667 lines
16 KiB
C
667 lines
16 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Miscellaneous Mac68K-specific stuff
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/rtc.h>
|
||
|
#include <linux/mm.h>
|
||
|
|
||
|
#include <linux/adb.h>
|
||
|
#include <linux/cuda.h>
|
||
|
#include <linux/pmu.h>
|
||
|
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/segment.h>
|
||
|
#include <asm/setup.h>
|
||
|
#include <asm/macintosh.h>
|
||
|
#include <asm/mac_via.h>
|
||
|
#include <asm/mac_oss.h>
|
||
|
|
||
|
#include <asm/machdep.h>
|
||
|
|
||
|
/*
|
||
|
* Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
|
||
|
* times wrap in 2040. If we need to handle later times, the read_time functions
|
||
|
* need to be changed to interpret wrapped times as post-2040.
|
||
|
*/
|
||
|
|
||
|
#define RTC_OFFSET 2082844800
|
||
|
|
||
|
static void (*rom_reset)(void);
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_NVRAM)
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
static unsigned char cuda_pram_read_byte(int offset)
|
||
|
{
|
||
|
struct adb_request req;
|
||
|
|
||
|
if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
|
||
|
(offset >> 8) & 0xFF, offset & 0xFF) < 0)
|
||
|
return 0;
|
||
|
while (!req.complete)
|
||
|
cuda_poll();
|
||
|
return req.reply[3];
|
||
|
}
|
||
|
|
||
|
static void cuda_pram_write_byte(unsigned char data, int offset)
|
||
|
{
|
||
|
struct adb_request req;
|
||
|
|
||
|
if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
|
||
|
(offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
|
||
|
return;
|
||
|
while (!req.complete)
|
||
|
cuda_poll();
|
||
|
}
|
||
|
#endif /* CONFIG_ADB_CUDA */
|
||
|
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
static unsigned char pmu_pram_read_byte(int offset)
|
||
|
{
|
||
|
struct adb_request req;
|
||
|
|
||
|
if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM,
|
||
|
offset & 0xFF, 1) < 0)
|
||
|
return 0;
|
||
|
pmu_wait_complete(&req);
|
||
|
|
||
|
return req.reply[0];
|
||
|
}
|
||
|
|
||
|
static void pmu_pram_write_byte(unsigned char data, int offset)
|
||
|
{
|
||
|
struct adb_request req;
|
||
|
|
||
|
if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM,
|
||
|
offset & 0xFF, 1, data) < 0)
|
||
|
return;
|
||
|
pmu_wait_complete(&req);
|
||
|
}
|
||
|
#endif /* CONFIG_ADB_PMU */
|
||
|
#endif /* CONFIG_NVRAM */
|
||
|
|
||
|
/*
|
||
|
* VIA PRAM/RTC access routines
|
||
|
*
|
||
|
* Must be called with interrupts disabled and
|
||
|
* the RTC should be enabled.
|
||
|
*/
|
||
|
|
||
|
static __u8 via_rtc_recv(void)
|
||
|
{
|
||
|
int i, reg;
|
||
|
__u8 data;
|
||
|
|
||
|
reg = via1[vBufB] & ~VIA1B_vRTCClk;
|
||
|
|
||
|
/* Set the RTC data line to be an input. */
|
||
|
|
||
|
via1[vDirB] &= ~VIA1B_vRTCData;
|
||
|
|
||
|
/* The bits of the byte come out in MSB order */
|
||
|
|
||
|
data = 0;
|
||
|
for (i = 0 ; i < 8 ; i++) {
|
||
|
via1[vBufB] = reg;
|
||
|
via1[vBufB] = reg | VIA1B_vRTCClk;
|
||
|
data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
|
||
|
}
|
||
|
|
||
|
/* Return RTC data line to output state */
|
||
|
|
||
|
via1[vDirB] |= VIA1B_vRTCData;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
static void via_rtc_send(__u8 data)
|
||
|
{
|
||
|
int i, reg, bit;
|
||
|
|
||
|
reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
|
||
|
|
||
|
/* The bits of the byte go in in MSB order */
|
||
|
|
||
|
for (i = 0 ; i < 8 ; i++) {
|
||
|
bit = data & 0x80? 1 : 0;
|
||
|
data <<= 1;
|
||
|
via1[vBufB] = reg | bit;
|
||
|
via1[vBufB] = reg | bit | VIA1B_vRTCClk;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These values can be found in Inside Macintosh vol. III ch. 2
|
||
|
* which has a description of the RTC chip in the original Mac.
