linux/linux-5.4.31/arch/powerpc/sysdev/fsl_lbc.c

432 lines
10 KiB
C
Raw Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Freescale LBC and UPM routines.
*
* Copyright © 2007-2008 MontaVista Software, Inc.
* Copyright © 2010 Freescale Semiconductor
*
* Author: Anton Vorontsov <avorontsov@ru.mvista.com>
* Author: Jack Lan <Jack.Lan@freescale.com>
* Author: Roy Zang <tie-fei.zang@freescale.com>
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/mod_devicetable.h>
#include <linux/syscore_ops.h>
#include <asm/prom.h>
#include <asm/fsl_lbc.h>
static DEFINE_SPINLOCK(fsl_lbc_lock);
struct fsl_lbc_ctrl *fsl_lbc_ctrl_dev;
EXPORT_SYMBOL(fsl_lbc_ctrl_dev);
/**
* fsl_lbc_addr - convert the base address
* @addr_base: base address of the memory bank
*
* This function converts a base address of lbc into the right format for the
* BR register. If the SOC has eLBC then it returns 32bit physical address
* else it convers a 34bit local bus physical address to correct format of
* 32bit address for BR register (Example: MPC8641).
*/
u32 fsl_lbc_addr(phys_addr_t addr_base)
{
struct device_node *np = fsl_lbc_ctrl_dev->dev->of_node;
u32 addr = addr_base & 0xffff8000;
if (of_device_is_compatible(np, "fsl,elbc"))
return addr;
return addr | ((addr_base & 0x300000000ull) >> 19);
}
EXPORT_SYMBOL(fsl_lbc_addr);
/**
* fsl_lbc_find - find Localbus bank
* @addr_base: base address of the memory bank
*
* This function walks LBC banks comparing "Base address" field of the BR
* registers with the supplied addr_base argument. When bases match this
* function returns bank number (starting with 0), otherwise it returns
* appropriate errno value.
*/
int fsl_lbc_find(phys_addr_t addr_base)
{
int i;
struct fsl_lbc_regs __iomem *lbc;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
lbc = fsl_lbc_ctrl_dev->regs;
for (i = 0; i < ARRAY_SIZE(lbc->bank); i++) {
u32 br = in_be32(&lbc->bank[i].br);
u32 or = in_be32(&lbc->bank[i].or);
if (br & BR_V && (br & or & BR_BA) == fsl_lbc_addr(addr_base))
return i;
}
return -ENOENT;
}
EXPORT_SYMBOL(fsl_lbc_find);
/**
* fsl_upm_find - find pre-programmed UPM via base address
* @addr_base: base address of the memory bank controlled by the UPM
* @upm: pointer to the allocated fsl_upm structure
*
* This function fills fsl_upm structure so you can use it with the rest of
* UPM API. On success this function returns 0, otherwise it returns
* appropriate errno value.
*/
int fsl_upm_find(phys_addr_t addr_base, struct fsl_upm *upm)
{
int bank;
u32 br;
struct fsl_lbc_regs __iomem *lbc;
bank = fsl_lbc_find(addr_base);
if (bank < 0)
return bank;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
lbc = fsl_lbc_ctrl_dev->regs;
br = in_be32(&lbc->bank[bank].br);
switch (br & BR_MSEL) {
case BR_MS_UPMA:
upm->mxmr = &lbc->mamr;
break;
case BR_MS_UPMB:
upm->mxmr = &lbc->mbmr;
break;
case BR_MS_UPMC:
upm->mxmr = &lbc->mcmr;
break;
default:
return -EINVAL;
}
switch (br & BR_PS) {
case BR_PS_8:
upm->width = 8;
break;
case BR_PS_16:
upm->width = 16;
break;
case BR_PS_32:
upm->width = 32;
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(fsl_upm_find);
/**
* fsl_upm_run_pattern - actually run an UPM pattern
* @upm: pointer to the fsl_upm structure obtained via fsl_upm_find
* @io_base: remapped pointer to where memory access should happen
* @mar: MAR register content during pattern execution
*
* This function triggers dummy write to the memory specified by the io_base,
* thus UPM pattern actually executed. Note that mar usage depends on the
* pre-programmed AMX bits in the UPM RAM.
