if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
|
||
|
flow_type = IRQ_TYPE_EDGE_RISING;
|
||
|
|
||
|
if (flow_type != IRQ_TYPE_EDGE_RISING &&
|
||
|
flow_type != IRQ_TYPE_LEVEL_LOW)
|
||
|
return -EINVAL;
|
||
|
|
||
|
irqd_set_trigger_type(d, flow_type);
|
||
|
|
||
|
/*
|
||
|
* Double check it matches what the FW thinks
|
||
|
*
|
||
|
* NOTE: We don't know yet if the PAPR interface will provide
|
||
|
* the LSI vs MSI information apart from the device-tree so
|
||
|
* this check might have to move into an optional backend call
|
||
|
* that is specific to the native backend
|
||
|
*/
|
||
|
if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
|
||
|
!!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
|
||
|
pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
|
||
|
d->irq, (u32)irqd_to_hwirq(d),
|
||
|
(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
|
||
|
(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
|
||
|
}
|
||
|
|
||
|
return IRQ_SET_MASK_OK_NOCOPY;
|
||
|
}
|
||
|
|
||
|
static int xive_irq_retrigger(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
|
||
|
/* This should be only for MSIs */
|
||
|
if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* To perform a retrigger, we first set the PQ bits to
|
||
|
* 11, then perform an EOI.
|
||
|
*/
|
||
|
xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
|
||
|
|
||
|
/*
|
||
|
* Note: We pass "0" to the hw_irq argument in order to
|
||
|
* avoid calling into the backend EOI code which we don't
|
||
|
* want to do in the case of a re-trigger. Backends typically
|
||
|
* only do EOI for LSIs anyway.
|
||
|
*/
|
||
|
xive_do_source_eoi(0, xd);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Caller holds the irq descriptor lock, so this won't be called
|
||
|
* concurrently with xive_get_irqchip_state on the same interrupt.
|
||
|
*/
|
||
|
static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
int rc;
|
||
|
u8 pq;
|
||
|
|
||
|
/*
|
||
|
* We only support this on interrupts that do not require
|
||
|
* firmware calls for masking and unmasking
|
||
|
*/
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
|
||
|
return -EIO;
|
||
|
|
||
|
/*
|
||
|
* This is called by KVM with state non-NULL for enabling
|
||
|
* pass-through or NULL for disabling it
|
||
|
*/
|
||
|
if (state) {
|
||
|
irqd_set_forwarded_to_vcpu(d);
|
||
|
|
||
|
/* Set it to PQ=10 state to prevent further sends */
|
||
|
pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
|
||
|
if (!xd->stale_p) {
|
||
|
xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
|
||
|
xd->stale_p = !xd->saved_p;
|
||
|
}
|
||
|
|
||
|
/* No target ? nothing to do */
|
||
|
if (xd->target == XIVE_INVALID_TARGET) {
|
||
|
/*
|
||
|
* An untargetted interrupt should have been
|
||
|
* also masked at the source
|
||
|
*/
|
||
|
WARN_ON(xd->saved_p);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If P was set, adjust state to PQ=11 to indicate
|
||
|
* that a resend is needed for the interrupt to reach
|
||
|
* the guest. Also remember the value of P.
|
||
|
*
|
||
|
* This also tells us that it's in flight to a host queue
|
||
|
* or has already been fetched but hasn't been EOIed yet
|
||
|
* by the host. This it's potentially using up a host
|
||
|
* queue slot. This is important to know because as long
|
||
|
* as this is the case, we must not hard-unmask it when
|
||
|
* "returning" that interrupt to the host.
|
||
|
*
|
||
|
* This saved_p is cleared by the host EOI, when we know
|
||
|
* for sure the queue slot is no longer in use.
|
||
|
*/
|
||
|
if (xd->saved_p) {
|
||
|
xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
|
||
|
|
||
|
/*
|
||
|
* Sync the XIVE source HW to ensure the interrupt
|
||
|
* has gone through the EAS before we change its
|
||
|
* target to the guest. That should guarantee us
|
||
|
* that we *will* eventually get an EOI for it on
|
||
|
* the host. Otherwise there would be a small window
|
||
|
* for P to be seen here but the interrupt going
|
||
|
* to the guest queue.