|
||
|
*/
|
||
|
|
||
|
#define RTC_FLG_READ BIT(7)
|
||
|
#define RTC_FLG_WRITE_PROTECT BIT(7)
|
||
|
#define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2))
|
||
|
#define RTC_CMD_WRITE(r) (r << 2)
|
||
|
#define RTC_REG_SECONDS_0 0
|
||
|
#define RTC_REG_SECONDS_1 1
|
||
|
#define RTC_REG_SECONDS_2 2
|
||
|
#define RTC_REG_SECONDS_3 3
|
||
|
#define RTC_REG_WRITE_PROTECT 13
|
||
|
|
||
|
/*
|
||
|
* Inside Mac has no information about two-byte RTC commands but
|
||
|
* the MAME/MESS source code has the essentials.
|
||
|
*/
|
||
|
|
||
|
#define RTC_REG_XPRAM 14
|
||
|
#define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8)
|
||
|
#define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8)
|
||
|
#define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2))
|
||
|
|
||
|
/*
|
||
|
* Execute a VIA PRAM/RTC command. For read commands
|
||
|
* data should point to a one-byte buffer for the
|
||
|
* resulting data. For write commands it should point
|
||
|
* to the data byte to for the command.
|
||
|
*
|
||
|
* This function disables all interrupts while running.
|
||
|
*/
|
||
|
|
||
|
static void via_rtc_command(int command, __u8 *data)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int is_read;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
/* The least significant bits must be 0b01 according to Inside Mac */
|
||
|
|
||
|
command = (command & ~3) | 1;
|
||
|
|
||
|
/* Enable the RTC and make sure the strobe line is high */
|
||
|
|
||
|
via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
|
||
|
|
||
|
if (command & 0xFF00) { /* extended (two-byte) command */
|
||
|
via_rtc_send((command & 0xFF00) >> 8);
|
||
|
via_rtc_send(command & 0xFF);
|
||
|
is_read = command & (RTC_FLG_READ << 8);
|
||
|
} else { /* one-byte command */
|
||
|
via_rtc_send(command);
|
||
|
is_read = command & RTC_FLG_READ;
|
||
|
}
|
||
|
if (is_read) {
|
||
|
*data = via_rtc_recv();
|
||
|
} else {
|
||
|
via_rtc_send(*data);
|
||
|
}
|
||
|
|
||
|
/* All done, disable the RTC */
|
||
|
|
||
|
via1[vBufB] |= VIA1B_vRTCEnb;
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_NVRAM)
|
||
|
static unsigned char via_pram_read_byte(int offset)
|
||
|
{
|
||
|
unsigned char temp;
|
||
|
|
||
|
via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp);
|
||
|
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
static void via_pram_write_byte(unsigned char data, int offset)
|
||
|
{
|
||
|
unsigned char temp;
|
||
|
|
||
|
temp = 0x55;
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
|
||
|
|
||
|
temp = data;
|
||
|
via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp);
|
||
|
|
||
|
temp = 0x55 | RTC_FLG_WRITE_PROTECT;
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
|
||
|
}
|
||
|
#endif /* CONFIG_NVRAM */
|
||
|
|
||
|
/*
|
||
|
* Return the current time in seconds since January 1, 1904.