*/
int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar)
{
int ret = 0;
unsigned long flags;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
spin_lock_irqsave(&fsl_lbc_lock, flags);
out_be32(&fsl_lbc_ctrl_dev->regs->mar, mar);
switch (upm->width) {
case 8:
out_8(io_base, 0x0);
break;
case 16:
out_be16(io_base, 0x0);
break;
case 32:
out_be32(io_base, 0x0);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
return ret;
}
EXPORT_SYMBOL(fsl_upm_run_pattern);
static int fsl_lbc_ctrl_init(struct fsl_lbc_ctrl *ctrl,
struct device_node *node)
{
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
/* clear event registers */
setbits32(&lbc->ltesr, LTESR_CLEAR);
out_be32(&lbc->lteatr, 0);
out_be32(&lbc->ltear, 0);
out_be32(&lbc->lteccr, LTECCR_CLEAR);
out_be32(&lbc->ltedr, LTEDR_ENABLE);
/* Set the monitor timeout value to the maximum for erratum A001 */
if (of_device_is_compatible(node, "fsl,elbc"))
clrsetbits_be32(&lbc->lbcr, LBCR_BMT, LBCR_BMTPS);
return 0;
}
/*
* NOTE: This interrupt is used to report localbus events of various kinds,
* such as transaction errors on the chipselects.
*/
static irqreturn_t fsl_lbc_ctrl_irq(int irqno, void *data)
{
struct fsl_lbc_ctrl *ctrl = data;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
u32 status;
unsigned long flags;
spin_lock_irqsave(&fsl_lbc_lock, flags);
status = in_be32(&lbc->ltesr);
if (!status) {
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
return IRQ_NONE;
}
out_be32(&lbc->ltesr, LTESR_CLEAR);
out_be32(&lbc->lteatr, 0);
out_be32(&lbc->ltear, 0);
ctrl->irq_status = status;
if (status & LTESR_BM)
dev_err(ctrl->dev, "Local bus monitor time-out: "
"LTESR 0x%08X\n", status);
if (status & LTESR_WP)
dev_err(ctrl->dev, "Write protect error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_ATMW)
dev_err(ctrl->dev, "Atomic write error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_ATMR)
dev_err(ctrl->dev, "Atomic read error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_CS)
dev_err(ctrl->dev, "Chip select error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_FCT) {
dev_err(ctrl->dev, "FCM command time-out: "
"LTESR 0x%08X\n", status);
smp_wmb();
wake_up(&ctrl->irq_wait);
}
if (status & LTESR_PAR) {
dev_err(ctrl->dev, "Parity or Uncorrectable ECC error: "
"LTESR 0x%08X\n", status);
smp_wmb();
wake_up(&ctrl->irq_wait);
}
if (status & LTESR_CC) {
smp_wmb();
wake_up(&ctrl->irq_wait);
}
if (status & ~LTESR_MASK)
dev_err(ctrl->dev, "Unknown error: "
"LTESR 0x%08X\n", status);
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
return IRQ_HANDLED;
}
/*
* fsl_lbc_ctrl_probe
*
* called by device layer when it finds a device matching
* one our driver can handled. This code allocates all of
* the resources needed for the controller only. The
* resources for the NAND banks themselves are allocated
* in the chip probe function.