|
||
|
*/
|
||
|
if (xive_ops->sync_source)
|
||
|
xive_ops->sync_source(hw_irq);
|
||
|
}
|
||
|
} else {
|
||
|
irqd_clr_forwarded_to_vcpu(d);
|
||
|
|
||
|
/* No host target ? hard mask and return */
|
||
|
if (xd->target == XIVE_INVALID_TARGET) {
|
||
|
xive_do_source_set_mask(xd, true);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Sync the XIVE source HW to ensure the interrupt
|
||
|
* has gone through the EAS before we change its
|
||
|
* target to the host.
|
||
|
*/
|
||
|
if (xive_ops->sync_source)
|
||
|
xive_ops->sync_source(hw_irq);
|
||
|
|
||
|
/*
|
||
|
* By convention we are called with the interrupt in
|
||
|
* a PQ=10 or PQ=11 state, ie, it won't fire and will
|
||
|
* have latched in Q whether there's a pending HW
|
||
|
* interrupt or not.
|
||
|
*
|
||
|
* First reconfigure the target.
|
||
|
*/
|
||
|
rc = xive_ops->configure_irq(hw_irq,
|
||
|
get_hard_smp_processor_id(xd->target),
|
||
|
xive_irq_priority, d->irq);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
/*
|
||
|
* Then if saved_p is not set, effectively re-enable the
|
||
|
* interrupt with an EOI. If it is set, we know there is
|
||
|
* still a message in a host queue somewhere that will be
|
||
|
* EOId eventually.
|
||
|
*
|
||
|
* Note: We don't check irqd_irq_disabled(). Effectively,
|
||
|
* we *will* let the irq get through even if masked if the
|
||
|
* HW is still firing it in order to deal with the whole
|
||
|
* saved_p business properly. If the interrupt triggers
|
||
|
* while masked, the generic code will re-mask it anyway.
|
||
|
*/
|
||
|
if (!xd->saved_p)
|
||
|
xive_do_source_eoi(hw_irq, xd);
|
||
|
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Called with irq descriptor lock held. */
|
||
|
static int xive_get_irqchip_state(struct irq_data *data,
|
||
|
enum irqchip_irq_state which, bool *state)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
|
||
|
u8 pq;
|
||
|
|
||
|
switch (which) {
|
||
|
case IRQCHIP_STATE_ACTIVE:
|
||
|
pq = xive_esb_read(xd, XIVE_ESB_GET);
|
||
|
|
||
|
/*
|
||
|
* The esb value being all 1's means we couldn't get
|
||
|
* the PQ state of the interrupt through mmio. It may
|
||
|
* happen, for example when querying a PHB interrupt
|
||
|
* while the PHB is in an error state. We consider the
|
||
|
* interrupt to be inactive in that case.
|
||
|
*/
|
||
|
*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
|
||
|
(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
|
||
|
return 0;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct irq_chip xive_irq_chip = {
|
||
|
.name = "XIVE-IRQ",
|
||
|
.irq_startup = xive_irq_startup,
|
||
|
.irq_shutdown = xive_irq_shutdown,
|
||
|
.irq_eoi = xive_irq_eoi,
|
||
|
.irq_mask = xive_irq_mask,
|
||
|
.irq_unmask = xive_irq_unmask,
|
||
|
.irq_set_affinity = xive_irq_set_affinity,
|
||
|
.irq_set_type = xive_irq_set_type,
|
||
|
.irq_retrigger = xive_irq_retrigger,
|
||
|
.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
|
||
|
.irq_get_irqchip_state = xive_get_irqchip_state,
|
||
|
};
|
||
|
|
||
|
bool is_xive_irq(struct irq_chip *chip)
|
||
|
{
|
||
|
return chip == &xive_irq_chip;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(is_xive_irq);
|
||
|
|
||
|
void xive_cleanup_irq_data(struct xive_irq_data *xd)
|
||
|
{
|
||
|
if (xd->eoi_mmio) {
|
||
|
iounmap(xd->eoi_mmio);
|
||
|
if (xd->eoi_mmio == xd->trig_mmio)
|
||
|
xd->trig_mmio = NULL;
|
||
|
xd->eoi_mmio = NULL;
|
||
|
}
|
||
|
if (xd->trig_mmio) {
|
||
|
iounmap(xd->trig_mmio);
|
||
|
xd->trig_mmio = NULL;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
|
||
|
|
||
|
static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
|
||
|
{
|
||
|
struct xive_irq_data *xd;
|
||
|
int rc;
|
||
|
|
||
|
xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
|
||
|
if (!xd)
|
||
|
return -ENOMEM;
|
||
|
rc = xive_ops->populate_irq_data(hw, xd);
|
||
|
if (rc) {
|
||
|
kfree(xd);
|
||
|
return rc;
|
||
|
}
|
||
|
xd->target = XIVE_INVALID_TARGET;
|
||
|
irq_set_handler_data(virq, xd);
|
||
|
|
||
|
/*
|
||
|
* Turn OFF by default the interrupt being mapped. A side
|
||
|
* effect of this check is the mapping the ESB page of the
|
||
|
* interrupt in the Linux address space. This prevents page
|
||
|
* fault issues in the crash handler which masks all
|
||
|
* interrupts.