|
||
|
*
|
||
|
* This only works on machines with the VIA-based PRAM/RTC, which
|
||
|
* is basically any machine with Mac II-style ADB.
|
||
|
*/
|
||
|
|
||
|
static time64_t via_read_time(void)
|
||
|
{
|
||
|
union {
|
||
|
__u8 cdata[4];
|
||
|
__u32 idata;
|
||
|
} result, last_result;
|
||
|
int count = 1;
|
||
|
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]);
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]);
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]);
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]);
|
||
|
|
||
|
/*
|
||
|
* The NetBSD guys say to loop until you get the same reading
|
||
|
* twice in a row.
|
||
|
*/
|
||
|
|
||
|
while (1) {
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0),
|
||
|
&result.cdata[3]);
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1),
|
||
|
&result.cdata[2]);
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2),
|
||
|
&result.cdata[1]);
|
||
|
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3),
|
||
|
&result.cdata[0]);
|
||
|
|
||
|
if (result.idata == last_result.idata)
|
||
|
return (time64_t)result.idata - RTC_OFFSET;
|
||
|
|
||
|
if (++count > 10)
|
||
|
break;
|
||
|
|
||
|
last_result.idata = result.idata;
|
||
|
}
|
||
|
|
||
|
pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n",
|
||
|
__func__, last_result.idata, result.idata);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the current time to a number of seconds since January 1, 1904.
|
||
|
*
|
||
|
* This only works on machines with the VIA-based PRAM/RTC, which
|
||
|
* is basically any machine with Mac II-style ADB.
|
||
|
*/
|
||
|
|
||
|
static void via_set_rtc_time(struct rtc_time *tm)
|
||
|
{
|
||
|
union {
|
||
|
__u8 cdata[4];
|
||
|
__u32 idata;
|
||
|
} data;
|
||
|
__u8 temp;
|
||
|
time64_t time;
|
||
|
|
||
|
time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
|
||
|
tm->tm_hour, tm->tm_min, tm->tm_sec);
|
||
|
|
||
|
/* Clear the write protect bit */
|
||
|
|
||
|
temp = 0x55;
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
|
||
|
|
||
|
data.idata = lower_32_bits(time + RTC_OFFSET);
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]);
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]);
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]);
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]);
|
||
|
|
||
|
/* Set the write protect bit */
|
||
|
|
||
|
temp = 0x55 | RTC_FLG_WRITE_PROTECT;
|
||
|
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
|
||
|
}
|
||
|
|
||
|
static void via_shutdown(void)
|
||
|
{
|
||
|
if (rbv_present) {
|
||
|
via2[rBufB] &= ~0x04;
|
||
|
} else {
|
||
|
/* Direction of vDirB is output */
|
||
|
via2[vDirB] |= 0x04;
|
||
|
/* Send a value of 0 on that line */
|
||
|
via2[vBufB] &= ~0x04;
|
||
|
mdelay(1000);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void oss_shutdown(void)
|
||
|
{
|
||
|
oss->rom_ctrl = OSS_POWEROFF;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
static void cuda_restart(void)
|
||
|
{
|
||
|
struct adb_request req;
|
||
|
|
||
|
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
|
||
|
return;
|
||
|
while (!req.complete)
|
||
|
cuda_poll();
|
||
|
}
|
||
|
|
||
|
static void cuda_shutdown(void)
|
||
|
{
|
||
|
struct adb_request req;
|
||
|
|
||
|
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
|
||
|
return;
|
||
|
|
||
|
/* Avoid infinite polling loop when PSU is not under Cuda control */
|
||
|
switch (macintosh_config->ident) {
|
||
|
case MAC_MODEL_C660:
|
||
|
case MAC_MODEL_Q605:
|
||
|
case MAC_MODEL_Q605_ACC:
|
||
|
case MAC_MODEL_P475:
|
||
|
case MAC_MODEL_P475F:
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
while (!req.complete)
|
||
|
cuda_poll();
|
||
|
}
|
||
|
#endif /* CONFIG_ADB_CUDA */
|
||
|
|
||
|
/*
|
||
|
*-------------------------------------------------------------------
|
||
|
* Below this point are the generic routines; they'll dispatch to the
|
||
|
* correct routine for the hardware on which we're running.