*/
static int fsl_lbc_ctrl_probe(struct platform_device *dev)
{
int ret;
if (!dev->dev.of_node) {
dev_err(&dev->dev, "Device OF-Node is NULL");
return -EFAULT;
}
fsl_lbc_ctrl_dev = kzalloc(sizeof(*fsl_lbc_ctrl_dev), GFP_KERNEL);
if (!fsl_lbc_ctrl_dev)
return -ENOMEM;
dev_set_drvdata(&dev->dev, fsl_lbc_ctrl_dev);
spin_lock_init(&fsl_lbc_ctrl_dev->lock);
init_waitqueue_head(&fsl_lbc_ctrl_dev->irq_wait);
fsl_lbc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
if (!fsl_lbc_ctrl_dev->regs) {
dev_err(&dev->dev, "failed to get memory region\n");
ret = -ENODEV;
goto err;
}
fsl_lbc_ctrl_dev->irq[0] = irq_of_parse_and_map(dev->dev.of_node, 0);
if (!fsl_lbc_ctrl_dev->irq[0]) {
dev_err(&dev->dev, "failed to get irq resource\n");
ret = -ENODEV;
goto err;
}
fsl_lbc_ctrl_dev->dev = &dev->dev;
ret = fsl_lbc_ctrl_init(fsl_lbc_ctrl_dev, dev->dev.of_node);
if (ret < 0)
goto err;
ret = request_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_irq, 0,
"fsl-lbc", fsl_lbc_ctrl_dev);
if (ret != 0) {
dev_err(&dev->dev, "failed to install irq (%d)\n",
fsl_lbc_ctrl_dev->irq[0]);
ret = fsl_lbc_ctrl_dev->irq[0];
goto err;
}
fsl_lbc_ctrl_dev->irq[1] = irq_of_parse_and_map(dev->dev.of_node, 1);
if (fsl_lbc_ctrl_dev->irq[1]) {
ret = request_irq(fsl_lbc_ctrl_dev->irq[1], fsl_lbc_ctrl_irq,
IRQF_SHARED, "fsl-lbc-err", fsl_lbc_ctrl_dev);
if (ret) {
dev_err(&dev->dev, "failed to install irq (%d)\n",
fsl_lbc_ctrl_dev->irq[1]);
ret = fsl_lbc_ctrl_dev->irq[1];
goto err1;
}
}
/* Enable interrupts for any detected events */
out_be32(&fsl_lbc_ctrl_dev->regs->lteir, LTEIR_ENABLE);
return 0;
err1:
free_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_dev);
err:
iounmap(fsl_lbc_ctrl_dev->regs);
kfree(fsl_lbc_ctrl_dev);
fsl_lbc_ctrl_dev = NULL;
return ret;
}
#ifdef CONFIG_SUSPEND
/* save lbc registers */
static int fsl_lbc_syscore_suspend(void)
{
struct fsl_lbc_ctrl *ctrl;
struct fsl_lbc_regs __iomem *lbc;
ctrl = fsl_lbc_ctrl_dev;
if (!ctrl)
goto out;
lbc = ctrl->regs;
if (!lbc)
goto out;
ctrl->saved_regs = kmalloc(sizeof(struct fsl_lbc_regs), GFP_KERNEL);
if (!ctrl->saved_regs)
return -ENOMEM;
_memcpy_fromio(ctrl->saved_regs, lbc, sizeof(struct fsl_lbc_regs));
out:
return 0;
}
/* restore lbc registers */
static void fsl_lbc_syscore_resume(void)
{
struct fsl_lbc_ctrl *ctrl;
struct fsl_lbc_regs __iomem *lbc;
ctrl = fsl_lbc_ctrl_dev;
if (!ctrl)
goto out;
lbc = ctrl->regs;
if (!lbc)
goto out;
if (ctrl->saved_regs) {
_memcpy_toio(lbc, ctrl->saved_regs,
sizeof(struct fsl_lbc_regs));
kfree(ctrl->saved_regs);
ctrl->saved_regs = NULL;
}
out:
return;
}
#endif /* CONFIG_SUSPEND */
static const struct of_device_id fsl_lbc_match[] = {
{ .compatible = "fsl,elbc", },
{ .compatible = "fsl,pq3-localbus", },
{ .compatible = "fsl,pq2-localbus", },
{ .compatible = "fsl,pq2pro-localbus", },
{},
};
#ifdef CONFIG_SUSPEND
static struct syscore_ops lbc_syscore_pm_ops = {
.suspend = fsl_lbc_syscore_suspend,
.resume = fsl_lbc_syscore_resume,
};
#endif
static struct platform_driver fsl_lbc_ctrl_driver = {
.driver = {
.name = "fsl-lbc",
.of_match_table = fsl_lbc_match,
},
.probe = fsl_lbc_ctrl_probe,
};
static int __init fsl_lbc_init(void)
{
#ifdef CONFIG_SUSPEND
register_syscore_ops(&lbc_syscore_pm_ops);
#endif
return platform_driver_register(&fsl_lbc_ctrl_driver);
}
subsys_initcall(fsl_lbc_init);