|
||
|
*/
|
||
|
xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void xive_irq_free_data(unsigned int virq)
|
||
|
{
|
||
|
struct xive_irq_data *xd = irq_get_handler_data(virq);
|
||
|
|
||
|
if (!xd)
|
||
|
return;
|
||
|
irq_set_handler_data(virq, NULL);
|
||
|
xive_cleanup_irq_data(xd);
|
||
|
kfree(xd);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
|
||
|
static void xive_cause_ipi(int cpu)
|
||
|
{
|
||
|
struct xive_cpu *xc;
|
||
|
struct xive_irq_data *xd;
|
||
|
|
||
|
xc = per_cpu(xive_cpu, cpu);
|
||
|
|
||
|
DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
|
||
|
smp_processor_id(), cpu, xc->hw_ipi);
|
||
|
|
||
|
xd = &xc->ipi_data;
|
||
|
if (WARN_ON(!xd->trig_mmio))
|
||
|
return;
|
||
|
out_be64(xd->trig_mmio, 0);
|
||
|
}
|
||
|
|
||
|
static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
|
||
|
{
|
||
|
return smp_ipi_demux();
|
||
|
}
|
||
|
|
||
|
static void xive_ipi_eoi(struct irq_data *d)
|
||
|
{
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
|
||
|
/* Handle possible race with unplug and drop stale IPIs */
|
||
|
if (!xc)
|
||
|
return;
|
||
|
|
||
|
DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
|
||
|
d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
|
||
|
|
||
|
xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
|
||
|
xive_do_queue_eoi(xc);
|
||
|
}
|
||
|
|
||
|
static void xive_ipi_do_nothing(struct irq_data *d)
|
||
|
{
|
||
|
/*
|
||
|
* Nothing to do, we never mask/unmask IPIs, but the callback
|
||
|
* has to exist for the struct irq_chip.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
static struct irq_chip xive_ipi_chip = {
|
||
|
.name = "XIVE-IPI",
|
||
|
.irq_eoi = xive_ipi_eoi,
|
||
|
.irq_mask = xive_ipi_do_nothing,
|
||
|
.irq_unmask = xive_ipi_do_nothing,
|
||
|
};
|
||
|
|
||
|
static void __init xive_request_ipi(void)
|
||
|
{
|
||
|
unsigned int virq;
|
||
|
|
||
|
/*
|
||
|
* Initialization failed, move on, we might manage to
|
||
|
* reach the point where we display our errors before
|
||
|
* the system falls appart
|
||
|
*/
|
||
|
if (!xive_irq_domain)
|
||
|
return;
|
||
|
|
||
|
/* Initialize it */
|
||
|
virq = irq_create_mapping(xive_irq_domain, 0);
|
||
|
xive_ipi_irq = virq;
|
||
|
|
||
|
WARN_ON(request_irq(virq, xive_muxed_ipi_action,
|
||
|
IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
|
||
|
}
|
||
|
|
||
|
static int xive_setup_cpu_ipi(unsigned int cpu)
|
||
|
{
|
||
|
struct xive_cpu *xc;
|
||
|
int rc;
|
||
|
|
||
|
pr_debug("Setting up IPI for CPU %d\n", cpu);
|
||
|
|
||
|
xc = per_cpu(xive_cpu, cpu);
|
||
|
|
||
|
/* Check if we are already setup */
|
||
|
if (xc->hw_ipi != 0)
|
||
|
return 0;
|
||
|
|
||
|
/* Grab an IPI from the backend, this will populate xc->hw_ipi */
|
||
|
if (xive_ops->get_ipi(cpu, xc))
|
||
|
return -EIO;
|
||
|
|
||
|
/*
|
||
|
* Populate the IRQ data in the xive_cpu structure and
|
||
|
* configure the HW / enable the IPIs.