|
||
|
*-------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_NVRAM)
|
||
|
unsigned char mac_pram_read_byte(int addr)
|
||
|
{
|
||
|
switch (macintosh_config->adb_type) {
|
||
|
case MAC_ADB_IOP:
|
||
|
case MAC_ADB_II:
|
||
|
case MAC_ADB_PB1:
|
||
|
return via_pram_read_byte(addr);
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
case MAC_ADB_EGRET:
|
||
|
case MAC_ADB_CUDA:
|
||
|
return cuda_pram_read_byte(addr);
|
||
|
#endif
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
case MAC_ADB_PB2:
|
||
|
return pmu_pram_read_byte(addr);
|
||
|
#endif
|
||
|
default:
|
||
|
return 0xFF;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mac_pram_write_byte(unsigned char val, int addr)
|
||
|
{
|
||
|
switch (macintosh_config->adb_type) {
|
||
|
case MAC_ADB_IOP:
|
||
|
case MAC_ADB_II:
|
||
|
case MAC_ADB_PB1:
|
||
|
via_pram_write_byte(val, addr);
|
||
|
break;
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
case MAC_ADB_EGRET:
|
||
|
case MAC_ADB_CUDA:
|
||
|
cuda_pram_write_byte(val, addr);
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
case MAC_ADB_PB2:
|
||
|
pmu_pram_write_byte(val, addr);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ssize_t mac_pram_get_size(void)
|
||
|
{
|
||
|
return 256;
|
||
|
}
|
||
|
#endif /* CONFIG_NVRAM */
|
||
|
|
||
|
void mac_poweroff(void)
|
||
|
{
|
||
|
if (oss_present) {
|
||
|
oss_shutdown();
|
||
|
} else if (macintosh_config->adb_type == MAC_ADB_II) {
|
||
|
via_shutdown();
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
|
||
|
macintosh_config->adb_type == MAC_ADB_CUDA) {
|
||
|
cuda_shutdown();
|
||
|
#endif
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
|
||
|
pmu_shutdown();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
pr_crit("It is now safe to turn off your Macintosh.\n");
|
||
|
local_irq_disable();
|
||
|
while(1);
|
||
|
}
|
||
|
|
||
|
void mac_reset(void)
|
||
|
{
|
||
|
if (macintosh_config->adb_type == MAC_ADB_II &&
|
||
|
macintosh_config->ident != MAC_MODEL_SE30) {
|
||
|
/* need ROMBASE in booter */
|
||
|
/* indeed, plus need to MAP THE ROM !! */
|
||
|
|
||
|
if (mac_bi_data.rombase == 0)
|
||
|
mac_bi_data.rombase = 0x40800000;
|
||
|
|
||
|
/* works on some */
|
||
|
rom_reset = (void *) (mac_bi_data.rombase + 0xa);
|
||
|
|
||
|
local_irq_disable();
|
||
|
rom_reset();
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
|
||
|
macintosh_config->adb_type == MAC_ADB_CUDA) {
|
||
|
cuda_restart();
|
||
|
#endif
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
|
||
|
pmu_restart();
|
||
|
#endif
|
||
|
} else if (CPU_IS_030) {
|
||
|
|
||
|
/* 030-specific reset routine. The idea is general, but the
|
||
|
* specific registers to reset are '030-specific. Until I
|
||
|
* have a non-030 machine, I can't test anything else.