|
||
|
*/
|
||
|
rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
|
||
|
if (rc) {
|
||
|
pr_err("Failed to populate IPI data on CPU %d\n", cpu);
|
||
|
return -EIO;
|
||
|
}
|
||
|
rc = xive_ops->configure_irq(xc->hw_ipi,
|
||
|
get_hard_smp_processor_id(cpu),
|
||
|
xive_irq_priority, xive_ipi_irq);
|
||
|
if (rc) {
|
||
|
pr_err("Failed to map IPI CPU %d\n", cpu);
|
||
|
return -EIO;
|
||
|
}
|
||
|
pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
|
||
|
xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
|
||
|
|
||
|
/* Unmask it */
|
||
|
xive_do_source_set_mask(&xc->ipi_data, false);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
|
||
|
{
|
||
|
/* Disable the IPI and free the IRQ data */
|
||
|
|
||
|
/* Already cleaned up ? */
|
||
|
if (xc->hw_ipi == 0)
|
||
|
return;
|
||
|
|
||
|
/* Mask the IPI */
|
||
|
xive_do_source_set_mask(&xc->ipi_data, true);
|
||
|
|
||
|
/*
|
||
|
* Note: We don't call xive_cleanup_irq_data() to free
|
||
|
* the mappings as this is called from an IPI on kexec
|
||
|
* which is not a safe environment to call iounmap()
|
||
|
*/
|
||
|
|
||
|
/* Deconfigure/mask in the backend */
|
||
|
xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
|
||
|
0xff, xive_ipi_irq);
|
||
|
|
||
|
/* Free the IPIs in the backend */
|
||
|
xive_ops->put_ipi(cpu, xc);
|
||
|
}
|
||
|
|
||
|
void __init xive_smp_probe(void)
|
||
|
{
|
||
|
smp_ops->cause_ipi = xive_cause_ipi;
|
||
|
|
||
|
/* Register the IPI */
|
||
|
xive_request_ipi();
|
||
|
|
||
|
/* Allocate and setup IPI for the boot CPU */
|
||
|
xive_setup_cpu_ipi(smp_processor_id());
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_SMP */
|
||
|
|
||
|
static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
|
||
|
irq_hw_number_t hw)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/*
|
||
|
* Mark interrupts as edge sensitive by default so that resend
|
||
|
* actually works. Will fix that up below if needed.
|
||
|
*/
|
||
|
irq_clear_status_flags(virq, IRQ_LEVEL);
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/* IPIs are special and come up with HW number 0 */
|
||
|
if (hw == 0) {
|
||
|
/*
|
||
|
* IPIs are marked per-cpu. We use separate HW interrupts under
|
||
|
* the hood but associated with the same "linux" interrupt
|
||
|
*/
|
||
|
irq_set_chip_and_handler(virq, &xive_ipi_chip,
|
||
|
handle_percpu_irq);
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
rc = xive_irq_alloc_data(virq, hw);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
|
||
|
{
|
||
|
struct irq_data *data = irq_get_irq_data(virq);
|
||
|
unsigned int hw_irq;
|
||
|
|
||
|
/* XXX Assign BAD number */
|
||
|
if (!data)
|
||
|
return;
|
||
|
hw_irq = (unsigned int)irqd_to_hwirq(data);
|
||
|
if (hw_irq)
|
||
|
xive_irq_free_data(virq);
|
||
|
}
|
||
|
|
||
|
static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
|
||
|
const u32 *intspec, unsigned int intsize,
|
||
|
irq_hw_number_t *out_hwirq, unsigned int *out_flags)
|
||
|
|
||
|
{
|
||
|
*out_hwirq = intspec[0];
|
||
|
|
||
|
/*
|
||
|
* If intsize is at least 2, we look for the type in the second cell,
|
||
|
* we assume the LSB indicates a level interrupt.
|
||
|
*/
|
||
|
if (intsize > 1) {
|
||
|
if (intspec[1] & 1)
|
||
|
*out_flags = IRQ_TYPE_LEVEL_LOW;
|
||
|
else
|
||
|
*out_flags = IRQ_TYPE_EDGE_RISING;
|
||
|
} else
|
||
|
*out_flags = IRQ_TYPE_LEVEL_LOW;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
|
||
|
enum irq_domain_bus_token bus_token)
|
||
|
{
|
||
|
return xive_ops->match(node);
|
||
|
}
|
||
|
|
||
|
static const struct irq_domain_ops xive_irq_domain_ops = {
|
||
|
.match = xive_irq_domain_match,
|
||
|
.map = xive_irq_domain_map,
|
||
|
.unmap = xive_irq_domain_unmap,
|
||
|
.xlate = xive_irq_domain_xlate,
|
||
|
};
|
||
|
|
||
|
static void __init xive_init_host(void)
|
||
|
{
|
||
|
xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
|
||
|
&xive_irq_domain_ops, NULL);
|
||
|
if (WARN_ON(xive_irq_domain == NULL))
|
||
|
return;
|
||
|
irq_set_default_host(xive_irq_domain);
|
||
|
}
|
||
|
|
||
|
static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
|
||
|
{
|
||
|
if (xc->queue[xive_irq_priority].qpage)
|
||
|
xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
|
||
|
}
|
||
|
|
||
|
static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
|
||
|
/* We setup 1 queues for now with a 64k page */
|
||
|
if (!xc->queue[xive_irq_priority].qpage)
|
||
|
rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int xive_prepare_cpu(unsigned int cpu)
|
||
|
{
|
||
|
struct xive_cpu *xc;
|
||
|
|
||
|
xc = per_cpu(xive_cpu, cpu);
|
||
|
if (!xc) {
|
||
|
struct device_node *np;
|
||
|
|
||
|
xc = kzalloc_node(sizeof(struct xive_cpu),
|
||
|
GFP_KERNEL, cpu_to_node(cpu));
|
||
|
if (!xc)
|
||
|
return -ENOMEM;
|
||
|
np = of_get_cpu_node(cpu, NULL);
|
||
|
if (np)
|
||
|
xc->chip_id = of_get_ibm_chip_id(np);
|
||
|
of_node_put(np);
|
||
|
|
||
|
per_cpu(xive_cpu, cpu) = xc;
|
||
|
}
|
||
|
|
||
|
/* Setup EQs if not already */
|
||
|
return xive_setup_cpu_queues(cpu, xc);
|
||
|
}
|
||
|
|
||
|
static void xive_setup_cpu(void)
|
||
|
{
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
|
||
|
/* The backend might have additional things to do */
|
||
|
if (xive_ops->setup_cpu)
|
||
|
xive_ops->setup_cpu(smp_processor_id(), xc);
|
||
|
|
||
|
/* Set CPPR to 0xff to enable flow of interrupts */
|
||
|
xc->cppr = 0xff;
|
||
|
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
void xive_smp_setup_cpu(void)
|
||
|
{
|
||
|
pr_devel("SMP setup CPU %d\n", smp_processor_id());
|
||
|
|
||
|
/* This will have already been done on the boot CPU */
|
||
|
if (smp_processor_id() != boot_cpuid)
|
||
|
xive_setup_cpu();
|
||
|
|
||
|
}
|
||
|
|
||
|
int xive_smp_prepare_cpu(unsigned int cpu)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/* Allocate per-CPU data and queues */
|
||
|
rc = xive_prepare_cpu(cpu);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
/* Allocate and setup IPI for the new CPU */
|
||
|
return xive_setup_cpu_ipi(cpu);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HOTPLUG_CPU
|
||
|
static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
|
||
|
{
|
||
|
u32 irq;
|
||
|
|
||
|
/* We assume local irqs are disabled */
|
||
|
WARN_ON(!irqs_disabled());
|
||
|
|
||
|
/* Check what's already in the CPU queue */
|
||
|
while ((irq = xive_scan_interrupts(xc, false)) != 0) {
|
||
|
/*
|
||
|
* We need to re-route that interrupt to its new destination.
|
||
|
* First get and lock the descriptor
|
||
|
*/
|
||
|
struct irq_desc *desc = irq_to_desc(irq);
|
||
|
struct irq_data *d = irq_desc_get_irq_data(desc);
|
||
|
struct xive_irq_data *xd;
|
||
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
||
|
|
||
|
/*
|
||
|
* Ignore anything that isn't a XIVE irq and ignore
|
||
|
* IPIs, so can just be dropped.
|
||
|
*/
|
||
|
if (d->domain != xive_irq_domain || hw_irq == 0)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* The IRQ should have already been re-routed, it's just a
|
||
|
* stale in the old queue, so re-trigger it in order to make
|
||
|
* it reach is new destination.