|
||
|
* -- C. Scott Ananian <cananian@alumni.princeton.edu>
|
||
|
*/
|
||
|
|
||
|
unsigned long rombase = 0x40000000;
|
||
|
|
||
|
/* make a 1-to-1 mapping, using the transparent tran. reg. */
|
||
|
unsigned long virt = (unsigned long) mac_reset;
|
||
|
unsigned long phys = virt_to_phys(mac_reset);
|
||
|
unsigned long addr = (phys&0xFF000000)|0x8777;
|
||
|
unsigned long offset = phys-virt;
|
||
|
|
||
|
local_irq_disable(); /* lets not screw this up, ok? */
|
||
|
__asm__ __volatile__(".chip 68030\n\t"
|
||
|
"pmove %0,%/tt0\n\t"
|
||
|
".chip 68k"
|
||
|
: : "m" (addr));
|
||
|
/* Now jump to physical address so we can disable MMU */
|
||
|
__asm__ __volatile__(
|
||
|
".chip 68030\n\t"
|
||
|
"lea %/pc@(1f),%/a0\n\t"
|
||
|
"addl %0,%/a0\n\t"/* fixup target address and stack ptr */
|
||
|
"addl %0,%/sp\n\t"
|
||
|
"pflusha\n\t"
|
||
|
"jmp %/a0@\n\t" /* jump into physical memory */
|
||
|
"0:.long 0\n\t" /* a constant zero. */
|
||
|
/* OK. Now reset everything and jump to reset vector. */
|
||
|
"1:\n\t"
|
||
|
"lea %/pc@(0b),%/a0\n\t"
|
||
|
"pmove %/a0@, %/tc\n\t" /* disable mmu */
|
||
|
"pmove %/a0@, %/tt0\n\t" /* disable tt0 */
|
||
|
"pmove %/a0@, %/tt1\n\t" /* disable tt1 */
|
||
|
"movel #0, %/a0\n\t"
|
||
|
"movec %/a0, %/vbr\n\t" /* clear vector base register */
|
||
|
"movec %/a0, %/cacr\n\t" /* disable caches */
|
||
|
"movel #0x0808,%/a0\n\t"
|
||
|
"movec %/a0, %/cacr\n\t" /* flush i&d caches */
|
||
|
"movew #0x2700,%/sr\n\t" /* set up status register */
|
||
|
"movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
|
||
|
"movec %/a0, %/isp\n\t"
|
||
|
"movel %1@(0x4),%/a0\n\t" /* load reset vector */
|
||
|
"reset\n\t" /* reset external devices */
|
||
|
"jmp %/a0@\n\t" /* jump to the reset vector */
|
||
|
".chip 68k"
|
||
|
: : "r" (offset), "a" (rombase) : "a0");
|
||
|
}
|
||
|
|
||
|
/* should never get here */
|
||
|
pr_crit("Restart failed. Please restart manually.\n");
|
||
|
local_irq_disable();
|
||
|
while(1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function translates seconds since 1970 into a proper date.
|
||
|
*
|
||
|
* Algorithm cribbed from glibc2.1, __offtime().
|
||
|
*
|
||
|
* This is roughly same as rtc_time64_to_tm(), which we should probably
|
||
|
* use here, but it's only available when CONFIG_RTC_LIB is enabled.