|
||
|
*/
|
||
|
#ifdef DEBUG_FLUSH
|
||
|
pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
|
||
|
cpu, irq);
|
||
|
#endif
|
||
|
raw_spin_lock(&desc->lock);
|
||
|
xd = irq_desc_get_handler_data(desc);
|
||
|
|
||
|
/*
|
||
|
* Clear saved_p to indicate that it's no longer pending
|
||
|
*/
|
||
|
xd->saved_p = false;
|
||
|
|
||
|
/*
|
||
|
* For LSIs, we EOI, this will cause a resend if it's
|
||
|
* still asserted. Otherwise do an MSI retrigger.
|
||
|
*/
|
||
|
if (xd->flags & XIVE_IRQ_FLAG_LSI)
|
||
|
xive_do_source_eoi(irqd_to_hwirq(d), xd);
|
||
|
else
|
||
|
xive_irq_retrigger(d);
|
||
|
|
||
|
raw_spin_unlock(&desc->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void xive_smp_disable_cpu(void)
|
||
|
{
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
|
||
|
/* Migrate interrupts away from the CPU */
|
||
|
irq_migrate_all_off_this_cpu();
|
||
|
|
||
|
/* Set CPPR to 0 to disable flow of interrupts */
|
||
|
xc->cppr = 0;
|
||
|
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
|
||
|
|
||
|
/* Flush everything still in the queue */
|
||
|
xive_flush_cpu_queue(cpu, xc);
|
||
|
|
||
|
/* Re-enable CPPR */
|
||
|
xc->cppr = 0xff;
|
||
|
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
|
||
|
}
|
||
|
|
||
|
void xive_flush_interrupt(void)
|
||
|
{
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
|
||
|
/* Called if an interrupt occurs while the CPU is hot unplugged */
|
||
|
xive_flush_cpu_queue(cpu, xc);
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_HOTPLUG_CPU */
|
||
|
|
||
|
#endif /* CONFIG_SMP */
|
||
|
|
||
|
void xive_teardown_cpu(void)
|
||
|
{
|
||
|
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
|
||
|
/* Set CPPR to 0 to disable flow of interrupts */
|
||
|
xc->cppr = 0;
|
||
|
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
|
||
|
|
||
|
if (xive_ops->teardown_cpu)
|
||
|
xive_ops->teardown_cpu(cpu, xc);
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/* Get rid of IPI */
|
||
|
xive_cleanup_cpu_ipi(cpu, xc);
|
||
|
#endif
|
||
|
|
||
|
/* Disable and free the queues */
|
||
|
xive_cleanup_cpu_queues(cpu, xc);
|
||
|
}
|
||
|
|
||
|
void xive_shutdown(void)
|
||
|
{
|
||
|
xive_ops->shutdown();
|
||
|
}
|
||
|
|
||
|
bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
|
||
|
u8 max_prio)
|
||
|
{
|
||
|
xive_tima = area;
|
||
|
xive_tima_offset = offset;
|
||
|
xive_ops = ops;
|
||
|
xive_irq_priority = max_prio;
|
||
|
|
||
|
ppc_md.get_irq = xive_get_irq;
|
||
|
__xive_enabled = true;
|
||
|
|
||
|
pr_devel("Initializing host..\n");
|
||
|
xive_init_host();
|
||
|
|
||
|
pr_devel("Initializing boot CPU..\n");
|
||
|
|
||
|
/* Allocate per-CPU data and queues */
|
||
|
xive_prepare_cpu(smp_processor_id());
|
||
|
|
||
|
/* Get ready for interrupts */
|
||
|
xive_setup_cpu();
|
||
|
|
||
|
pr_info("Interrupt handling initialized with %s backend\n",
|
||
|
xive_ops->name);
|
||
|
pr_info("Using priority %d for all interrupts\n", max_prio);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
|
||
|
{
|
||
|
unsigned int alloc_order;
|
||
|
struct page *pages;
|
||
|
__be32 *qpage;
|
||
|
|
||
|
alloc_order = xive_alloc_order(queue_shift);
|
||
|
pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
|
||
|
if (!pages)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
qpage = (__be32 *)page_address(pages);
|
||
|
memset(qpage, 0, 1 << queue_shift);
|
||
|
|
||
|
return qpage;
|
||
|
}
|
||
|
|
||
|
static int __init xive_off(char *arg)
|
||
|
{
|
||
|
xive_cmdline_disabled = true;
|
||
|
return 0;
|
||
|
}
|
||
|
__setup("xive=off", xive_off);
|