|
||
|
*/
|
||
|
#define SECS_PER_MINUTE (60)
|
||
|
#define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
|
||
|
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
|
||
|
|
||
|
static void unmktime(time64_t time, long offset,
|
||
|
int *yearp, int *monp, int *dayp,
|
||
|
int *hourp, int *minp, int *secp)
|
||
|
{
|
||
|
/* How many days come before each month (0-12). */
|
||
|
static const unsigned short int __mon_yday[2][13] =
|
||
|
{
|
||
|
/* Normal years. */
|
||
|
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
|
||
|
/* Leap years. */
|
||
|
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
|
||
|
};
|
||
|
int days, rem, y, wday, yday;
|
||
|
const unsigned short int *ip;
|
||
|
|
||
|
days = div_u64_rem(time, SECS_PER_DAY, &rem);
|
||
|
rem += offset;
|
||
|
while (rem < 0) {
|
||
|
rem += SECS_PER_DAY;
|
||
|
--days;
|
||
|
}
|
||
|
while (rem >= SECS_PER_DAY) {
|
||
|
rem -= SECS_PER_DAY;
|
||
|
++days;
|
||
|
}
|
||
|
*hourp = rem / SECS_PER_HOUR;
|
||
|
rem %= SECS_PER_HOUR;
|
||
|
*minp = rem / SECS_PER_MINUTE;
|
||
|
*secp = rem % SECS_PER_MINUTE;
|
||
|
/* January 1, 1970 was a Thursday. */
|
||
|
wday = (4 + days) % 7; /* Day in the week. Not currently used */
|
||
|
if (wday < 0) wday += 7;
|
||
|
y = 1970;
|
||
|
|
||
|
#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
|
||
|
#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
|
||
|
#define __isleap(year) \
|
||
|
((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
|
||
|
|
||
|
while (days < 0 || days >= (__isleap (y) ? 366 : 365))
|
||
|
{
|
||
|
/* Guess a corrected year, assuming 365 days per year. */
|
||
|
long int yg = y + days / 365 - (days % 365 < 0);
|
||
|
|
||
|
/* Adjust DAYS and Y to match the guessed year. */
|
||
|
days -= (yg - y) * 365 +
|
||
|
LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1);
|
||
|
y = yg;
|
||
|
}
|
||
|
*yearp = y - 1900;
|
||
|
yday = days; /* day in the year. Not currently used. */
|
||
|
ip = __mon_yday[__isleap(y)];
|
||
|
for (y = 11; days < (long int) ip[y]; --y)
|
||
|
continue;
|
||
|
days -= ip[y];
|
||
|
*monp = y;
|
||
|
*dayp = days + 1; /* day in the month */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read/write the hardware clock.
|
||
|
*/
|
||
|
|
||
|
int mac_hwclk(int op, struct rtc_time *t)
|
||
|
{
|
||
|
time64_t now;
|
||
|
|
||
|
if (!op) { /* read */
|
||
|
switch (macintosh_config->adb_type) {
|
||
|
case MAC_ADB_IOP:
|
||
|
case MAC_ADB_II:
|
||
|
case MAC_ADB_PB1:
|
||
|
now = via_read_time();
|
||
|
break;
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
case MAC_ADB_EGRET:
|
||
|
case MAC_ADB_CUDA:
|
||
|
now = cuda_get_time();
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
case MAC_ADB_PB2:
|
||
|
now = pmu_get_time();
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
now = 0;
|
||
|
}
|
||
|
|
||
|
t->tm_wday = 0;
|
||
|
unmktime(now, 0,
|
||
|
&t->tm_year, &t->tm_mon, &t->tm_mday,
|
||
|
&t->tm_hour, &t->tm_min, &t->tm_sec);
|
||
|
pr_debug("%s: read %ptR\n", __func__, t);
|
||
|
} else { /* write */
|
||
|
pr_debug("%s: tried to write %ptR\n", __func__, t);
|
||
|
|
||
|
switch (macintosh_config->adb_type) {
|
||
|
case MAC_ADB_IOP:
|
||
|
case MAC_ADB_II:
|
||
|
case MAC_ADB_PB1:
|
||
|
via_set_rtc_time(t);
|
||
|
break;
|
||
|
#ifdef CONFIG_ADB_CUDA
|
||
|
case MAC_ADB_EGRET:
|
||
|
case MAC_ADB_CUDA:
|
||
|
cuda_set_rtc_time(t);
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef CONFIG_ADB_PMU
|
||
|
case MAC_ADB_PB2:
|
||
|
pmu_set_rtc_time(t);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|